Jump to ContentJump to Main Navigation
Show Summary Details

Cellular and Molecular Biology Letters

Editor-in-Chief: /


IMPACT FACTOR increased in 2015: 1.753

SCImago Journal Rank (SJR) 2015: 0.788
Source Normalized Impact per Paper (SNIP) 2015: 0.645
Impact per Publication (IPP) 2015: 1.748

Online
ISSN
1689-1392
See all formats and pricing
Volume 13, Issue 1 (Mar 2008)

Syntaxin 8 has two functionally distinct di-leucine-based motifs

Kazuo Kasai
  • Department of Cell Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, 181-8611, Japan
  • Toyama Chemical Co., Ltd., Shinjuku, Tokyo, 160-0023, Japan
  • Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan
  • Email:
/ Kei Suga
  • Department of Cell Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, 181-8611, Japan
  • Email:
/ Tetsuro Izumi
  • Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan
  • Email:
/ Kimio Akagawa
  • Department of Cell Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, 181-8611, Japan
  • Email:
Published Online: 2007-10-29 | DOI: https://doi.org/10.2478/s11658-007-0043-9

Abstract

Syntaxin 8 has been shown to form the SNARE complex with syntaxin 7, vti1b and endobrevin. These have been shown to function as the machinery for the homotypic fusion of late endosomes. Recently, we showed that syntaxins 7 and 8 cycle through the plasma membrane, and that the di-leucine-based motifs in the cytoplasmic domain of syntaxins 7 and 8 respectively function in their endocytic and exocytic processes. However, we could not elucidate the mechanism by which syntaxin 8 cycles through the plasma membrane. In this study, we constructed several different syntaxin 8 molecules by mutating putative di-leucine-based motifs, and analyzed their intracellular localization and trafficking. We found a di-leucine-based motif in the cytoplasmic domain of syntaxin 8. It is similar to that of syntaxin 7, and functions in its endocytosis. These results suggest that in the cytoplasmic domain, syntaxin 8 has two functionally distinct di-leucine-based motifs that act independently in its endocytic and exocytic processes. This is the first report on two di-leucine-based motifs in the same molecule acting independently in distinct transport pathways.

Keywords: Syntaxin; Di-leucine-based motif; Endocytosis; Exocytosis

  • [1] Palade, G. Intracellular aspects of the process of protein synthesis. Science 189 (1975) 347–358. http://dx.doi.org/10.1126/science.1096303 [Crossref]

  • [2] Pryer, N.K., Wuestehube, L.J. and Schekman, R. Vesicle-mediated protein sorting. Annu. Rev. Biochem. 61 (1992) 471–516. http://dx.doi.org/10.1146/annurev.bi.61.070192.002351 [Crossref]

  • [3] Rothman, J.E. and Warren, G. Implications of the SNARE hypothesis for intracellular membrane topology and dynamics. Curr. Biol. 4 (1994) 220–233. http://dx.doi.org/10.1016/S0960-9822(00)00051-8 [Crossref]

  • [4] Rothman, J.E. and Wieland, F.T. Protein sorting by transport vesicles. Science 272 (1996) 227–234. http://dx.doi.org/10.1126/science.272.5259.227 [Crossref]

  • [5] Schekman, R. and Orci, L. Coat proteins and vesicle budding. Science 271 (1996) 1526–1533. http://dx.doi.org/10.1126/science.271.5255.1526 [Crossref]

  • [6] Clary, D.O., Griff, I.C. and Rothman, J.E. SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 61 (1990) 709–721. http://dx.doi.org/10.1016/0092-8674(90)90482-T [Crossref]

  • [7] Graham, T.R. and Emr, S.D. Compartmental organization of Golgi-specific protein modification and vacuolar protein sorting events defined in a yeast sec18 (NSF) mutant. J. Cell Biol. 114 (1991) 207–218. http://dx.doi.org/10.1083/jcb.114.2.207 [Crossref]

  • [8] Griff, I.C., Schekman, R., Rothman, J.E. and Kaiser, C.A. The yeast SEC17 gene product is functionally equivalent to mammalian alpha-SNAP protein. J. Biol. Chem. 267 (1992) 12106–12115.

