Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Editor-in-Chief: /


IMPACT FACTOR 2016: 1.260
5-year IMPACT FACTOR: 1.506

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.615
Source Normalized Impact per Paper (SNIP) 2016: 0.470

Online
ISSN
1689-1392
See all formats and pricing
More options …
Volume 12, Issue 1 (Mar 2007)

How influenza’s neuraminidase promotes virulence and creates localized lung mucosa immunodeficiency

Ajay Bhatia / Richard Kast
Published Online: 2006-11-13 | DOI: https://doi.org/10.2478/s11658-006-0055-x

Abstract

Neuraminidase (NA) is an enzyme coded for by the genome of influenza critical for its pathogenicity and survival. Three currently accepted roles for this NA in promoting influenza virulence are: 1. NA cleaves newly formed virus particles from the host cell membrane. Without NA, newly formed virus would remain attached to the cell within which it was produced. 2. NA prevents newly released virus particles from aggregating to each other, preventing clumping that would reduce dissemination. 3. NA promotes viral penetration of sialic acid-rich mucin that bathes and protects respiratory epithelium through which the virus must spread and replicate. We outline here previous research evidence of two further, albeit hypothetical, functions of NA that together could cause disruption the mucosa-IgA axis, creating localized partial immunosuppressed state, enhancing both influenza infection itself and secondary bacterial pneumonia: 4. IgA provides primary immunoglobulin defense of mucosal surfaces. The hinge region of IgA is normally sialylated. IgA denuded of sialic acid is recognized, bound, and cleared by hepatic asialoglycoprotein receptor (ASGPR). Thus, IgA exposed to free NA would be so denuded and have increased hepatic clearance. 5. NA removes sialic acid moieties from mucosa-residing gamma/delta T cells or IgA producing B cells. Previous work indicates desialylation of these lymphocytes' outer cell membrane results in altered homing, to bone marrow, away from mucosa. Currently marketed NA inhibitors oseltamivir (Tamiflu) and zanamivir (Relenza) are FDA approved in USA for influenza prophylaxis and treatment. These NA inhibitors lower incidence of secondary bacterial infection in cases where an influenza infection occurs despite their use. Moreover, they are ameliorative in patients with secondary bacterial infections treated with antibiotics, a benefit that surpasses the treatment of antibiotics alone. We interpret these last two points as indicating our ascription of localized immunosuppression to influenza's NA could be correct and lead to new treatments of infections generally.

Keywords: Asialoglycoprotein receptor; IgA; Immunodeficiency; Influenza; Lymphocyte homing; Neuraminidase; Oseltamivir; Sialic acid; Zanamivir

  • [1] Moscona, A. Neuraminidase inhibitors for influenza. N. Engl. J. Med. 353 (2005) 1363–1367. http://dx.doi.org/10.1056/NEJMra050740CrossrefGoogle Scholar

  • [2] Matrosovich, M.N., Matrosovitch, T.Y., Gray, T, Roberts, N.A. and Klenk, H.D. Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J. Virol. 78 (2004) 12665–12667. http://dx.doi.org/10.1128/JVI.78.22.12665-12667.2004CrossrefGoogle Scholar

  • [3] Gubareva, L.V., Kaiser, L. and Hayden, F.G. Influenza virus neuraminidase inhibitors. Lancet 355 (2000) 827–835. http://dx.doi.org/10.1016/S0140-6736(99)11433-8CrossrefGoogle Scholar

  • [4] Englund, J.A. Antiviral therapy of influenza. Sem. in Ped. Infect. Dis. 13 (2002) 120–128. http://dx.doi.org/10.1053/spid.2002.122999CrossrefGoogle Scholar

  • [5] Stiver, G. The treatment of influenza with antiviral drugs. CMAJ 168 (2003) 49–57. Google Scholar

  • [6] Colman, P.M. A novel approach to antiviral therapy for influenza. J. Antimicrob. Chemother. 44 (1999) 17–22. http://dx.doi.org/10.1093/jac/44.suppl_2.17CrossrefGoogle Scholar

