Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 12, Issue 3


Engrafting fetal liver cells into multiple tissues of healthy adult mice without the use of immunosuppressants

Adas Darinskas / Renata Gasparaviciute
  • Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius, Lithuania, Vilnius, 08412, Lithuania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mantas Malisauskas / Kristina Wilhelm / Jurij Kozhevnikov
  • Laboratory of Cell Biotechnology, the Sibirian Division of the Russian Academy of Sciences, Institute of Clinical Immunology, Novosibirsk, 630091, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Evaldas Liutkevicius / Audrone Pilinkiene / Ludmilla Morozova-Roche
Published Online: 2007-03-15 | DOI: https://doi.org/10.2478/s11658-007-0013-2


We have shown the fetal liver cell engraftments into multiple tissues of adult healthy mice, achieved without suppressing the animals’ immune systems. Fetal cells from the livers of male C57Bl/6J Black lineage mice at day 13 to 15 of gestation were injected intravenously into female adult CC57W/MY White mice. The grafting was evaluated by Y-chromosome-specific PCR, cytometric analysis of fluorescently stained donor cells, and histological analysis. All the methods consistently showed the presence of multiple engraftments randomly distributed through the various organs of the recipients. After 60 days, the grafts still constituted 0.1 to 2.75% of the tissues. The grafted cells did not change their appearance in any of the organs except the brain, where they became enlarged. Inflammatory reactions were not detected in any of the histological preparations. The frequency of engraftments was higher in the liver, indicating that similarity between the donor and recipient cells facilitates engraftment. The high inherent plasticity of fetal liver cells underlies their ability to integrate into healthy recipient organs, which can be governed by environmental conditions and connections with neighboring cells rather than by the initial cellular developmental programs. The fact that fetal liver cells can be grafted into multiple tissues of healthy animals indicates that they can be used to replace the natural loss of cells in adult organisms.

Keywords: Fetal cells; Transplantation; Engraftment; Immune suppression

  • [1] Bhattacharya, N. Fetal cell/tissue therapy in adult disease: a new horizon in regenerative medicine. Clin. Exp. Obstet. Gynecol. 31 (2004) 167–173. Google Scholar

  • [2] Snyder, B.J. and Olanow, C.W. Stem cell treatment for Parkinson’s disease: an update for 2005. Curr. Opin. Neuro. 18 (2005) 376–385. http://dx.doi.org/10.1097/01.wco.0000174298.27765.91CrossrefGoogle Scholar

  • [3] Melone, M.A., Jori, F.P. and Peluso, G. Huntington’s disease: new frontiers for molecular and cell therapy. Curr. Drug Targets 6 (2005) 43–56. http://dx.doi.org/10.2174/1389450053344975CrossrefGoogle Scholar

  • [4] Haider, H.Kh. and Ashraf, M. Bone marrow stem cell transplantation for cardiac repair. J. Physiol. Heart Circ. Physiol. 288 (2005) 2557–2567. http://dx.doi.org/10.1152/ajpheart.01215.2004CrossrefGoogle Scholar

  • [5] O’Donoghue, K., and Fisk, N.M. Fetal stem cells. Best Pract. Res. Clin. Obstet. Gynaecol. 18 (2004) 853–875. http://dx.doi.org/10.1016/j.bpobgyn.2004.06.010CrossrefGoogle Scholar

  • [6] Sembeil, R., Sanhadji, K., Vivier, G., Chargui, J. and Touraine, J.L. Prolonged survival of mouse skin allografts after transplantation of fetal liver cells transduced with hIL-10 gene. Transpl. Immunol. 13 (2004) 1–8. http://dx.doi.org/10.1016/j.trim.2003.12.004CrossrefGoogle Scholar

  • [7] de Vries-van der Zwan, A., van der Pol, M.A., de Waal, L.P. and Boog, C.J. An alternative conditioning regimen for induction of specific skin graft tolerance across full major histocompatibility complex barriers. Transpl. Immunol. 6 (1998) 147–151. http://dx.doi.org/10.1016/S0966-3274(98)80039-7CrossrefGoogle Scholar

