Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Editor-in-Chief: /


IMPACT FACTOR 2016: 1.260
5-year IMPACT FACTOR: 1.506

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.615
Source Normalized Impact per Paper (SNIP) 2016: 0.470

Online
ISSN
1689-1392
See all formats and pricing
More options …
Volume 13, Issue 1 (Mar 2008)

Sclerotia of the acellular (true) slime mould Fuligo septica as a model to study melanization and anabiosis

Anna Krzywda
  • Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elżbieta Petelenz
  • Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
  • Department of Cell and Molecular Biology, Microbiology, Göteborg University, Göteborg, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dominika Michalczyk
  • Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Przemysław Płonka
  • Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2007-10-29 | DOI: https://doi.org/10.2478/s11658-007-0047-5

Abstract

Acellular (true) slime moulds (Myxomycetes) are capable of a transition to the stage of sclerotium — a dormant form of plasmodium produced under unfavourable environmental conditions. In this study, sclerotia of Fuligo septica were analyzed by means of electron paramagnetic resonance (EPR) spectroscopy. The moulds were cultivated in vitro on filter paper, fed with oat flour, and kept until the plasmodia began to produce sclerotia. The obtained sclerotia differed in colour from yellow through orange to dark-brown. The EPR spectra revealed a free radical, melanin-like signal correlated with the depth of the colour; it was strongest in the dark sclerotia. Sclerotization only took place when the plasmodia were starved and very slowly dried. Only the yellow sclerotia were able to regenerate into viable plasmodia. This suggests that myxomycete cytoplasm dehydration is an active process regulated metabolically. Plasmodial sclerotization may therefore serve as a convenient model system to study the regulation of cytoplasmatic water balance, and sclerotia as a convenient material for EPR measurements, combining the quality of plasmodia with the technical simplicity of the measurements characteristic of dry spores. Darkening of the sclerotia is most probably a pathological phenomenon connected with the impairment of water balance during sclerotization.

Keywords: Aquaporins; Dehydration; EPR; Melanin; Myxomycetes; Pigmentation

  • [1] Stephenson, S.L. and Stempen, H. Myxomycetes. A Handbook of Slime Molds, 1st edition, Timber Press, Inc., Portland, Oregon, 1994 (paperback edition printed 2000). Google Scholar

  • [2] Towpik, J. Regulation of mitochondrial translation in yeast. Cell. Mol. Biol. Lett. 10 (2005) 571–594. Google Scholar

  • [3] Rakoczy, L. [The acellular slime moulds (Myxomycetes) — a model system for the modern biology. in: Application of the In Vitro Cultures in Plant Physiology] (Dubert, F., Ed.), 1st edition, The Franciszek Górski Department of Plant Physiology, Polish Academy of Science, Kraków, Poland, 1995, 301–308. Google Scholar

  • [4] Płonka, P.M. and Rakoczy, L. Electron paramagnetic resonance spectroscopy (EPR) as a method for studying the biology of the acellular slime moulds (Myxomycetes). Acta Physiol. Plant., 19 suppl. (1997) 233. Google Scholar

  • [5] Płonka, P.M. and Rakoczy, L. [Usefulness of the EPR method in the research on slime moulds. in: Application of the In Vitro Cultures in Plant Physiology] (Dubert, F. and Skoczowski, A., Eds.), 1st edition, The Franciszek Górski Department of Plant Physiology, Polish Academy of Science, Kraków, Poland, 1997, 175–180. Google Scholar

  • [6] Rakoczy, L. and Panz, T. Melanin revealed in spores of true slime moulds using the electron paramagnetic resonance method. Acta Protozool. 33 (1994) 227–231. Google Scholar

  • [7] Loganathan, L. and Kalyanasundram, I. The melanin of the myxomycete Stemonitis herbatica. Acta Protozool. 38 (1999) 97–103. Google Scholar

  • [8] Sarna, T. and Lukiewicz, S. The double role of water in quantitative electron spin resonance (ESR) determinations on samples of biological materials. Folia Histochem. Cytochem. (Krakow) 9 (1971) 203–216. Google Scholar

  • [9] Płonka, P.M. and Rakoczy, L. [Heme and non-heme iron complexes of nitric oxide in the plasmodia of acellular slime moulds cultured in vitro]. Zesz. Probl. Post. N. Roln. 473 (2000) 249–259. Google Scholar

  • [10] Płonka, P.M. and Rakoczy, L. The electron paramagnetic resonance signals of the acellular slime mould Physarum nudum plasmodia irradiated with white light. Curr. Top. Biophys. 21 (1997) 83–86. Google Scholar

  • [11] Rakoczy L. and Płonka, P.M. [Accumulation of manganese in plasmodia of the acellular slime mould (Myxomycetes) Metatrichia vesparium]. Ochr. Środ. Zas. Nat. 18 (1997) 299–308. Google Scholar

