Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 12, Issue 4


The complete structure of the cucumber (Cucumis sativus L.) chloroplast genome: Its composition and comparative analysis

Wojciech Pląder
  • Faculty of Horticulture and Landscape Architecture, Department of Plant Genetics, Breeding and Biotechnology, Warsaw Agricultural University, Nowoursynowska 159, 02-776, Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yasushi Yukawa / Masahiro Sugiura / Stefan Malepszy
  • Faculty of Horticulture and Landscape Architecture, Department of Plant Genetics, Breeding and Biotechnology, Warsaw Agricultural University, Nowoursynowska 159, 02-776, Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2007-07-03 | DOI: https://doi.org/10.2478/s11658-007-0029-7


The complete nucleotide sequence of the cucumber (C. sativus L. var. Borszczagowski) chloroplast genome has been determined. The genome is composed of 155,293 bp containing a pair of inverted repeats of 25,191 bp, which are separated by two single-copy regions, a small 18,222-bp one and a large 86,688-bp one. The chloroplast genome of cucumber contains 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes (4 rRNA species), and 37 tRNA genes (30 tRNA species), with 18 of them located in the inverted repeat region. Of these genes, 16 contain one intron, and two genes and one ycf contain 2 introns. Twenty-one small inversions that form stem-loop structures, ranging from 18 to 49 bp, have been identified. Eight of them show similarity to those of other species, while eight seem to be cucumber specific. Detailed comparisons of ycf2 and ycf15, and the overall structure to other chloroplast genomes were performed.

Keywords: Organelle; Gene order

  • [1] Havey, M.J., Lilly, J.W., Bohanec, B., Bartoszewski, G. and Malepszy, S. Cucumber: A model angiosperm for mitochondrial transformation? J. Appl. Genet. 43 (2002) 1–17. Google Scholar

  • [2] Kolodner, R. and Tewari, K. Molecular size and conformation of chloroplast deoxyrybonucleic acid from pea leaves. J. Biol. Chem. 247 (1972) 6355–6364. Google Scholar

  • [3] Kolodner, R. and Tewari, K. Inverted repeats in chloroplast DNA from higher plants. Proc. Natl. Acad. Sci. USA 76 (1979) 41–45. http://dx.doi.org/10.1073/pnas.76.1.41CrossrefGoogle Scholar

  • [4] Deng, X.W., Wing, R.A. and Gruissem, A. The chloroplast genome exists in multimeric forms. Proc. Natl. Acad. Sci. USA 86 (1989) 4156–4160. http://dx.doi.org/10.1073/pnas.86.11.4156CrossrefGoogle Scholar

  • [5] Lilly, J.W., Havey, M.J., Jackson, S.A. and Jiang, J. Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell 13 (2001) 245–254. http://dx.doi.org/10.1105/tpc.13.2.245CrossrefGoogle Scholar

  • [6] Hoshi, Y., Plader, W. and Malepszy, S. New C-banding pattern for chromosome identification in cucumber (Cucumis sativus L.). Plant Breed. 117 (1998) 77–82. http://dx.doi.org/10.1111/j.1439-0523.1998.tb01452.xCrossrefGoogle Scholar

  • [7] De Nisi, P. and Zocchi, G. Phosphoenolpyruvate carboxylase in cucumber (Cucumis sativus L.) roots under iron deficiency: activity and kinetic characterization. J. Exp. Biol. 51 (2000) 1903–1909. Google Scholar

  • [8] Hirano, T., Kiyota, M. and Aiga I. Physical effects of dust on leaf physiology of cucumber and kidney bean plants. Environ. Pollut. 89 (1995) 255–261. http://dx.doi.org/10.1016/0269-7491(94)00075-OCrossrefGoogle Scholar

  • [9] Burza, W. and Malepszy, S. Direct plant regeneration from leaf explants in cucumber (C. sativus sativus L.) is free of stable genetic variation. Plant Breed. 114 (1995a) 341–345. http://dx.doi.org/10.1111/j.1439-0523.1995.tb01246.xCrossrefGoogle Scholar

  • [10] Wróblewski, T., Filipecki, M.K. and Malepszy, S. Factors influencing cucumber (C. sativus sativus L.) somatic embryogenesis. I. The crucial role of pH and nitrogen in suspension culture. Acta Soc. Bot. Pol. 64 (1995) 223–231. Google Scholar

  • [11] Burza, W. and Malepszy, S. In vitro culture of C.sativus sativus L. XVIII. Plants from protoplasts through direct somatic embryogenesis. Plant Cell Tissue Organ Cult. 41 (1995b) 259–266. http://dx.doi.org/10.1007/BF00045090CrossrefGoogle Scholar

  • [12] Yin, Z. and Malepszy, S. The transgenes are expressed with different level in plants. Biotechnologia 2 (2003) 236–260. Google Scholar