  • [8] Wakabayashi, A., Eishi, Y. and Nakamura, K.J. Development of the immune system in severe combined immunodeficiency mice reconstituted with transferred fetal liver cells. Med. Dent. Sci. 44 (1997a) 21–29. Google Scholar

  • [9] Taylor, P.A., McElmurry, R.T., Lees, C.J., Harrison, D.E. and Blazar, B.R. Allogenic fetal liver cells have a distinct competitive engraftment advantage over adult bone marrow cells when infused into fetal as compared with adult severe combined immunodeficient recipients. Blood 99 (2002) 1870–1872. http://dx.doi.org/10.1182/blood.V99.5.1870CrossrefGoogle Scholar

  • [10] Sanhadji, K., Touraine, J.L., Aitouche, A., Vicari, A., Chargui, J. and Goillot, E. Fetal liver cell transplantation in various murine models. Bone Marrow Transplant. 9 (1992) 77–82. Google Scholar

  • [11] Savitz, S.I., Dinsmore, J., Wu, J., Henderson, G.V., Stieg, P. and Caplan, L.R. Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study. Cerebrovasc. Dis. 21 (2005) 101–107. http://dx.doi.org/10.1159/000086518CrossrefGoogle Scholar

  • [12] Wakabayashi, A., Eishi, Y. and Nakamura, K. Regulation of experimental autoimmune orchitis by the presence or absence of testicular antigens during immunological development in SCID mice reconstituted with fetal liver cells. Immunology 92 (1997b) 84–90. http://dx.doi.org/10.1046/j.1365-2567.1997.00316.xCrossrefGoogle Scholar

  • [13] Chargui, J., Moya, M.J., Sanhadji, K., Blanc-Brunat, N. and Touraine, J.L. Anti-NK antibodies injected into recipient mice enhance engraftment and chimerism after allogeneic transplantation of fetal liver stem cells. Thymus 24 (1997) 233–246. http://dx.doi.org/10.1023/A:1016942329163CrossrefGoogle Scholar

  • [14] Yuh, D.D., Gandy, K.L., Hoyt, G., Reitz, B.A. and Robbins, R.C. Tolerance to cardiac allografts induced in utero with fetal liver cells. Circulation 94 (1996) 11304–11307. Google Scholar

  • [15] Schoeberlein, A., Holzgreve, W., Dudler, L., Hahn, S. and Surbek, D.V. Tissue-specific engraftment after in utero transplantation of allogeneic mesenchymal stem cells into sheep fetuses. Am. J. Obstet. Gynecol. 192 (2005) 1044–1052. http://dx.doi.org/10.1016/j.ajog.2005.01.031CrossrefGoogle Scholar

  • [16] Shields, L.E., Lindton, B., Andrews, R.G. and Westgren, M. Fetal hematopoietic stem cell transplantation: a challenge for the twenty-first century. J. Hematotherapy Stem Cell Res. 11 (2002) 617–631. http://dx.doi.org/10.1089/15258160260194767CrossrefGoogle Scholar

  • [17] Chang, K.T., Sefc, L., Psenak, O., Vokurka, M. and Necas, E. Early fetal liver readily repopulates B lymphopoiesis in adult bone marrow. Stem Cells 23 (2005) 230–239. http://dx.doi.org/10.1634/stemcells.2004-0069CrossrefGoogle Scholar

  • [18] Nisbet-Brown, E. and Diener, E. T lymphocytes from irradiation chimeras repopulated with 13-day fetal liver cells recognize antigens only in association with self-MHC products. J. Mol. Cell Immunol. 2 (1986) 235–242. Google Scholar

  • [19] Rabinowich, H., Umiel, T. and Globerson, A. T-cell progenitors in the mouse fetal liver. Transplantation 35 (1983) 40–48. http://dx.doi.org/10.1097/00007890-198301000-00009CrossrefGoogle Scholar