  • [12] Rakoczy L. [Preservation of the ability to sporulate of the myxomycete Physarum polycephalum in its dormant stage — spherules. in: Application ofthe In Vitro Cultures in Plant Physiology] (Dubert, F. and Skoczowski, A., Eds.), 1st edition, The Franciszek Górski Department of Plant Physiology, Polish Academy of Science, Kraków, Poland, 1997, 467–473. Google Scholar

  • [13] Verkman, A.S. More than just water channels: unexpected cellular roles of aquaporins. J. Cell Sci. 118 (2005) 3225–3232. http://dx.doi.org/10.1242/jcs.02519CrossrefGoogle Scholar

  • [14] Levin, M.H. and Verkman, A.S. Aquaporin-3-dependent cell migration and proliferation during corneal re-epithelialization. Invest. Ophthalmol. Vis. Sci. 47 (2006) 4365–4372. http://dx.doi.org/10.1167/iovs.06-0335CrossrefGoogle Scholar

  • [15] Verkman A. Role of aquaporins in endothelial water transport. J. Anat. 200 (2002) 528. http://dx.doi.org/10.1046/j.1469-7580.2002.00058.xCrossrefGoogle Scholar

  • [16] Felix, C.C., Hyde, J.S., Sarna, T. and Sealy, R.C. Interactions of melanin with metal ions. Electron spin resonance evidence for chelate complexes of metal ions with free radicals. J. Amer. Chem. Soc. 100 (1978) 3922–3926. http://dx.doi.org/10.1021/ja00480a044CrossrefGoogle Scholar

  • [17] Deibel, R.M.B. and Chedekel, M.R. Biosynthetic and structural studies on pheomelanin. J. Amer. Chem. Soc. 104 (1982) 7306–7309. http://dx.doi.org/10.1021/ja00389a066CrossrefGoogle Scholar

  • [18] Lukiewicz, S.J. and Sarna, T. Double internal standard for quantitative demonstration of free radicals. Folia Histochem. Cytochem. 9 (1971) 127–128. Google Scholar

  • [19] Sarna, T. and Plonka, P.M. Biophysical studies of melanin: paramagnetic, ion-exchange and redox properties of melanin pigments and their photoreactivity. in: Biomedical ESR. Biological Magnetic Resonance Series. vol. 23. (Eaton, S.S., Eaton, G.R. and Berliner, L.J., Eds.), 1st edition, Kluwer Acad. Publ., The Netherlands-New York-Boston, 2005, 125–146. Google Scholar

  • [20] Commoner, B., Townsend, J. and Pake, G.W. Free radicals in biological materials. Nature 174 (1954) 689–691. http://dx.doi.org/10.1038/174689a0CrossrefGoogle Scholar

  • [21] Sealy, R.C., Hyde, J.S., Felix, C.C., Menon, I.A., Prota, G., Swartz, H.M., Persad, S. and Haberman, H.F. Novel free radicals in synthetic and natural pheomelanins: Distinction between dopa melanins and cysteinyldopa melanins by ESR spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 79 (1982) 2885–2889. http://dx.doi.org/10.1073/pnas.79.9.2885CrossrefGoogle Scholar

  • [22] Yordanov, N.D. and Pachova, Z. Gamma-irradiated dry fruits. An example of a wide variety of long-time dependent EPR spectra. Spectrochim. Acta A Mol. Biomol. Spectrosc. 63 (2006) 891–895. http://dx.doi.org/10.1016/j.saa.2005.10.023CrossrefGoogle Scholar

  • [23] McCormick, J.J., Blomquist, J.C. and Rusch H.P. Isolation and characterization of a galactosamine wall from spores and spherules of Physarum polycephalum. J. Bacteriol. 104 (1970) 1119–1125. Google Scholar

  • [24] Plonka, P.M. and Grabacka, M. Melanin synthesis in microorganisms — biotechnological and medical aspects. Acta Biochim. Pol. 53 (2006) 429–443. Google Scholar

  • [25] Slominski, A., Tobin, D.J., Shibahara, S. and Wortsman, J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 84 (2004) 1155–1228. http://dx.doi.org/10.1152/physrev.00044.2003CrossrefGoogle Scholar

  • [26] Wood, J.M., Jimbow, K., Boissy, R.E., Slominski, A., Plonka, P.M., Slawinski, J., Wortsman, J. and Tosk, J. What is the use of generating melanin? Exp. Dermatol. 8 (1999) 153–164. http://dx.doi.org/10.1111/j.1600-0625.1999.tb00365.xCrossrefGoogle Scholar

