Jump to ContentJump to Main Navigation
Show Summary Details

Cellular and Molecular Biology Letters

Editor-in-Chief: /


IMPACT FACTOR increased in 2015: 1.753

SCImago Journal Rank (SJR) 2015: 0.788
Source Normalized Impact per Paper (SNIP) 2015: 0.645
Impact per Publication (IPP) 2015: 1.748

99,00 € / $149.00 / £75.00*

Online
ISSN
1689-1392
See all formats and pricing



Select Volume and Issue

The transcription reinitiation properties of RNA polymerase III in the absence of transcription factors

1Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Viale G.P. Usberti 23/A, 43100, Parma, Italy

© 2007 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Cellular and Molecular Biology Letters. Volume 13, Issue 1, Pages 112–118, ISSN (Online) 1689-1392, DOI: 10.2478/s11658-007-0041-y, October 2007

Publication History

Published Online:
2007-10-29

Abstract

Transcription reinitiation by RNA polymerase (Pol) III proceeds through facilitated recycling, a process by which the terminating Pol III, assisted by the transcription factors TFIIIB and TFIIIC, rapidly reloads onto the same transcription unit. To get further insight into the Pol III transcription mechanism, we analyzed the kinetics of transcription initiation and reinitiation of a simplified in vitro transcription system consisting only of Pol III and template DNA. The data indicates that, in the absence of transcription factors, first-round transcription initiation by Pol III proceeds at a normal rate, while facilitated reinitiation during subsequent cycles is compromised.

Keywords: RNA polymerase III; Transcription reinitiation; TFIIIB; G-less cassette

  • [1] Dieci, G. and Sentenac, A. Detours and shortcuts to transcription reinitiation. Trends. Biochem. Sci. 28 (2003) 202–209. http://dx.doi.org/10.1016/S0968-0004(03)00054-9 [Crossref]

  • [2] Dieci, G., and Sentenac, A. Facilitated recycling pathway for RNA polymerase III. Cell 84 (1996) 245–252. http://dx.doi.org/10.1016/S0092-8674(00)80979-4 [Crossref]

  • [3] Ferrari, R., Rivetti, C., Acker, J. and Dieci, G. Distinct roles of transcription factors TFIIIB and TFIIIC in RNA polymerase III transcription reinitiation. Proc. Natl. Acad. Sci. USA 101 (2004) 13442–13447. http://dx.doi.org/10.1073/pnas.0403851101 [Crossref]

  • [4] Landrieux, E., Alic, N., Ducrot, C., Acker, J., Riva, M. and Carles, C. A subcomplex of RNA polymerase III subunits involved in transcription termination and reinitiation. EMBO J. 25 (2006) 118–128. http://dx.doi.org/10.1038/sj.emboj.7600915 [Crossref]

  • [5] Dieci, G., Percudani, R., Giuliodori, S., Bottarelli, L. and Ottonello, S. TFIIIC-independent in vitro transcription of yeast tRNA genes. J. Mol. Biol. 299 (2000) 601–613. http://dx.doi.org/10.1006/jmbi.2000.3783 [Crossref]

  • [6] Huet, J., Manaud, N., Dieci, G., Peyroche, G., Conesa, C., Lefebvre, O., Ruet, A., Riva, M. and Sentenac, A. RNA polymerase III and class III transcription factors from Saccharomyces cerevisiae. Methods Enzymol. 273 (1996) 249–267. http://dx.doi.org/10.1016/S0076-6879(96)73024-0 [Crossref]

  • [7] Bardeleben, C., Kassavetis, G.A. and Geiduschek, E.P. Encounters of Saccharomyces cerevisiae RNA polymerase III with its transcription factors during RNA chain elongation. J. Mol. Biol. 235 (1994) 1193–1205. http://dx.doi.org/10.1006/jmbi.1994.1073 [Crossref]

  • [8] Campbell, F.E., Jr., and Setzer, D.R. Transcription termination by RNA polymerase III: uncoupling of polymerase release from termination signal recognition. Mol. Cell. Biol. 12 (1992) 2260–2272. [PubMed]

  • [9] Kassavetis, G. A., Riggs, D.L., Negri, R., Nguyen, L.H. and Geiduschek, E.P. Transcription factor IIIB generates extended DNA interactions in RNA polymerase transcription complexes on tRNA genes. Mol. Cell. Biol. 9 (1989) 2551–2566. [PubMed]

  • [10] Braglia, P., Dugas, S.L., Donze, D. and Dieci, G. Requirement of Nhp6 proteins for transcription of a subset of tRNA genes and heterochromatin barrier function in Saccharomyces cerevisiae. Mol. Cell. Biol. 27 (2007) 1545–1557. http://dx.doi.org/10.1128/MCB.00773-06 [Web of Science]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
R. Serruya, N. Orlovetskie, R. Reiner, Y. Dehtiar-Zilber, D. Wesolowski, S. Altman, and N. Jarrous
Nucleic Acids Research, 2015, Volume 43, Number 11, Page 5442
[2]
Giorgio Dieci, Beatrice Fermi, and Maria Cristina Bosio
Transcription, 2014, Volume 5, Number 1, Page e27704
[3]
Giorgio Dieci, Maria Cristina Bosio, Beatrice Fermi, and Roberto Ferrari
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2013, Volume 1829, Number 3-4, Page 331
[4]
Aneeshkumar G. Arimbasseri, Keshab Rijal, and Richard J. Maraia
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2013, Volume 1829, Number 3-4, Page 318
[5]
A. Tavenet, A. Suleau, G. Dubreuil, R. Ferrari, C. Ducrot, M. Michaut, J.-C. Aude, G. Dieci, O. Lefebvre, C. Conesa, and J. Acker
Proceedings of the National Academy of Sciences, 2009, Volume 106, Number 34, Page 14265

Comments (0)

Please log in or register to comment.