Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 13, Issue 4

Issues

In Vitro evaluation of the cytotoxic and anti-proliferative properties of resveratrol and several of its analogs

Blase Billack
  • Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John’s University, 8000 Utopia Parkway, Jamaica, NY, 11439, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vijayalaxmi Radkar
  • Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John’s University, 8000 Utopia Parkway, Jamaica, NY, 11439, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christelle Adiabouah
  • Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John’s University, 8000 Utopia Parkway, Jamaica, NY, 11439, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2008-10-17 | DOI: https://doi.org/10.2478/s11658-008-0022-9

Abstract

Resveratrol (RES), a component of red wine, possesses anti-inflammatory properties. The studies described in the present work were aimed at evaluating the potential for RES and related stilbene analogs (piceatannol, PIC; pterostilbene, TPS; trans-stilbene, TS; and trans-stilbene oxide, TSO) to exhibit toxicity towards RAW 264.7 mouse macrophages. The effect of TS, TSO, RES and TPS on RAW 264.7 macrophage viability was determined by two standard methods: (a) the MTT assay and (b) the trypan blue dye exclusion test. Whereas macrophages were more sensitive to PIC (LC50 trypan ∼ 1.3 μM) and to TPS (LC50 trypan ∼ 4.0 μM and LC50 MTT ∼ 8.3 μM) than to RES (LC50 trypan ∼ 8.9 μM and LC50 MTT ∼ 29.0 μM), they were relatively resistant to TSO (LC50 trypan ∼ 61.0 μM and LC50 MTT > 100 μM) and to TS (LC50 trypan ≥ 5.0 μM and LC50 MTT ≥ 5.0 μM). The ability of selected stilbenes (RES, TPS and PIC) to exhibit growth inhibitory effects was also examined. Although RES and TPS were observed to inhibit cell proliferation in macrophages (IC50 ≤ 25 μM), these cells were resistant to growth inhibition by PIC (IC50 ≥ 50 μM). The data obtained in the present analysis demonstrate that substituted stilbene compounds such as RES have the capacity to exhibit cytotoxic and anti-proliferative activities in macrophages.

Keywords: Resveratrol; Piceatannol; Pterostilbene; Stilbenes; Cell viability; Cell proliferation; Macrophages; TLR4 (−/−); Antioxidants

  • [1] Howard, A., Chopra, M., Thurnham, D., Strain, J., Fuhrman, B. and Aviram, M. Red wine consumption and inhibition of LDL oxidation: What are the important components? Med. Hypotheses 59 (2002) 101–104. http://dx.doi.org/10.1016/S0306-9877(02)00144-5CrossrefGoogle Scholar

  • [2] Ray, P.S., Maulik, G., Cordis, G.A., Bertelli, A.A., Bertelli, A. and Das, D.K. The red wine antioxidant resveratrol protects isolated rat hearts from ischemia reperfusion injury. Free. Radic. Biol. Med. 27 (1999) 160–169. http://dx.doi.org/10.1016/S0891-5849(99)00063-5CrossrefGoogle Scholar

  • [3] Hung, L.M., Chen, J.K., Huang, S.S., Lee, R.S. and Su, M.J. Cardioprotective effect of resveratrol, a natural antioxidant derived from grapes. Cardiovasc. Res. 47 (2000) 549–555. http://dx.doi.org/10.1016/S0008-6363(00)00102-4CrossrefGoogle Scholar

  • [4] Mokni, M., Limam, F., Elkahoui, S., Amri, M. and Aouani, E. Strong cardioprotective effect of resveratrol, a red wine polyphenol, on isolated rat hearts after ischemia/reperfusion injury. Arch. Biochem. Biophys. 457 (2007) 1–6. http://dx.doi.org/10.1016/j.abb.2006.10.015CrossrefGoogle Scholar

  • [5] Constant, J. Alcohol, ischemic heart disease, and the French paradox. Coron. Artery Dis. 8 (1997) 645–649. http://dx.doi.org/10.1097/00019501-199710000-00007CrossrefGoogle Scholar