  • [13] Yin, Z., Plader, W. and Malepszy, S. Transgene inheritance in plants. J. Appl. Genet. 45 (2004) 127–144. Google Scholar

  • [14] Havey, M.J., Lilly, J.W., Bohanec, B., Bartoszewski, G. and Malepszy, S. Cucumber: a model angiosperm for mitochondrial transformation? J. Appl. Genet. 43 (2002) 1–17. Google Scholar

  • [15] Palmer, J.D. Physical and gene mapping of chloroplast DNA from Atriplex triangularis and C. sativus sativa. Nucleic Acid Res. 10 (1982) 1593–1605. http://dx.doi.org/10.1093/nar/10.5.1593CrossrefGoogle Scholar

  • [16] Kim, J.S., Jung, J.D., Lee, J.A., Park, H.W., Oh, K.H., Jeong, W.J., Choi, D.W., Liu, J.R. and Cho, K.Y. Complete sequence and organization of the cucumber (C. sativus L. cv. Baekmibaekdadagi) chloroplast genome. Plant Cell. Rep. 25 (2006) 334–340. http://dx.doi.org/10.1007/s00299-005-0097-yCrossrefGoogle Scholar

  • [17] Cheng, M.C., Wu, S.P., Chen, L.F. and Chen, S.C. Identification and purification of a spinach chloroplast DNA-binding protein that interacts specifically with the plastid psaA-psaB-rps14 promoter region. Planta 203 (1997) 373–380. http://dx.doi.org/10.1007/s004250050203CrossrefGoogle Scholar

  • [18] Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chungwonse, J., Obokata, J., Yamaguchi-Shinozaki, K., Ohto, C., Torazawa, K., Meng, B.Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, N., Shimada, H. and Sugiura, M. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5 (1986) 2043–2049. Google Scholar

  • [19] Higgins, D., Thompson, J., Gibson, T., Thompson, J.D., Higgins, D.G. and Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22 (1994) 4673–4680. http://dx.doi.org/10.1093/nar/22.22.4673CrossrefGoogle Scholar

  • [20] Schwartz, S., Zhang, Z., Frazer, K.A., Smit, A., Riemer, C., Bouck, J., Gibbs, R., Hardison, R. and Miller, W. PipMaker-a web server for aligning two genomic DNA sequences. Genome Res. 10 (2000) 577–586. http://dx.doi.org/10.1101/gr.10.4.577CrossrefGoogle Scholar

  • [21] Maier, R.M., Neckermann, K., Igloi, G.L. and Kossel, H. Complete sequence of the maize chloroplast genome: gene content. hotspots of divergence and fine tuning of genetic information by transcript editing. J. Mol. Biol. 251 (1995) 614–628. http://dx.doi.org/10.1006/jmbi.1995.0460CrossrefGoogle Scholar

  • [22] Kim, K.J. and Lee, H.L. Complete chloroplast genome sequence from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res. 11 (2004) 247–261. http://dx.doi.org/10.1093/dnares/11.4.247CrossrefGoogle Scholar

  • [23] Kim, K.J. and Lee, H.L. Widespread occurance of small inversions in the chloroplast genomes of land plants. Mol. Cells 19 (2005) 104–113. Google Scholar

  • [24] Palmer, J.D. Plastid chromosomes: structure and evolution In: Cell Culture and Somatic Cell Genetics in Plants, Vol. 7A, The Molecular Biology of Plastids (Vasil, I.K. and Bogorad, L. Eds.), Academic Press, San Diego, 1991, 5–53. Google Scholar

  • [25] Kelchner, S.A. and Wende, J.F. Hairpins create minute inversions in noncoding regions of chloroplast DNA. Curr. Genet. 30 (1996) 259–262. http://dx.doi.org/10.1007/s002940050130CrossrefGoogle Scholar

  • [26] Shinozaki, K., Hayashida, N. and Sugiura, M. Nicotiana chloroplast genes for components of the photosynthetic apparatus. Photosynthesis Res. 18 (1988) 7–31. http://dx.doi.org/10.1007/BF00042978CrossrefGoogle Scholar

About the article

Published Online: 2007-07-03

Published in Print: 2007-12-01

Citation Information: Cellular and Molecular Biology Letters, Volume 12, Issue 4, Pages 584–594, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-007-0029-7.