  • [9] Bennett, M.K. and Scheller, R.H. The molecular machinery for secretion is conserved from yeast to neurons. Proc. Natl. Acad. Sci. USA 90 (1993) 2559–2563. http://dx.doi.org/10.1073/pnas.90.7.2559 [Crossref]

  • [10] Söllner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H. and Rothman, J.E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75 (1993) 409–418. http://dx.doi.org/10.1016/0092-8674(93)90376-2 [Crossref]

  • [11] Söllner, T., Whiteheart, S.W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P. and Rothman, J.E. SNAP receptors implicated in vesicle targeting and fusion. Nature 362 (1993) 318–324. http://dx.doi.org/10.1038/362318a0 [Crossref]

  • [12] McNew, J.A., Parlati, F., Fukuda, R., Johnston, R.J., Paz, K., Paumet, F., Söllner, T.H. and Rothman, J.E. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407 (2000) 153–159. http://dx.doi.org/10.1038/35025000 [Crossref]

  • [13] Parlati, F., McNew, J.A., Fukuda, R., Miller, R., Söllner, T.H. and Rothman, J.E. Topological restriction of SNARE-dependent membrane fusion. Nature 407 (2000) 194–198. http://dx.doi.org/10.1038/35025076 [Crossref]

  • [14] Fukuda, R., McNew, J. A., Weber, T., Parlati, F., Engel, T., Nickel, W., Rothman, J.E. and Söllner, T.H. Functional architecture of an intracellular membrane t-SNARE. Nature 407 (2000) 198–202. http://dx.doi.org/10.1038/35025084 [Crossref]

  • [15] Trowbridge, I.S., Collawn, J.F. and Hopkins, C.R. Signal-dependent membrane protein trafficking in the endocytic pathway. Annu. Rev. Cell Biol. 9 (1993) 129–161. http://dx.doi.org/10.1146/annurev.cb.09.110193.001021 [Crossref]

  • [16] Sandoval, I.V. and Bakke, O. Targeting of membrane proteins to endosomes and lysosomes. Trends Cell Biol. 4 (1994) 292–297. http://dx.doi.org/10.1016/0962-8924(94)90220-8 [Crossref]

  • [17] Letourner, F. and Klausner, R.D. A novel di-leucine motif and a tyrosinebased motif independently mediate lysosomal targeting and endocytosis of CD3 chains. Cell 69 (1992) 1143–1157. http://dx.doi.org/10.1016/0092-8674(92)90636-Q [Crossref]

  • [18] Bremnes, B., Madsen, T., Gedde-Dahl, M. and Bakke, O. A LI and ML motif in the cytoplasmic tail of MHC-associated invariant chain mediate rapid internalization. J. Cell Sci. 107 (1994) 2021–2032.

  • [19] Pond, L., Kuhn, L., Teyton, L., Schutze, M.P., Tainer, J.A., Jackson, M.R. and Peterson, P.A. A role for acidic residues in di-leucine motif-based targeting to the endocytic pathway. J. Biol. Chem. 270 (1995) 19989–19997. http://dx.doi.org/10.1074/jbc.270.34.19989 [Crossref]

  • [20] Simmen, T., Schmidt, A., Hunziker, W. and Beermann, F. The tyrosinase tail mediates sorting to the lysosomal compartment in MDCK cells via a dileucine and tyrosine-based signal. J. Cell Sci. 112 (1999) 45–53.

  • [21] Li, Y., Marzolo, M.P., Van Kerkhof, P., Strous, G.J. and Bu, G. The YXXL motif, but not the two NPXY motifs, serves as the dominant endocytosis signal for low density lipoprotein receptor-related protein. J. Biol. Chem. 275 (2000) 17187–17194. http://dx.doi.org/10.1074/jbc.M000490200 [Crossref]

  • [22] Johnson, K. and Kornfeld, S. The cytoplasmic tail of the mannose 6-phosphate/insulin-like growth factor-II receptor has two signals for lysosomal enzyme sorting in the Golgi. J. Cell Biol. 119 (1992) 249–257. http://dx.doi.org/10.1083/jcb.119.2.249 [Crossref]

  • [23] Wong, S.H., Xu, Y., Zhang, T. and Hong, W. Syntaxin 7, a novel syntaxin member associated with the early endosomal compartment. J. Biol. Chem. 273 (1998) 375–380. http://dx.doi.org/10.1074/jbc.273.1.375 [Crossref]

  • [24] Nakamura, N., Yamamoto, A., Wada, Y. and Futai, M. Syntaxin 7 mediates endocytic trafficking to late endosomes. J. Biol. Chem. 275 (2000) 6523–6529. http://dx.doi.org/10.1074/jbc.275.9.6523 [Crossref]

  • [25] Prekeris, R., Yang, B., Oorschot, V., Klumperman, J. and Scheller, R.H. Differential roles of syntaxin 7 and syntaxin 8 in endosomal trafficking. Mol. Biol. Cell 10 (1999) 3891–3908.