  • [7] Brandtzaeg, P., Farstad, I.N., Johansen, F.E., Morton, H.C., Norderhaug, I.N. and Yamanaka, T. The B-cell system of human mucosae and exocrine glands. Immunol. Rev. 171 (1999) 45–87. http://dx.doi.org/10.1111/j.1600-065X.1999.tb01342.xCrossrefGoogle Scholar

  • [8] Tomana, M., Kulhavy, R. and Mestecky, J. Receptor-mediated binding and uptake of IgA by human liver. Gastroenterology 94 (1988) 762–770. Google Scholar

  • [9] Groh, V., Porcelli, S., Fabbi, M., Lanier, L.L., Picker, L.J., Anderson, T., Warnke, R.A., Bhan, A.K., Strominger, J.L. and Brenner, M.B. Human lymphocyes bearing T cell receptor gamma/delta are phenotypically diverse and evenly distributed throughout the lymphoid system. J. Exp. Med. 169 (1989) 1277–1294. http://dx.doi.org/10.1084/jem.169.4.1277CrossrefGoogle Scholar

  • [10] Spencer, J., Isaacson, P.G., Diss, T.C. and MacDonald, T.T. Expression of disulfide-linked and non-disulfide-linked forms of the T cell receptor gamma/delta heterodimer in human intestinal intraepithelial lymphocytes. Eur. J. Immunol. 19 (1989) 1335–1338. Google Scholar

  • [11] Deusch, K., Luling, F., Reich, K., Classen, M., Wagner, H. and Pfeffer, K.A major fraction of human intraepithelial lymphocytes simultaneously expresses the gamma/delta T cell receptor, the CD8 accessory molecule and preferentially uses the V delta1 gene segment. Eur. J. Immunol. 21 (1991) 1053–1059. Google Scholar

  • [12] Jones, W.M., Walcheck, B. and Jutila, M.A. Generation of a new gamma/delta T cell-specific monoclonal antibody (GD3.5). J. Immunol. 156 (1996) 3772–3779. Google Scholar

  • [13] Floyd, H., Nitschke, L. and Crocker, P.R. A novel subset of murine B cells that expresses unmasked forms of CD22 is enriched in the bone marrow: Implications for B-cell homing to the bone marrow. Immunology 101 (2000) 342–347. http://dx.doi.org/10.1046/j.1365-2567.2000.00103.xCrossrefGoogle Scholar

  • [14] Nitschke, L., Floyd, H. and Ferguson, D.J., Identification of CD22 ligands on CD22 bone marrow sinusoidal endothelium implicated in CD22-dependent homing of recirculating B-cells. J. Exp. Med. 189 (1999) 1513–1518. http://dx.doi.org/10.1084/jem.189.9.1513CrossrefGoogle Scholar

  • [15] Reinholdt, J., Tomana, M. and Mortensen, S.B. Molecular aspects of IgA degredation by oral streptococci. Infect. Immunol. 58 (1990) 1186–1194. Google Scholar

  • [16] Kast R.E. A theory of lymphocyte blast transformation and malignant change based on proteolytic cleavage of the trigger peptide: The detendomer. Oncology 29 (1974) 249–264. http://dx.doi.org/10.1159/000224907CrossrefGoogle Scholar

  • [17] Kast, R.E. Lymphocytes and cells in malignant transformation. Oncology 32 (1975) 175–189. Google Scholar

  • [18] Gronbaek Frandsen, E.V. Bacterial degradation of IgA1 in relation to periodontal disease. APMIS (Suppl) 87 (1999) 1–54. Google Scholar

  • [19] King, S.J., Hippe, K.R., Gould, J.M., Bae, D., Peterson, S., Cline, R.T., Fasching, C., Janoff, E.N. and Weiser, J.N. Phase variable desialylation of host proteins that bind to Streptococcus pneumoniae in vivo and protect the airway. Mol. Microbiol. 54 (2004) 159–171. http://dx.doi.org/10.1111/j.1365-2958.2004.04252.xCrossrefGoogle Scholar