  • [6] Jang, D.S., Kang, B.S., Ryu, S.Y., Chang, I.M., Min, K.R. and Kim, Y. Inhibitory effects of resveratrol analogs on unopsonized zymosan-induced oxygen radical production. Biochem. Pharmacol. 57 (1999) 705–712. http://dx.doi.org/10.1016/S0006-2952(98)00350-5CrossrefGoogle Scholar

  • [7] Cao, Z. and Li, Y. Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: protection against oxidative and electrophilic injury. Eur. J. Pharmacol. 489 (2004) 39–48. http://dx.doi.org/10.1016/j.ejphar.2004.02.031CrossrefGoogle Scholar

  • [8] Murias, M., Handler, N., Erker, T., Pleban, K., Ecker, G., Saiko, P., Szekeres, T. and Jager, W. Resveratrol analogues as selective cyclooxygenase-2 inhibitors: synthesis and structure-activity relationship. Bioorg. Med. Chem. 12 (2004) 5571–5578. http://dx.doi.org/10.1016/j.bmc.2004.08.008CrossrefGoogle Scholar

  • [9] Pervaiz, S. Resveratrol: from grapevines to mammalian biology. FASEB J. 17 (2003) 1975–1985. http://dx.doi.org/10.1096/fj.03-0168revCrossrefGoogle Scholar

  • [10] Jeandet, P., Douillet-Breuil, A.C., Bessis, R., Debord, S., Sbaghi, M. and Adrian, M. Phytoalexins from the vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J. Agric. Food Chem. 50 (2002) 2731–2741. http://dx.doi.org/10.1021/jf011429sCrossrefGoogle Scholar

  • [11] Murias, M., Jager, W., Handler, N., Erker, T., Horvath, Z., Szekeres, T., Nohl, H. and Gille, L. Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: structure-activity relationship. Biochem. Pharmacol. 69 (2005) 903–912. http://dx.doi.org/10.1016/j.bcp.2004.12.001CrossrefGoogle Scholar

  • [12] Kageura, T., Matsuda, H., Morikawa, T., Toguchida, I., Harima, S., Oda, M. and Yoshikawa, M. Inhibitors from rhubarb on lipopolysaccharide-induced nitric oxide production in macrophages: structural requirements of stilbenes for the activity. Bioorg. Med. Chem. 9 (2001) 1887–1893. http://dx.doi.org/10.1016/S0968-0896(01)00093-1CrossrefGoogle Scholar

  • [13] Rimando, A.M., Cuendet, M., Desmarchelier, C., Mehta, R.G., Pezzuto, J.M. and Duke, S.O. Cancer chemopreventive and antioxidant activities of pterostilbene, a naturally occurring analogue of resveratrol. J. Agric. Food Chem. 50 (2002) 3453–3457. http://dx.doi.org/10.1021/jf0116855CrossrefGoogle Scholar

  • [14] Tolomeo, M., Grimaudo, S., Di Cristina, A., Roberti, M., Pizzirani, D., Meli, M., Dusonchet, L., Gebbia, N., Abbadessa, V., Crosta, L., Barucchello, R., Grisolia, G., Invidiata, F. and Simoni, D. Pterostilbene and 3′-hydroxypterostilbene are effective apoptosis-inducing agents in MDR and BCR-ABL-expressing leukemia cells. Int. J. Biochem. Cell Biol. 37 (2005) 1709–1726. http://dx.doi.org/10.1016/j.biocel.2005.03.004CrossrefGoogle Scholar

  • [15] Wolter, F., Clausnitzer, A., Akoglu, B. and Stein, J. Piceatannol, a natural analog of resveratrol, inhibits progression through the S phase of the cell cycle in colorectal cancer cell lines. J. Nutr. 132 (2002) 298–302. Google Scholar

  • [16] Larrosa, M., Tomas-Barberan, F.A. and Espin, JC. Grape polyphenol resveratrol and the related molecule 4-hydroxystilbene induce growth inhibition, apoptosis, S-phase arrest, and upregulation of cyclins A, E, and B1 in human SK-Mel-28 melanoma cells. J. Agric. Food Chem. 51 (2003) 4576–4584. http://dx.doi.org/10.1021/jf030073cCrossrefGoogle Scholar