  • [26] Subramaniam, V.N., Loh, E., Horstmann, H., Habermann, A., Xu, Y., Coe, J., Griffiths, G. and Hong, W. Preferential association of syntaxin 8 with the early endosome. J. Cell Sci. 113 (2000) 997–1008.

  • [27] Antonin, W., Holroyd, C., Fasshauer, D., Pabst, S., Von Mollard, G.F. and Jahn, R. A SNARE complex mediating fusion of late endosomes defines conserved propaties of SNARE structure and function. EMBO J. 19 (2000) 6453–6464 http://dx.doi.org/10.1093/emboj/19.23.6453 [Crossref]

  • [28] Kasai, K. and Akagawa, K. Roles of the cytoplasmic and transmembrane domains of syntaxins in intracellular localization and trafficking. J. Cell Sci. 114 (2001) 3115–3124.

  • [29] Shin, H.W., Shinotsuka, C., Torii, S., Murakami, K. and Nakayama, K. Identification and subcellular localization of a novel mammalian dynamin-related protein homologous to yeast Vps1p and Dnm1p. J. Biochem. (Tokyo) 122 (1997) 525–530.

  • [30] Torii, S., Banno, T., Watanabe, T., Ikehara, Y., Murakami, K. and Nakayama, K. Cytotoxicity of brefeldin A correlates with its inhibitory effect on membrane binding of COP coat proteins. J. Biol. Chem. 270 (1995) 11574–11580. http://dx.doi.org/10.1074/jbc.270.19.11574 [Crossref]

  • [31] Thoreau, V., Bergès, T., Callebaut, I., Guillier-Gencik, Z., Gressin, L., Bernheim, A., Karst, F., Mornon, J.P., Kitzis, A. and Chomel, J.C. Molecular cloning, expression analysis, and chromosomal localization of human syntaxin 8 (STX8). Biochem. Biophys. Res. Commun. 257 (1999) 577–583. http://dx.doi.org/10.1006/bbrc.1999.0503 [Crossref]

  • [32] Hong, W. SNAREs and traffic. Biochim. Biophys. Acta 1744 (2005) 465–517. http://dx.doi.org/10.1016/j.bbamcr.2005.06.006 [Crossref]

  • [33] Heilker, R., Manning-Krieg, U., Zuber, J.F. and Spiess, M. In vitro binding of clathrin adaptors to sorting signals correlates with endocytosis and basolateral sorting. EMBO J. 15 (1996) 2893–2899.

  • [34] Darsow, T., Burd, C.G. and Emr, S.D. Acidic di-leucine motif essential for AP-3-dependent sorting and restriction of the functional specificity of the Vam3p vacuolar t-SNARE. J. Cell Biol. 142 (1998) 913–922. http://dx.doi.org/10.1083/jcb.142.4.913 [Crossref]

  • [35] Höning, S., Sandoval, I.V. and Von Figura, K.A. Di-leucine-based motif in the cytoplasmic tail of LIMP-II and tyrosinase mediates selective binding of AP-3. EMBO J. 17 (1998) 1304–1314. http://dx.doi.org/10.1093/emboj/17.5.1304 [Crossref]

  • [36] Pearse, B.M. and Robinson, M.S. Clathrin, adaptors, and sorting. Annu. Rev. Cell Biol. 6 (1990) 151–171. http://dx.doi.org/10.1146/annurev.cb.06.110190.001055 [Crossref]

  • [37] Chao, D.S., Hay, J.C., Winnick, S., Prekeris, R., Klumperman, J. and Scheller, R.H. SNARE membrane trafficking dynamics in vivo. J. Cell Biol. 144 (1999) 869–881. http://dx.doi.org/10.1083/jcb.144.5.869 [Crossref]

About the article

Published Online: 2007-10-29

Published in Print: 2008-03-01


Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-007-0043-9. Export Citation

© 2007 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Géza Antalffy, Katalin Pászty, Karolina Varga, Luca Hegedűs, Ágnes Enyedi, and Rita Padányi
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2013, Volume 1833, Number 12, Page 2561
[2]
K. Suga, A. Saito, T. Tomiyama, H. Mori, and K. Akagawa
Journal of Biochemistry, 2009, Volume 146, Number 6, Page 905

Comments (0)

Please log in or register to comment.
Log in