  • [20] Kannagi, R. Regulatory roles of carbohydrate ligands for selectins in the homing of lymphocytes. Curr. Opin. Struct. Biol. 12 (2002) 599–608. http://dx.doi.org/10.1016/S0959-440X(02)00365-2CrossrefGoogle Scholar

  • [21] Glezen, W.P., Payne, A.A. and Snyder, D.N. Mortality and influenza. J. Infect. Dis. 146 (1982) 313–321. Google Scholar

  • [22] Simonsen, L, Fukada, K. and Schonberger, L.B. The impact of influenza epidemics on hospitalizations. J. Infect. Dis. 181 (2000) 831–837. http://dx.doi.org/10.1086/315320CrossrefGoogle Scholar

  • [23] Simonsen, L. The global impact of influenza on morbidity and mortality. Vaccine 17 (Suppl 1) (1999) S3–10. http://dx.doi.org/10.1016/S0264-410X(99)00099-7CrossrefGoogle Scholar

  • [24] McCullers, J.A. and Bartmess, K.C. Role of neauraminidase in lethal synergism between influenza virus and streptococcus pneumoniae. J. Infect. Dis. 187 (2003) 1000–1009. http://dx.doi.org/10.1086/368163CrossrefGoogle Scholar

  • [25] McCullers, J.A. Effect of antiviral treatment on the outcome of secondary bacterial pneumonia after influenza. J. Infect. Dis. 190 (2004) 519–526. http://dx.doi.org/10.1086/421525CrossrefGoogle Scholar

  • [26] Kaiser, L., Wat, C., Mills, T., Mahoney, P., Ward, P. and Hayden, F. Impact of oseltamivir treatment on influenza-related lower respiratory tract complications and hospitalizations. Arch. Intern. Med. 163 (2003) 1667–1672. http://dx.doi.org/10.1001/archinte.163.14.1667CrossrefGoogle Scholar

  • [27] Kaiser, L., Keene, O.N. and Hammond, J.M. Impact of zanamivir on antibiotic use for respiratory events following acute influenza in adolescents and adults. Arch Intern Med 160 (2000) 3234–3240. http://dx.doi.org/10.1001/archinte.160.21.3234CrossrefGoogle Scholar

  • [28] Treanor, J.J., Hayden, F.G., Vrooman, P.S., Barbarash, R., Bettis, R., Riff, D., Singh, S., Kinnersley, N., Ward, P. and Mills, R.G. Efficacy and safety of oral neuraminidase Inhibitor oseltamivir in treating acute influenza: A randomized controlled trial. JAMA 283 (2000) 1016–1024. http://dx.doi.org/10.1001/jama.283.8.1016CrossrefGoogle Scholar

  • [29] Monto, A.S., Webster, A. and Keene, O. Randomized, placebo-controlled studies of inhaled zanamivir in the treatment of influenza A and B: Pooled efficacy analysis. J. Antimicrob. Chemother. 44 (1999) 23–29. http://dx.doi.org/10.1093/jac/44.suppl_2.23CrossrefGoogle Scholar

  • [30] Peltola, V.T., Murti, K.G. and McCullers, J.A. Influenza virus neuraminidase contributes to secondary bacterial pneumonia. J Infect Dis. 192 (2005) 249–257. http://dx.doi.org/10.1086/430954CrossrefGoogle Scholar

  • [31] Peltola, V.T. and McCullers, J.A. Respiratory viruses predisposing to bacterial infections: role of neuraminidase. Pediatr. Infect. Dis. J. 23 (Suppl.1) (2004) S87–97. http://dx.doi.org/10.1097/01.inf.0000107021.66218.ecCrossrefGoogle Scholar

