Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 12, Issue 3


The effect of growth medium on the antioxidant defense of Saccharomyces cerevisiae

Ewa Macierzyńska / Agnieszka Grzelak / Grzegorz Bartosz
  • Department of Molecular Biophysics, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
  • Department of Biochemistry and Cell Biology, University of Rzeszów, Cegielniana 12, 35-595, Rzeszów, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2007-03-15 | DOI: https://doi.org/10.2478/s11658-007-0017-y


We compared the oxidation of dihydrorhodamine 123, glutathione contents and activities of superoxide dismutase (SOD) and catalase for three wild-type strains of Saccharomyces cerevisiae grown on media with different carbon sources. The rate of oxidation of dihydrorhodamine 123 was much higher in respiring cells grown on ethanol or glycerol media than in fermenting cells grown on glucose medium. The total SOD activity was highest on glycerol medium and lowest on ethanol medium, while the catalase activity was highest on glycerol medium. The sequence of glutathione content values was: glucose > ethanol > glycerol.

Keywords: Yeast; Saccharomyces cerevisiae; Reactive oxygen species; Superoxide dismutase; Catalase; Glutathione

  • [1] Hortner, H., Ammerer, G., Hartter, E., Hamilton, B., Rytka, J., Bilinski, T. and Ruis, H. Regulation of synthesis of catalases and iso-1-cytochrome c in Saccharomyces cerevisiae by glucose, oxygen and heme. Eur. J. Biochem. 128 (1982) 179–184. http://dx.doi.org/10.1111/j.1432-1033.1982.tb06949.xCrossrefGoogle Scholar

  • [2] Sigler, K., Chaloupka, J., Brozmanova, J., Stadler, N. and Hofer, M. Oxidative stress in microorganisms—I. Microbial vs. higher cells—damage and defenses in relation to cell aging and death. Folia Microbiol. (Praha) 44 (1999) 587–624. Google Scholar

  • [3] Balaban, R.S., Nemoto, S. and Finkel, T. Mitochondria, oxidants, and aging. Cell 120 (2005) 483–495. http://dx.doi.org/10.1016/j.cell.2005.02.001CrossrefGoogle Scholar

  • [4] Fiechter, A. and Gmunder, F.K. Metabolic control of glucose degradation in yeast and tumor cells. Adv. Biochem. Eng. Biotechnol. 39 (1989) 1–28. Google Scholar

  • [5] Shuster, J.R. Regulated transcriptional systems for the production of proteins in yeast: regulation by carbon source. Biotechnology 13 (1989) 83–108. PubMedGoogle Scholar

  • [6] Costa, V., Amorim, M.A., Reis, E., Quintanilha, A. and Moradas-Ferreira, P. Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase. Microbiology 143 (1997) 1649–1656. http://dx.doi.org/10.1099/00221287-143-5-1649CrossrefGoogle Scholar

  • [7] Schuller, H.J. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr. Genet. 43 (2003) 139–160. Google Scholar

  • [8] Barnett, J.A. and Entian, K.D. A history of research on yeasts 9: regulation of sugar metabolism. Yeast 22 (2005) 835–894. http://dx.doi.org/10.1002/yea.1249CrossrefGoogle Scholar

  • [9] Penninckx, M.J. An overview on glutathione in Saccharomyces versus nonconventional yeasts. FEMS Yeast Res. 2 (2002) 295–305. Google Scholar

  • [10] Pocsi, I., Prade, R.A. and Penninckx, M.J. Glutathione, altruistic metabolite in fungi. Adv. Microb. Physiol. 49 (2004) 1–76. Google Scholar

  • [11] Lee, J.C., Straffon, M.J., Jang, T.Y., Higgins, V.J., Grant, C.M. and Dawes, I.W. The essential and ancillary role of glutathione in Saccharomyces cerevisiae analysed using a grande gsh1 disruptant strain. FEMS Yeast Res. 1 (2001) 57–65. Google Scholar

  • [12] Avery, A.M. and Avery, S.V. Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J. Biol. Chem. 276 (2001) 33730–33735. http://dx.doi.org/10.1074/jbc.M105672200CrossrefGoogle Scholar

  • [13] Maris, A.F., Assumpcao, A.L., Bonatto, D., Brendel, M. and Henriques, J.A. Diauxic shift-induced stress resistance against hydroperoxides in Saccharomyces cerevisiae is not an adaptive stress response and does not depend on functional mitochondria. Curr. Genet. 39 (2001) 137–149. http://dx.doi.org/10.1007/s002940100194CrossrefGoogle Scholar

