Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 12, Issue 4


The differential expression of ribosomal 18S RNA paralog genes from the chaetognath Spadella cephaloptera

Roxane-Marie Barthélémy / Michel Grino / Pierre Pontarotti
  • Phylogenomic Laboratory, EA Evolution Biologique 3781, Université de Provence, Case 19, 13331, Marseille cedex 3, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jean-Paul Casanova / Eric Faure
Published Online: 2007-06-24 | DOI: https://doi.org/10.2478/s11658-007-0026-x


Chaetognaths constitute a small marine phylum of approximately 120 species. Two classes of both 18S and 28S rRNA gene sequences have been evidenced in this phylum, even though significant intraindividual variation in the sequences of rRNA genes is unusual in animal genomes. These observations led to the hypothesis that this unusual genetic characteristic could play one or more physiological role(s). Using in situ hybridization on the frontal sections of the chaetognath Spadella cephaloptera, we found that the 18S Class I genes are expressed in the whole body, with a strong expression throughout the gut epithelium, whereas the expression of the 18S Class II genes is restricted to the oocytes. Our results could suggest that the paralog products of the 18S Class I genes are probably the “housekeeping” 18S rRNAs, whereas those of class II would only be essential in specific tissues. These results provide support for the idea that each type of 18S paralog is important for specific cellular functions and is under the control of selective factors.

Keywords: 18S; Chaetognath; Spadella cephaloptera; In situ hybridization; Duplication; Expression pattern; rRNA paralogs

  • [1] Casanova, J.-P. Chaetognatha. in: South Atlantic Zooplankton (Boltovskoy, D., Ed.), Backhuys Publishers, Leiden, 1999, 1353–1374. Google Scholar

  • [2] Feigenbaum, D.L. and Maris, R.C. Feeding in chaetognatha. Oceanogr. Mar. Biol. Ann. Rev. 22 (1984) 343–392. Google Scholar

  • [3] Matus, D.Q., Copley, R.R., Dunn, C.W., Hejnol, A., Eccleston, H., Halanych, K.M., Martindale, M.Q. and Telford, M.J. Broad taxon and gene sampling indicate that chaetognaths are protostomes. Curr. Biol. 16 (2006) R575–576. http://dx.doi.org/10.1016/j.cub.2006.07.017CrossrefGoogle Scholar

  • [4] Marletaz, F., Martin, E., Perez, Y., Papillon, D., Caubit, X., Lowe, C.J., Freeman, B., Fasano, L., Dossat, C., Wincker, P., Weissenbach, J. and Le Parco, Y. Chaetognath phylogenomics: a protostome with deuterostome-like development. Curr. Biol. 16 (2006) R577–R578. http://dx.doi.org/10.1016/j.cub.2006.07.016CrossrefGoogle Scholar

  • [5] Casanova, J.-P., Duvert, M. and Perez, Y. Phylogenetic interest of the chaetognath model. Mésogée 59 (2001) 27–31. Google Scholar

  • [6] Jean, S., De Jong, L. and Moreau, X. Chaetognaths: a useful model for studying heat shock proteins. Effect of wound healing. J. Exp. Marine Biol. Ecol. 312 (2004) 319–332. http://dx.doi.org/10.1016/j.jembe.2004.07.009CrossrefGoogle Scholar

  • [7] Takada, N, Goto, T. and Satoh, N. Expression pattern of the Brachyury gene in the arrow worm Paraspadella gotoi (chaetognatha). Genesis 32 (2002) 240–245. http://dx.doi.org/10.1002/gene.10077CrossrefGoogle Scholar

  • [8] Goto, T. and Yoshida, M. Growth and reproduction of the benthic arrowworm Paraspadella gotoi (Chateognatha) in laboratory culture. Invert. Reprod. Dev. 32 (1997) 201–207. CrossrefGoogle Scholar