Export Citation

© 2007 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Chunyan Cheng, Xing Wang, Xuejiao Liu, Shuqiong Yang, Xiaqing Yu, Chuntao Qian, Ji Li, Qunfeng Lou, and Jinfeng Chen
Journal of Plant Research, 2019
Saki HOSHIYASU, Kaori KOHZUMA, Kazuo YOSHIDA, Masayuki FUJIWARA, Yoichiro FUKAO, Akiho YOKOTA, and Kinya AKASHI
Bioscience, Biotechnology, and Biochemistry, 2013, Volume 77, Number 5, Page 998
Xiao Zhang, Tao Zhou, Jia Yang, Jingjing Sun, Miaomiao Ju, Yuemei Zhao, and Guifang Zhao
Molecules, 2018, Volume 23, Number 9, Page 2165
Hua-Lei Hu, Jing-Yu Zhang, Yu-Ping Li, Lu Xie, Dong-Bin Chen, Qun Li, Yan-Qun Liu, Shu-Rong Hui, and Li Qin
Conservation Genetics Resources, 2018
Sang-Choon Lee, Hyun Oh Lee, Ho Jun Joh, Inseo Kim, Won-Kyung Lee, Tae-Jin Yang, and Kihwan Song
Mitochondrial DNA Part B, 2017, Volume 2, Number 2, Page 755
Rafał Wóycicki, Justyna Witkowicz, Piotr Gawroński, Joanna Dąbrowska, Alexandre Lomsadze, Magdalena Pawełkowicz, Ewa Siedlecka, Kohei Yagi, Wojciech Pląder, Anna Seroczyńska, Mieczysław Śmiech, Wojciech Gutman, Katarzyna Niemirowicz-Szczytt, Grzegorz Bartoszewski, Norikazu Tagashira, Yoshikazu Hoshi, Mark Borodovsky, Stanisław Karpiński, Stefan Malepszy, Zbigniew Przybecki, and Miguel A. Blazquez
PLoS ONE, 2011, Volume 6, Number 7, Page e22728
Qianglong Zhu, Haonan Cui, Yulong Zhao, Peng Gao, Shi Liu, Pengfei Wang, and Feishi Luan
Mitochondrial DNA Part B, 2016, Volume 1, Number 1, Page 943
Henry Daniell, Choun-Sea Lin, Ming Yu, and Wan-Jung Chang
Genome Biology, 2016, Volume 17, Number 1
Thomas J. Givnish, Alejandro Zuluaga, Isabel Marques, Vivienne K. Y. Lam, Marybel Soto Gomez, William J. D. Iles, Mercedes Ames, Daniel Spalink, Jackson R. Moeller, Barbara G. Briggs, Stephanie P. Lyon, Dennis W. Stevenson, Wendy Zomlefer, and Sean W. Graham
Cladistics, 2016, Volume 32, Number 6, Page 581
Hua-Wei Liu, Chao-Qiong Liang, Peng-Fei Liu, Lai-Xin. Luo, and Jian-Qiang Li
Virology Journal, 2015, Volume 12, Number 1
Sabine Holz, Michael Kube, Grzegorz Bartoszewski, Bruno Huettel, and Carmen Büttner
Silicon, 2015
Hongyu Chen, Ying Yu, Xiuling Chen, Zhenzhu Zhang, Chao Gong, Jingfu Li, and Aoxue Wang
Functional & Integrative Genomics, 2015, Volume 15, Number 2, Page 131
L. Kistler, A. Montenegro, B. D. Smith, J. A. Gifford, R. E. Green, L. A. Newsom, and B. Shapiro
Proceedings of the National Academy of Sciences, 2014, Volume 111, Number 8, Page 2937
T. Yoshida, H. Y. Furihata, and A. Kawabe
DNA Research, 2014, Volume 21, Number 2, Page 127
Agnieszka Żmieńko, Magdalena Guzowska-Nowowiejska, Radosław Urbaniak, Wojciech Pląder, Piotr Formanowicz, and Marek Figlerowicz
Plant Methods, 2011, Volume 7, Number 1, Page 29
Magdalena Guzowska-Nowowiejska, Ewa Fiedorowicz, and Wojciech Pląder
Gene, 2009, Volume 434, Number 1-2, Page 1
Luis Rodríguez-Moreno, Víctor M González, Andrej Benjak, M Carmen Martí, Pere Puigdomènech, Miguel A Aranda, and Jordi Garcia-Mas
BMC Genomics, 2011, Volume 12, Number 1
Zhi-Yong Hu, Wei Hua, Shun-Mou Huang, and Han-Zhong Wang
Genetic Resources and Crop Evolution, 2011, Volume 58, Number 6, Page 875
Thomas J. Givnish, Mercedes Ames, Joel R. McNeal, Michael R. McKain, P. Roxanne Steele, Claude W. dePamphilis, Sean W. Graham, J. Chris Pires, Dennis W. Stevenson, Wendy B. Zomlefer, Barbara G. Briggs, Melvin R. Duvall, Michael J. Moore, J. Michael Heaney, Douglas E. Soltis, Pamela S. Soltis, Kevin Thiele, and James H. Leebens-Mack
Annals of the Missouri Botanical Garden, 2010, Volume 97, Number 4, Page 584
Henry Daniell, Kenneth J. Wurdack, Anderson Kanagaraj, Seung-Bum Lee, Christopher Saski, and Robert K. Jansen
Theoretical and Applied Genetics, 2008, Volume 116, Number 5, Page 723

Comments (0)

Please log in or register to comment.
Log in