  • [20] Christensen, J.L., Wright, D.E., Wagers, A.J. and Weissman, I.L. Circulation and chemotaxis of fetal hematopoietic stem cells. PLoS Biology 2 (2004) 0368–0377. http://dx.doi.org/10.1371/journal.pbio.0020075CrossrefGoogle Scholar

  • [21] Dainiak, N. and Ricks, R.C. The evolving role of haematopoietic cell transplantation in radiation injury: potentials and limitations. BJR Suppl. 27 (2005) 169–174. http://dx.doi.org/10.1259/bjr/31003240CrossrefGoogle Scholar

  • [22] Feng, R.Q., Du, L.Y. and Guo, Z.Q. In vitro cultivation and differentiation of fetal liver stem cells from mice. Cell Res. 15 (2005) 401–405. http://dx.doi.org/10.1038/sj.cr.7290308CrossrefGoogle Scholar

  • [23] Morrison, S.J., Uchida, N. and Weissman, I.L. The biology of hematopoietic stem cells. Annu. Rev. Cell Dev. Biol. 11 (1995) 35–71. http://dx.doi.org/10.1146/annurev.cb.11.110195.000343CrossrefGoogle Scholar

  • [24] Drukker, M., Katz, G., Urbach, A. Characterization of the expression of MHC proteins in human embryonic stem cells. Proc. Natl. Acad. Sci. 99 (2002) 9864–9869. http://dx.doi.org/10.1073/pnas.142298299CrossrefGoogle Scholar

  • [25] Tatebe, M., Nakamura, R., Kagami, H., Okada, K. and Ueda, M. Differentiation of transplanted mesenchymal stem cells in a large osteochondral defect in rabbit. Cytotherapy 7 (2005) 520–530. http://dx.doi.org/10.1080/14653240500361350CrossrefGoogle Scholar

  • [26] Chu, K., Park, K.I. and Lee, S.T. Combined treatment of vascular endothelial growth factor and human neural stem cells in experimental focal cerebral ischemia. Neurosci. Res. 53 (2005) 384–390. http://dx.doi.org/10.1016/j.neures.2005.08.010CrossrefGoogle Scholar

  • [27] Seglen, P.O. Preparation of isolated rat liver cells. Methods Cell Biol. 13 (1976) 29–83. http://dx.doi.org/10.1016/S0091-679X(08)61797-5CrossrefGoogle Scholar

  • [28] Zheng, Y.W., Ohkohchi, N. and Taniguchi, H. Quantitative evaluation of long-term liver repopulation and the reconstitution of bile ductules after hepatocellular transplantation. World J. Gastroenterol. 39 (2005) 6176–6181. Google Scholar

  • [29] Wang, L.J., Chen, M.Y. and George, D. Engraftment assessment in human and mouse liver tissue after sex-mismatched liver cell transplantation by real-time quantitative PCR for Y-chromosome sequences. Liver Transpl. 9 (2002) 822–828. http://dx.doi.org/10.1053/jlts.2002.34891CrossrefGoogle Scholar

  • [30] Lapidot, T. and Petit, I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp. Hematol. 30 (2002) 973–981. http://dx.doi.org/10.1016/S0301-472X(02)00883-4CrossrefGoogle Scholar

About the article

Published Online: 2007-03-15

Published in Print: 2007-09-01

Citation Information: Cellular and Molecular Biology Letters, Volume 12, Issue 3, Pages 422–434, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-007-0013-2.

Export Citation

© 2007 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Plamen Todorov, Elena Hristova, Rossitza Konakchieva, Antoaneta Michova, and Josif Dimitrov
Cell Biology International, 2010, Volume 34, Number 5, Page 455
G. T. Sukhikh, V. V. Malaitsev, and I. M. Bogdanova
Bulletin of Experimental Biology and Medicine, 2008, Volume 145, Number 1, Page 114

Comments (0)

Please log in or register to comment.
Log in