Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Editor-in-Chief: /


IMPACT FACTOR 2016: 1.260
5-year IMPACT FACTOR: 1.506

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.615
Source Normalized Impact per Paper (SNIP) 2016: 0.470

Online
ISSN
1689-1392
See all formats and pricing
More options …
Volume 13, Issue 1 (Mar 2008)

The effect of calnexin deletion on the expression level of PDI in Saccharomyces cerevisiae under heat stress conditions

Huili Zhang
  • Department of Life Science, Liaoning University, Shenyang, 110036, China
  • Email:
/ Jianwei He
  • Department of Biological Chemistry, Yamaguchi University, Yamaguchi, 753-8515, Japan
  • Email:
/ Yanyan Ji
  • Department of Life Science, Liaoning University, Shenyang, 110036, China
  • Email:
/ Akio Kato
  • Department of Biological Chemistry, Yamaguchi University, Yamaguchi, 753-8515, Japan
  • Email:
/ Youtao Song
  • Department of Life Science, Liaoning University, Shenyang, 110036, China
  • Email:
Published Online: 2007-10-19 | DOI: https://doi.org/10.2478/s11658-007-0033-y

Abstract

We cultured calnexin-disrupted and wild-type Saccharomyces cerevisiae strains under conditions of heat stress. The growth rate of the calnexin-disrupted yeast was almost the same as that of the wild-type yeast under those conditions. However, the induced mRNA level of the molecular chaperone PDI in the ER was clearly higher in calnexin-disrupted S. cerevisiae relative to the wild type at 37°C, despite being almost the same in the two strains under normal conditions. The western blotting analysis for PDI protein expression in the ER yielded results that show a parallel in their mRNA levels in the two strains. We suggest that PDI may interact with calnexin under heat stress conditions, and that the induction of PDI in the ER can recover part of the function of calnexin in calnexin-disrupted yeast, and result in the same growth rate as in wild-type yeast.

Keywords: Calnexin; Molecular chaperone; PDI; Heat stress

  • [1] Ou, W.J., Cameron, P.H., Thomas, D.Y. and Bergeron J.J.M. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 364 (1993) 771–776. http://dx.doi.org/10.1038/364771a0CrossrefGoogle Scholar

  • [2] Bergeron, J.J.M., Brenner, M.B., Thomas, D.Y. and Williams, D.B. Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem. Sci. 19 (1994) 124–128. http://dx.doi.org/10.1016/0968-0004(94)90205-4CrossrefGoogle Scholar

  • [3] Letourneur, O., Sechi, S., Willete-Brown, J., Robertson, M.W. and Kinet J.P. Glycosylation of human truncated Fc epsilon RI alpha chain is necessary for efficient folding in the endoplasmic reticulum. J. Biol. Chem. 270 (1995) 8249–8256. http://dx.doi.org/10.1074/jbc.270.14.8249CrossrefGoogle Scholar

  • [4] Degen, E., Cohen-Doyle, M.F. and Williams, D.B. Efficient dissociation of the p88 chaperone from major histocompatibility complex class I molecules requires both beta 2-microglobulin and peptide. J. Exp. Med. 175 (1992) 1653–1661. http://dx.doi.org/10.1084/jem.175.6.1653CrossrefGoogle Scholar

  • [5] Hammond, C., Braakman, I. and Helenius, A. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc. Natl. Acad. Sci. USA 91 (1994) 913–917. http://dx.doi.org/10.1073/pnas.91.3.913CrossrefGoogle Scholar

  • [6] Jackson, M.R., Cohen-Doyle, M.F., Peterson, P, A. and Williams, D.B. Regulation of MHC class I transport by the molecular chaperone, calnexin (p88, IP90). Science 263 (1994) 384–387. http://dx.doi.org/10.1126/science.8278813CrossrefGoogle Scholar

  • [7] Ware, F.E., Vassilakos, A., Peterson, P.A., Jackson, M.R., Lehrman, M.A. and Williams, D.B. The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J. Biol. Chem. 270 (1995) 4697–4704. http://dx.doi.org/10.1074/jbc.270.9.4697Google Scholar

  • [8] Parlati, F., Dominguez, M., Bergeron, J.M. and Thomas, D.Y. Saccharomyces cerevisiae CNE1 encodes an endoplasmic reticulum (ER) membrane protein with sequence similarity to calnexin and calreticulin and functions as a constituent of the ER quality control apparatus. J. Biol. Chem. 270 (1995) 244–253. http://dx.doi.org/10.1074/jbc.270.1.244CrossrefGoogle Scholar

  • [9] Jakob, C.A., Burda, P. S., te Heesen, S., Aebi, M. and Roth, J. Genetic tailoring of N-linked oligosaccharides: the role of glucose residues in glycoprotein processing of Saccharomyces cerevisiae in vivo. Glycobiology 8 (1998) 155–164. http://dx.doi.org/10.1093/glycob/8.2.155CrossrefGoogle Scholar

  • [10] Mori, K., Ogawa, N., Kawahara, T., Yanagi, H. and Yura, T. Palindrome with spacer of one nucleotide is characteristic of the cis-acting unfolded protein response element in Saccharomyces cerevisiae. J. Biol. Chem. 273 (1998) 9912–9920. http://dx.doi.org/10.1074/jbc.273.16.9912CrossrefGoogle Scholar