  • [32] Yen, H.L., Herlocher, L.M., Hoffmann, E., Matrosovich, M.N., Monto, A.S., Webster, R.G. and Govorkova, E.A. Neuraminidase inhibitor-resistant influenza viruses may differ substantially in fitness and transmissibility. Antimicrob. Agents Chemother. 49 (2005) 4075–4084. http://dx.doi.org/10.1128/AAC.49.10.4075-4084.2005CrossrefGoogle Scholar

  • [33] Roberts, N. Treatment of influenza with neuraminidase inhibitors: Virological implications. Phil. Trans. R. Soc. Lond. 356 (2001) 1895–1897. http://dx.doi.org/10.1098/rstb.2001.1002CrossrefGoogle Scholar

  • [34] Wakai, K., Nakai, S., Matsuo, S., Kawamura, T., Hotta, N., Maeda, K. and Ohno, Y. Risk factors for IgA nephropathy: A case-control study with incident cases in Japan. Nephron 90 (2002) 16–23. http://dx.doi.org/10.1159/000046309CrossrefGoogle Scholar

  • [35] Xu, L.X. and Zhao, M.H. Aberrantly glycosylated serum IgA1 are closely associated with pathologic phenotypes of IgA nephropathy. Kidney Int. 68 (2005) 167–172. http://dx.doi.org/10.1111/j.1523-1755.2005.00390.xCrossrefGoogle Scholar

  • [36] Altschuler, E.L., Bhatia, A. and Kast, R.E. Consideration of use of neuraminidase inhibitors such as oseltamivir and zanamivir in IgA nephropathy. Kidney Int. 68 (2005) 2910–2911. http://dx.doi.org/10.1111/j.1523-1755.2005.00583_7.xCrossrefGoogle Scholar

About the article

Published Online: 2006-11-13

Published in Print: 2007-03-01


Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-006-0055-x.

Export Citation

© 2006 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Pratibha Gaur, Priya Ranjan, Shipra Sharma, Jenish R. Patel, J. Bradford Bowzard, Shah K. Rahman, Rashmi Kumari, Shivaprakash Gangappa, Jacqueline M. Katz, Nancy J. Cox, Renu B. Lal, Suryaprakash Sambhara, and Sunil K. Lal
Journal of Biological Chemistry, 2012, Volume 287, Number 18, Page 15109
[2]
Pablo Granados-Durán, María Dolores López-Ávalos, Manuel Cifuentes, Margarita Pérez-Martín, María del Mar Fernández-Arjona, Timothy R. Hughes, Krista Johnson, B. Paul Morgan, Pedro Fernández-Llebrez, and Jesús M. Grondona
Frontiers in Neurology, 2017, Volume 8
[3]
Rokuro Hama
Infectious Diseases, 2016, Volume 48, Number 9, Page 651
[4]
Jung-kyu Lee, Chan-Won Park, Hyuk-Ku Kwon, Seunho Jung, Hyun-Ja Jeong, In-Cheol Kang, and Youngjin Choi
BioChip Journal, 2014, Volume 8, Number 3, Page 209
[5]
Erika Wissinger, John Goulding, and Tracy Hussell
Seminars in Immunology, 2009, Volume 21, Number 3, Page 147
[6]
Ching-Yao Su, Shi-Yun Wang, Jiun-Jie Shie, King-Song Jeng, Nigel J. Temperton, Jim-Min Fang, Chi-Huey Wong, and Yih-Shyun E. Cheng
Antiviral Research, 2008, Volume 79, Number 3, Page 199
[7]
Megan N. Ballinger and Theodore J. Standiford
Journal of Interferon & Cytokine Research, 2010, Volume 30, Number 9, Page 643
[8]
H. Zhang
Journal of Antimicrobial Chemotherapy, 2008, Volume 62, Number 2, Page 219
[9]
Jindrich Cinatl, Martin Michaelis, and Hans W. Doerr
Medical Microbiology and Immunology, 2007, Volume 196, Number 4, Page 191

Comments (0)

Please log in or register to comment.
Log in