  • [9] Prokopowich, C.D., Gregory, T.R. and Crease, T.J. The correlation between rDNA copy number and genome size in eukaryotes. Genome 46 (2003) 48–50. http://dx.doi.org/10.1139/g02-103CrossrefGoogle Scholar

  • [10] Rooney, A.P. Mechanisms underlying the evolution and maintenance of functionally heterogeneous 18S rRNA genes in apicomplexans. Mol. Biol. Evol. 21 (2004) 1704–1711. http://dx.doi.org/10.1093/molbev/msh178CrossrefGoogle Scholar

  • [11] Ledee, D.R., Seal, D.V. and Byers, T.J. Confirmatory evidence from 18S rRNA gene analysis for in vivo development of propamidine resistance in a temporal series of Acanthamoeba isolates from a patient. Antimicrob. Agents Chemother. 42 (1998) 2144–2145. Google Scholar

  • [12] Stothard, J.R., Frame, I.A., Carrasco, H.J. and Miles, M.A. Temperature gradient gel electrophoresis (TGGE) analysis of riboprints from Trypanosoma cruzi. Parasitology 117 (1998) 249–253. http://dx.doi.org/10.1017/S0031182098002972CrossrefGoogle Scholar

  • [13] Carranza, S, Baguna, J. and Riutort, M. Origin and evolution of paralogous rRNA gene clusters within the flatworm family Dugesiidae (Platyhelminthes, Tricladida). J. Mol. Evol. 49 (1999) 250–259. http://dx.doi.org/10.1007/PL00006547CrossrefGoogle Scholar

  • [14] Bonnaud, L., Saihi, A. and Boucher-Rodoni, R. Are 28SrDNA and 18SrDNA informative for cephalopod phylogeny? Bull. Mar. 71 (2003) 197–208. Google Scholar

  • [15] Krieger, J. and Fuerst, P.A. Characterization of nuclear 18S rRNA gene sequence diversity and expression in an individual lake sturgeon (Acipenser fulvescens). J. Appl. Ichthyol. 20 (2004) 433–439. http://dx.doi.org/10.1111/j.1439-0426.2004.00610.xCrossrefGoogle Scholar

  • [16] Krieger, J., Hett, A.K., Fuerst, P.A., Birstein, V.J. and Ludwig, A. Unusual intraindividual variation of the nuclear 18S rRNA gene is widespread within the acipenseridae. J. Hered. 97 (2006) 218–225. http://dx.doi.org/10.1093/jhered/esj035CrossrefGoogle Scholar

  • [17] Papillon, D., Perez, Y., Caubit, X. and Le Parco, Y. Systematics of Chaetognatha under the light of molecular data, using duplicated ribosomal 18S DNA sequences. Mol. Phyl. Evol. 38 (2006) 621–634. http://dx.doi.org/10.1016/j.ympev.2005.12.004CrossrefGoogle Scholar

  • [18] Telford, M.J. and Holland, P.W.H. Evolution of 28S ribosomal DNA in Chaetognaths: duplicate genes and molecular phylogeny. J. Mol. Evol. 44 (1997) 135–144. http://dx.doi.org/10.1007/PL00006130CrossrefGoogle Scholar

  • [19] Qari, S.H., Goldman, I.F., Pieniazek, N.J., Collins, W.E. and Lal, A.A. Blood and sporozoite stage-specific small subunit ribosomal RNA-encoding genes of the human malaria parasite Plasmodium vivax. Gene 150 (1994) 43–49. http://dx.doi.org/10.1016/0378-1119(94)90855-9CrossrefGoogle Scholar

  • [20] Thompson, J., van Spaendonk, R.M., Choudhuri, R., Sinden, R.E., Janse, C.J. and Waters, A.P. Heterogeneous ribosome populations are present in Plasmodium berghei during development in its vector. Mol. Microbiol. 31 (1999) 253–360. http://dx.doi.org/10.1046/j.1365-2958.1999.01167.xCrossrefGoogle Scholar

