Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 12, Issue 3


The construction of the eukaryotic expression plasmid pcDNA3.1/azurin and the increased apoptosis of U2OS cells transfected with it

Zhaoming Ye
  • Department of Orthopedics, Second Affiliated Hospital, Medical College, Zhejiang University, 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Huiqin Peng / Yongming Fang / Jie Feng
  • Department of Orthopedics, Second Affiliated Hospital, Medical College, Zhejiang University, 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Di-Sheng Yang
  • Department of Orthopedics, Second Affiliated Hospital, Medical College, Zhejiang University, 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2007-04-06 | DOI: https://doi.org/10.2478/s11658-007-0012-3


In our previous study, we demonstrated that azurin could selectively trigger apoptosis in human osteosarcoma cell line U2OS cells. However, the rate of apoptosis (35.8 ± 3.2%) is not very high, and azurin is too expensive to obtain readily. To solve these problems, we constructed a eukaryotic expression plasmid containing the azurin gene with an influenza virus haemagglutinin 9 peptide HA epitope tag, and transfected the recombinant plasmid pcDNA3.1(+)/azurin into U2OS cells. RT-PCR and Western blot analysis validated the successful transfection and the expression of the azurin-HA protein. Conspicuous apoptosis of the transfected cells was detected by flow cytometry (FCM) and the DNA ladder test. The apoptosis rate reached 64.3 ± 13.1%. The transcriptional levels of the Bax and p53 genes increased significantly in U2OS cells transfected with pcDNA3.1(+)/azurin, but the Bcl-2 mRNA level decreased. There was no difference in the levels of Bcl-xl mRNA and Survivin mRNA. We propose that the transfection of the recombinant plasmid pcDNA3.1(+)/azurin can significantly induce apoptosis in U2OS cells. This is closely associated with the up-regulation of the transcriptional level of the Bax and p53 genes, and the down-regulation of that of the Bcl-2 gene.

Keywords: Azurin; Transfection; Osteosarcoma; Apoptosis

  • [1] Sinha, G. Bacterial battalions join war against cancer. Nat. Med. 9 (2003) 1229. http://dx.doi.org/10.1038/nm1003-1229aCrossrefGoogle Scholar

  • [2] Chakrabarty, A.M. Microorganisms and cancer: quest for a therapy. J. Bacteriol. 185 (2003) 2683–2686. http://dx.doi.org/10.1128/JB.185.9.2683-2686.2003CrossrefGoogle Scholar

  • [3] Kukimoto, M., Nishiyama, M., Tanokura, M., Murphy, M.E., Adman, E.T. and Horinouchi, S. Site-directed mutagenesis of azurin from Pseudomonas aeruginosa enhances the formation of an electron-transfer complex with a copper-containing nitrite reductase from Alcaligenes faecalis S-6. FEBS Lett. 394 (1996) 87–90. http://dx.doi.org/10.1016/0014-5793(96)00934-9CrossrefGoogle Scholar

  • [4] Yamada, T., Fialho, A.M., Punj, V., Bratescu, L., Gupta, T.K. and Chakrabarty, A.M. Internalization of bacterial redox protein azurin in mammalian cells: entry domain and specificity. Cell. Microbiol. 7 (2005) 1418–1431. http://dx.doi.org/10.1111/j.1462-5822.2005.00567.xCrossrefGoogle Scholar

  • [5] Yamada, T., Hiraoka, Y., Ikehata, M., Kimbara, K., Avner, B.S., Das Gupta, T.K. and Chakrabarty, A.M. Apoptosis or growth arrest: Modulation of tumor suppressor p53’s specificity by bacterial redox protein azurin. Proc. Natl. Acad. Sci. 101 (2004) 4770–4775. http://dx.doi.org/10.1073/pnas.0400899101CrossrefGoogle Scholar

  • [6] Yang, D.S., Miao, X.D., Ye, Z.M., Feng, J., Xu, R.Z., Huang, X. and Ge, F.F. Bacterial redox protein azurin induce apoptosis in human osteosarcoma U2OS cells. Pharmacol. Res. 52 (2005) 413–421. http://dx.doi.org/10.1016/j.phrs.2005.06.002CrossrefGoogle Scholar

  • [7] Miao, X.D., Ye, Z.M., Yang, D.S., Xu, R.Z., Li, W.X. and Tao, H.M. Cytotoxicity and apoptosis of human osteosarcoma U2OS cells induced by recombinant soluble AZURIN. Zhejiang Da Xue Xue Bao Yi Xue Ban. 34 (2005) 384–389. Google Scholar

  • [8] Wilson, I.A., Niman, H.L., Houghten, R.A., Cherenson, A.R., Connolly, M.L. and Lerner, R.A. The structure of an antigenic determinant in a protein. Cell 37 (1984) 767–778. http://dx.doi.org/10.1016/0092-8674(84)90412-4CrossrefGoogle Scholar

  • [9] Feng, J., Zhao, L. and Yu, Q. Receptor-mediated stimulatory effect of oligochitosan in macrophages. Biochem. Biophys. Res. Commun. 317 (2004) 414–420. http://dx.doi.org/10.1016/j.bbrc.2004.03.048CrossrefGoogle Scholar

  • [10] Reed, J.C. Apoptosis-regulating proteins as targets for drug discovery. Trends. Mol. Med. 7 (2001) 314–319. http://dx.doi.org/10.1016/S1471-4914(01)02026-3CrossrefGoogle Scholar

  • [11] Wyllie, A.H. Apoptosis (the 1992 Frank Rose Memorial Lecture). Br. J. Cancer. 67 (1993) 205–208. Google Scholar