  • [27] Talarczyk, A. and Hennig, J. Early defence responses in plants infected with pathogenic organisms. Cell. Mol. Biol. Lett. 6 (2001) 955–970. Google Scholar

  • [28] Sommer, A., Ne’eman, E., Steffens, J.C., Mayer, A.M. and Harel, E. Import, targeting, and processing of a plant polyphenol oxidase. Plant Physiol. 105 (1994) 1301–1311. http://dx.doi.org/10.1104/pp.105.4.1301CrossrefGoogle Scholar

  • [29] Rakoczy, L. and Płonka, P.M. [Plasmodia of acellular slime moulds — materials for verification of the procedure used for natural melanin purification.] Zesz. Probl. Post. N. Roln. 473 (2000) 267–277. Google Scholar

  • [30] Majcherczyk, A., Rakoczy, L. and Hüttermann A. A method for separation of pigments from plasmodia of the true slime molds, Physarum polycephalum and Physarum nudum. Anal. Biochem. 160 (1987) 178–183. http://dx.doi.org/10.1016/0003-2697(87)90628-2CrossrefGoogle Scholar

  • [31] Okazaki, M., Kuwata, K., Miki, Y., Shiga, S. and Shiga, T. Electron spin relaxation of synthetic melanin and melanin-containing human tissues as studied by electron spin echo and electron spin resonance. Arch. Biochem. Biophys. 242 (1985) 197–205. http://dx.doi.org/10.1016/0003-9861(85)90493-XCrossrefGoogle Scholar

  • [32] Jara, J.R., Solano, F., Garcia-Borron, J. Aroca, P. and Lozano, P. Regulation of mammalian melanogenesis II: the role of metal cations. Biochim. Biophys. Acta 1035 (1990) 276–285. Google Scholar

  • [33] Napolitano, A., Di Donato, P. and Prota, G. Zinc-catalyzed oxidation of 5-S-cysteinyldopa to 2,2′-bi(2H-1,4-benzothiazine): Tracking the biosynthetic pathway of trichochromes, the characteristic pigments of red hair. J. Org. Chem. 66 (2001) 6958–6966. http://dx.doi.org/10.1021/jo010320gGoogle Scholar

  • [34] Zhulidov, D.A., Robarts, R.D., Zhulidov, A.V., Zhulidova, O.V., Markelov, D.A., Rusanov, V.A. and Headley, J.V. Zinc accumulation by the slime mold Fuligo septica (L.) Wiggers in the former Soviet Union and North Korea. J. Environ. Qual. 31 (2002) 1038–1042. http://dx.doi.org/10.2134/jeq2002.1038CrossrefGoogle Scholar

  • [35] Buitink, J., Dzuba, S.A., Hoekstra, F.A. and Tsvetkov, Y.D. Pulsed EPR spin-probe study of intracellular glasses in seed and pollen. J. Magn. Reson. 142 (2000) 364–368. http://dx.doi.org/10.1006/jmre.1999.1950CrossrefGoogle Scholar

  • [36] Rakoczy, L. and Płonka, P. [Pigment changes in irradiated plasmodia of the acellular slime moulds Physarum polycephalum and Physarum nudum. in: Application of the In Vitro Cultures in Plant Physiology] (Dubert, F., Ed.), 1st edition, The Franciszek Górski Department of Plant Physiology, Polish Academy of Science, Kraków, Poland, 1995, 309–315. Google Scholar

About the article

Published Online: 2007-10-29

Published in Print: 2008-03-01


Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-007-0047-5.

Export Citation

© 2007 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Magdalena Zdybel, Barbara Pilawa, Ewa Buszman, and Dorota Wrześniok
Chemical Physics Letters, 2013, Volume 556, Page 278
[3]
Artur Beberok, Ewa Buszman, Magdalena Zdybel, Barbara Pilawa, and Dorota Wrześniok
Chemical Physics Letters, 2010, Volume 497, Number 1-3, Page 115
[4]
Magdalena Zdybel, Ewa Chodurek, and Barbara Pilawa
Applied Magnetic Resonance, 2011, Volume 40, Number 1, Page 113
[5]
Paulina Janik, Grzegorz Tylko, Beata Ostachowicz, and Katarzyna Turnau
Microscopy Research and Technique, 2010, Volume 73, Number 12, Page 1134
[6]
P. M. Plonka, T. Passeron, M. Brenner, D. J. Tobin, S. Shibahara, A. Thomas, A. Slominski, A. L. Kadekaro, D. Hershkovitz, E. Peters, J. J. Nordlund, Z. Abdel-Malek, K. Takeda, R. Paus, J. P. Ortonne, V. J. Hearing, and K. U. Schallreuter
Experimental Dermatology, 2009, Volume 18, Number 9, Page 799

Comments (0)

Please log in or register to comment.
Log in