  • [11] Song, Y., Sata, J., Saito, A., Usui, M., Azakami, H. and Akio, K. Effects of calnexin deletion in Saccharomyces cerevisiae on the secretion of glycosylated lysozymes. J. Biochem. 130 (2001) 757–764. Google Scholar

  • [12] Gething, M.J. and Sambrook, J. Protein folding in the cell. Nature 355 (1992) 33–45. http://dx.doi.org/10.1038/355033a0CrossrefGoogle Scholar

  • [13] Helenius, A., Tatu, U., Marquardt, T. and Braakman, I. Protein folding in the endoplasmic reticulum. In: Cell Biology and Biotechnology (Rupp, R.G. and Oka, M.S.), Berlin/Heidelberg, Springer Verlag, 1992. Google Scholar

  • [14] Lee, A.S. Coordinated regulation of a set of genes by glucose and calcium ionophores in mammalian cells. Trends Biochem. Sci. 12 (1987) 20–23. http://dx.doi.org/10.1016/0968-0004(87)90011-9CrossrefGoogle Scholar

  • [15] Kozutsumi, Y., Segal, M., Normington, K., Gething, M.J. and Sambrook, J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332 (1988) 462–464. http://dx.doi.org/10.1038/332462a0CrossrefGoogle Scholar

  • [16] Molinari, M. and Helenius, A. Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science 288 (2000) 331–333. http://dx.doi.org/10.1126/science.288.5464.331CrossrefGoogle Scholar

  • [17] Pirneskoski, A., Ruddock, L.W., Klappa, P., Freedman, R.B., Kivirikko, K.I. and Koivunen, P. Domains b’ and a’ of protein disulfide isomerase fulfill the minimum requirement for function as a subunit of prolyl 4-hydroxylase. J. Biol. Chem. 276 (2001) 11287–11293. http://dx.doi.org/10.1074/jbc.M010656200CrossrefGoogle Scholar

  • [18] Williams, D.B. Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. J. Cell. Sci. 119 (2006) 615–623. http://dx.doi.org/10.1242/jcs.02856CrossrefGoogle Scholar

  • [19] Parlatill, F., Dignard, D., Bergeron, J.J.M. and Thomas, D.Y. The calnexin homologue cnx1+ in Schizosaccharomyces pombe, is an essential gene which can be complemented by its soluble ER domain. EMBO J. 14 (1995) 3064–3072. Google Scholar

  • [20] Siebert, P.D. and Larrick, J.W. Competitive PCR. Nature 359 (1992) 557–558. http://dx.doi.org/10.1038/359557a0CrossrefGoogle Scholar

  • [21] Rose, M.D., Misra, L.M. and Vogel, J.P. KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell 57 (1989) 1211–1221. http://dx.doi.org/10.1016/0092-8674(89)90058-5CrossrefGoogle Scholar

  • [22] Lamantia, M., Miura, T., Tachikawa, H., Kaplan, H.A., Lennarz, W.J. and Mizunaga, T. Glycosylation site binding protein and protein disulfide isomerase are identical and essential for cell viability in yeast. Proc. Natl. Acad. Sci. USA 88 (1991) 4453–4457. http://dx.doi.org/10.1073/pnas.88.10.4453CrossrefGoogle Scholar

  • [23] Arima, H., Kinoshita, T., Ibrahim H.R., Azakami, H. and Kato, A. Enhanced secretion of hydrophobic peptide fused lysozyme by the introduction of N-glycosylation signal and the disruption of calnexin gene in Saccharomyces cerevisiae. FEBS Lett. 440 (1998) 89–92. http://dx.doi.org/10.1016/S0014-5793(98)01437-9CrossrefGoogle Scholar

  • [24] Kimura, T., Hosoda, Y. and Nakamura, H. Functional differences between human and yeast protein disulfide isomerase family proteins. Biochem. Biophys. Res. Commun. 320 (2004) 359–365. http://dx.doi.org/10.1016/j.bbrc.2004.05.178CrossrefGoogle Scholar

  • [25] Mori, K., Ogawa, N., Kawahara, T., Yanagi, H. and Yura, T. Palindrome with spacer of one nucleotide is characteristic of the cis-acting unfolded protein response element in Saccharomyces cerevisiae. J. Biol. Chem. 273 (1998) 9912–9920. http://dx.doi.org/10.1074/jbc.273.16.9912CrossrefGoogle Scholar

  • [26] Kimura, T., Hosoda, Y., Sato, Y., Kitamura, Y., Ikeda, T., Horibe, T. and Kikuc, M. Interactions among yeast protein-disulfide isomerase proteins and endoplasmic reticulum chaperone proteins influence their activities. J. Biol. Chem. 280 (2005) 31438–31441. http://dx.doi.org/10.1074/jbc.M503377200CrossrefGoogle Scholar

  • [27] Lee, W., Kim, K.R., Singaravelu, G., Park, B.J., Kim, D.H., Ahnn, J. and Yoo, Y.J. Alternative chaperone machinery may compensate for calreticulin/calnexin deficiency in Caenorhabditis elegans. Proteomics 6 (2006) 1329–1339. http://dx.doi.org/10.1002/pmic.200500320CrossrefGoogle Scholar

About the article

Published Online: 2007-10-19

Published in Print: 2008-03-01


Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-007-0033-y.

Export Citation

© 2007 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in