  • [12] Zhou, M., Gu, L., Yeager, A.M. and Findley, H.W. Sensitivity to Fas-mediated apoptosis in pediatric acute lymphoblastic leukemia is associated with a mutant p53 phenotype and absence of Bcl-2 expression. Leukemia 12 (1998) 1756–1763. http://dx.doi.org/10.1038/sj.leu.2401198CrossrefGoogle Scholar

  • [13] Zhang, H., Heim, J. and Meyhack, B. Novel BNIP1 variants and their interaction with BCL2 family members. FEBS Lett. 448 (1999) 23–27. http://dx.doi.org/10.1016/S0014-5793(99)00335-XCrossrefGoogle Scholar

  • [14] Schlesinger, P.H., Gross, A., Yin, X.M., Yamamoto, K., Saito, M., Waksman, G. and Korsmeyer, S.J. Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2. Proc. Natl. Acad. Sci. 94 (1997) 11357–11362. http://dx.doi.org/10.1073/pnas.94.21.11357CrossrefGoogle Scholar

  • [15] Tu, Y., Xu, F.H., Liu, J., Vescio, R., Berenson, J., Fady, C. and Lichtenstein, A. Upregulated expression of BCL-2 in multiple myeloma cells induced by exposure to doxorubicin, etoposide, and hydrogen peroxide. Blood 88 (1996) 1805–1812. Google Scholar

  • [16] Salomons, G.S., Brady, H.J., Verwijs-Janssen, M., Van Den Berg, J.D., Hart, A.A., Van Den Berg, H., Behrendt, H., Hahlen, K. and Sme, L.A. The Bax alpha:Bcl-2 ratio modulates the response to dexamethasone in leukaemic cells and is highly variable in childhood acute leukaemia. Int. J. Cancer. 71 (1997) 959–965. http://dx.doi.org/10.1002/(SICI)1097-0215(19970611)71:6<959::AID-IJC9>3.0.CO;2-XCrossrefGoogle Scholar

  • [17] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C. and Altieri, D.C. Control of apoptosis and mitotic spindle checkpoint by Survivin. Nature 396 (1998) 580–584. http://dx.doi.org/10.1038/25141CrossrefGoogle Scholar

  • [18] Yamada, T., Goto, M., Punj, V., Zaborina, O., Chen, M.L., Kimbara, K., Majumdar, D., Cunningham, E., Das Gupta, T.K. and Chakrabarty, A.M. Bacterial redox protein azurin, tumor suppressor protein p53, and regression of cancer. Proc. Natl. Acad. Sci. 99 (2002) 14098–14103. http://dx.doi.org/10.1073/pnas.222539699CrossrefGoogle Scholar

  • [19] Punj, V., Bhattacharyya, S., Saint-Dic, D., Vasu, C., Cunningham, E.A., Graves, J., Yamada, T., Constantinou, A.I., Christov, K., White, B., Li, G., Majumdar, D., Chakrabarty, A.M. and Das Gupta, TK. Bacterial cupredoxin azurin as an inducer of apoptosis and regression in human breast cancer. Oncogene 23 (2004) 2367–2378. http://dx.doi.org/10.1038/sj.onc.1207376CrossrefGoogle Scholar

  • [20] Yamada, T., Goto, M., Punj, V., Zaborina, O., Kimbara, K., Das Gupta, T.K. and Chakrabarty, A.M. The bacterial redox protein azurin induces apoptosis in J774 macrophages through complex formation and stabilization of the tumor suppressor protein p53. Infect. Immun. 70 (2002) 7054–7062. http://dx.doi.org/10.1128/IAI.70.12.7054-7062.2002CrossrefGoogle Scholar

  • [21] Punj, V., Das Gupta, T.K. and Chakrabarty, A.M. Bacterial cupredoxin azurin and its interactions with the tumor suppressor protein p53. Biochem. Biophys. Res. Commun. 312 (2003) 109–114. http://dx.doi.org/10.1016/j.bbrc.2003.09.217CrossrefGoogle Scholar

  • [22] Vogelstein, B., Lane, D. and Levine, A.J. Surfing the p53 network. Nature 408 (2000) 307–310. http://dx.doi.org/10.1038/35042675CrossrefGoogle Scholar

  • [23] Haupt, Y., Maya, R., Kazaz, A. and Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387 (1997) 296–299. http://dx.doi.org/10.1038/387296a0CrossrefGoogle Scholar

  • [24] Gross, A., Jockel, J., Wei, M.C. and Korsmeyer, S.J. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J. 17 (1998) 3878–3885. http://dx.doi.org/10.1093/emboj/17.14.3878CrossrefGoogle Scholar

  • [25] Budhram-Mahadeo, V., Morris, P.J., Smith, M.D., Midgley, C.A., Boxer, L.M. and Latchman, D.S. p53 suppresses the activation of the Bcl-2 promoter by the Brn-3a POU family transcription factor. J. Biol. Chem. 274 (1999) 15237–15244. http://dx.doi.org/10.1074/jbc.274.21.15237CrossrefGoogle Scholar

About the article

Published Online: 2007-04-06

Published in Print: 2007-09-01

Citation Information: Cellular and Molecular Biology Letters, Volume 12, Issue 3, Pages 407–421, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-007-0012-3.

Export Citation

© 2007 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Edi Gabellieri, Monica Bucciantini, Massimo Stefani, and Patrizia Cioni
Biophysical Chemistry, 2011, Volume 159, Number 2-3, Page 287
Yao Zhao, Chun-lin Zhang, Bing-fang Zeng, Xiao-san Wu, Tian-Tian Gao, and Yoshino Oda
Biochemical and Biophysical Research Communications, 2009, Volume 390, Number 3, Page 642

Comments (0)

Please log in or register to comment.
Log in