  • [14] Lushchak, V., Semchyshyn, H., Mandryk, S. and Lushchak, O. Possible role of superoxide dismutases in the yeast Saccharomyces cerevisiae under respiratory conditions. Arch. Biochem. Biophys. 441 (2005) 35–40. http://dx.doi.org/10.1016/j.abb.2005.06.010CrossrefGoogle Scholar

  • [15] Grzelak, A., Soszynski, M. and Bartosz, G. Inactivation of antioxidant enzymes by peroxynitrite. Scand. J. Clin. Lab. Invest. 60 (2000) 253–258. http://dx.doi.org/10.1080/003655100750046413CrossrefGoogle Scholar

  • [16] Misra, H.P. and Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247 (1972) 3170–3175. Google Scholar

  • [17] Akerboom, T.P. and Sies, H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol. 77 (1981) 373–382. http://dx.doi.org/10.1016/S0076-6879(81)77050-2CrossrefGoogle Scholar

  • [18] Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193 (1951) 265–275. Google Scholar

  • [19] Ronne, H. Glucose repression in fungi. Trends Genet. 11 (1995) 12–17. http://dx.doi.org/10.1016/S0168-9525(00)88980-5CrossrefGoogle Scholar

  • [20] Bartosz, G. Limitations and pitfalls of the use of spectroscopic probes for the detection of reactive oxygen species. Clin. Chim. Acta 368 (2006) 53–76. http://dx.doi.org/10.1016/j.cca.2005.12.039CrossrefGoogle Scholar

  • [21] Wrona, M., Patel, K. and Wardman, P. Reactivity of 2′,7′-dichlorodihydrofluorescein and dihydrorhodamine 123 and their oxidized forms toward carbonate, nitrogen dioxide, and hydroxyl radicals. Free Radic. Biol. Med. 38 (2005) 262–270. http://dx.doi.org/10.1016/j.freeradbiomed.2004.10.022Google Scholar

  • [22] Jakubowski, W. and Bartosz, G. 2,7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol. Int. 24 (2000) 757–760. http://dx.doi.org/10.1006/cbir.2000.0556CrossrefGoogle Scholar

  • [23] Bartosz, G. Use of spectroscopic probes for detection of reactive oxygen species. Clin. Chim. Acta 368 (2006) 53–76. http://dx.doi.org/10.1016/j.cca.2005.12.039CrossrefGoogle Scholar

  • [24] Bito, A., Haider, M., Hadler, I. and Breitenbach, M. Identification and phenotypic analysis of two glyoxalase II encoding genes from Saccharomyces cerevisiae, GLO2 and GLO4, and intracellular localization of the corresponding proteins. J. Biol. Chem. 272 (1997) 21509–21519. http://dx.doi.org/10.1074/jbc.272.34.21509CrossrefGoogle Scholar

  • [25] Schafer, F.Q. and Buettner, G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30 (2001) 1191–1212. http://dx.doi.org/10.1016/S0891-5849(01)00480-4CrossrefGoogle Scholar

  • [26] Drakulic, T., Temple, M.D., Guido, R., Jarolim, S., Breitenbach, M., Attfield, P.V. and Dawes, I.W. nvolvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res. 5 (2005) 1215–1228. http://dx.doi.org/10.1016/j.femsyr.2005.06.001Web of ScienceCrossrefGoogle Scholar

  • [27] Grant, C.M., Perrone, G. and Dawes, I.W. Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 253 (1998) 893–898. http://dx.doi.org/10.1006/bbrc.1998.9864CrossrefGoogle Scholar

  • [28] Xu, B.E., Skowronek, K.R. and Kurjan, J. The N terminus of Saccharomyces cerevisiae Sst2p plays an RGS-domain-independent, Mpt5p-dependent role in recovery from pheromone arrest. Genetics 159 (2001) 1559–1571. Google Scholar

About the article

Published Online: 2007-03-15

Published in Print: 2007-09-01

Citation Information: Cellular and Molecular Biology Letters, Volume 12, Issue 3, Pages 448–456, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-007-0017-y.

Export Citation

© 2007 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Hao Wang, Stefan Schoebel, Florian Schmitz, Hansong Dong, and Kristina Hedfalk
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2019, Page 183065
Rocío Gómez-Pastor, Elena Garre, Roberto Pérez-Torrado, Emilia Matallana, and Reiko Sugiura
PLoS ONE, 2013, Volume 8, Number 12, Page e85404
Mariusz Zuberek, Dominika Wojciechowska, Damian Krzyzanowski, Sylwia Meczynska-Wielgosz, Marcin Kruszewski, and Agnieszka Grzelak
Journal of Nanobiotechnology, 2015, Volume 13, Number 1

Comments (0)

Please log in or register to comment.
Log in