  • [21] Grino, M and Zamora, A.J. An in situ hybridisation histochemistry technique allowing simultaneous visualization by the use of confocal microscopy of three cellular mRNA species in individual neurons. J. Histochem. Cytochem. 46 (1998) 753–759. CrossrefGoogle Scholar

  • [22] Gutell, R.R., Weibser, B., Woese, C.R. and Noller, H.F. Comparative anatomy of 16S-like ribosomal RNA. Prog. Nucleic. Acid. Res. Mol. Biol. 32 (1985) 155–216. http://dx.doi.org/10.1016/S0079-6603(08)60348-7CrossrefGoogle Scholar

  • [23] Shinn, G.L. Chaetognaths. in: Microscopic anatomy of invertebrates, Vol. 15, Hemichordates, Chaetognatha and the invertebrate chordates (Harrison, F.W. and Ruppert, E.E., Eds.), Wiley-Liss, New York, 1997, 103–220. Google Scholar

  • [24] Ghirardelli, E. Some aspects of the biology of the Chaetognaths. Adv. Mar. Biol. 6 (1968) 271–375. Google Scholar

  • [25] Canipari, R., Pietrolucci, A. and Mangia, F. Increase of total protein synthesis during mouse oocyte growth. J. Reprod. Fertil. 57 (1979) 405–413. http://dx.doi.org/10.1530/jrf.0.0570405CrossrefGoogle Scholar

  • [26] Mercereau-Puijalon, O., Barale, J.C. and Bischoff, E. Three multigene families in Plasmodium parasites: facts and questions. Int. J. Parasitol. 32 (2002) 1323–1344. http://dx.doi.org/10.1016/S0020-7519(02)00111-XCrossrefGoogle Scholar

  • [27] Komiya, H., Hasegawa, M. and Takemura, S. Differentiation of oocyte-type and somatic-type 5S ribosomal-RNAs in animals. J. Biochem. 100 (1986) 369–374. Google Scholar

  • [28] Paillisson, A., Levasseur, A., Gouret, P., Callebaut, I., Bontoux, M., Pontarotti, P. and Monget, P. Bromodomain testis-specific protein is expressed in mouse oocyte and evolves faster than its ubiquitously expressed paralogs BRD2,-3, and-4. Genomics 89 (2007) 215–223. http://dx.doi.org/10.1016/j.ygeno.2006.09.002Web of ScienceCrossrefGoogle Scholar

  • [29] Yang, J., Su, A.I. and Li, W.H. Gene expression evolves faster in narrowly than in broadly expressed mammalian genes. Mol. Biol. Evol. 22 (2005) 2113–2118. http://dx.doi.org/10.1093/molbev/msi206CrossrefGoogle Scholar

About the article

Published Online: 2007-06-24

Published in Print: 2007-12-01

Citation Information: Cellular and Molecular Biology Letters, Volume 12, Issue 4, Pages 573–583, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-007-0026-x.

Export Citation

© 2007 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Roxane-Marie Barthélémy and Hervé Seligmann
Computational Biology and Chemistry, 2016, Volume 62, Page 119
Brianna L.S. Stenger, Mark E. Clark, Martin Kváč, Eakalak Khan, Catherine W. Giddings, Neil W. Dyer, Jessie L. Schultz, and John M. McEvoy
Infection, Genetics and Evolution, 2015, Volume 32, Page 113
Diogo Teruo Hashimoto, Fernanda Dotti do Prado, José Augusto Senhorini, Fausto Foresti, and Fábio Porto-Foresti
Aquaculture Research, 2013, Volume 44, Number 6, Page 876
Hiroomi Miyamoto, Ryuji J. Machida, and Shuhei Nishida
Deep Sea Research Part II: Topical Studies in Oceanography, 2010, Volume 57, Number 24-26, Page 2211

Comments (0)

Please log in or register to comment.
Log in