  • [17] Wieder, T., Prokop, A., Bagci, B., Essmann, F., Bernicke, D., Schulze-Osthoff, K., Dorken, B., Schmalz, H. G., Daniel, P. T. and Henze, G. Piceatannol, a hydroxylated analog of the chemopreventive agent resveratrol, is a potent inducer of apoptosis in the lymphoma cell line BJAB and in primary, leukemic lymphoblasts. Leukemia 15 (2001) 1735–1742. CrossrefGoogle Scholar

  • [18] Radkar, V., Hardej, D., Lau-Cam, C. and Billack, B. Evaluation of resveratrol and piceatannol cytotoxicity in macrophages, T cells, and skin cells. Arh. Hig. Rada. Toksikol. 58 (2007) 293–304. Google Scholar

  • [19] Crowell, J.A., Korytko, P.J., Morrissey, R.L., Booth, T.D. and Levine, B.S. Resveratrol-associated renal toxicity. Toxicol. Sci. 82 (2004) 614–619. http://dx.doi.org/10.1093/toxsci/kfh263CrossrefGoogle Scholar

  • [20] Ferry-Dumazet, H., Garnier, O., Mamani-Matsuda, M., Vercauteren, J., Belloc, F., Billiard, C., Dupouy, M., Thiolat, D., Kolb, J. P., Marit, G., Reiffers, J. and Mossalayi, M. D. Resveratrol inhibits the growth and induces the apoptosis of both normal and leukemic hematopoietic cells. Carcinogenesis 23 (2002) 1327–1333. http://dx.doi.org/10.1093/carcin/23.8.1327CrossrefGoogle Scholar

  • [21] Azmi, A.S., Bhat, S.H., Hanif, S. and Hadi, S.M. Plant polyphenols mobilize endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for anticancer properties. FEBS Lett. 580 (2006) 533–538. http://dx.doi.org/10.1016/j.febslet.2005.12.059CrossrefGoogle Scholar

  • [22] Hebbar, V., Shen, G., Hu, R., Kim, B.R., Chen, C., Korytko, P.J., Crowell, J.A., Levine, B.S. and Kong, A.N. Toxicogenomics of resveratrol in rat liver. Life Sci. 76 (2005) 2299–2314. http://dx.doi.org/10.1016/j.lfs.2004.10.039CrossrefGoogle Scholar

  • [23] Schmitt, E., Lehmann, L., Metzler, M. and Stopper, H. Hormonal and genotoxic activity of resveratrol. Toxicol. Lett. 136 (2002) 133–142. http://dx.doi.org/10.1016/S0378-4274(02)00290-4CrossrefGoogle Scholar

  • [24] Djoko, B., Chiou, R.Y., Shee, J.J. and Liu, Y.W. Characterization of immunological activities of peanut stilbenoids, arachidin-1, piceatannol, and resveratrol on lipopolysaccharide-induced inflammation of RAW 264.7 macrophages. J. Agric. Food Chem. 55 (2007) 2376–2383. http://dx.doi.org/10.1021/jf062741aCrossrefGoogle Scholar

  • [25] Sanoh, S., Kitamura, S., Sugihara, K. and Ohta, S. Cytochrome P450 1A1/2 mediated metabolism of trans-stilbene in rats and humans. Biol. Pharm. Bull. 25 (2002) 397–400. http://dx.doi.org/10.1248/bpb.25.397CrossrefGoogle Scholar

  • [26] Sanoh, S., Kitamura, S., Sugihara, K., Kohta, R., Ohta, S. and Watanabe, H. Effects of stilbene and related compounds on reproductive organs in B6C3F1/Crj mouse. J. Health Sci. 52 (2006) 613–622. http://dx.doi.org/10.1248/jhs.52.613CrossrefGoogle Scholar

  • [27] Grohs, B.M. and Kunz, B. Fungitoxicity of chemical analogs with heartwood toxins. Curr. Microbiol. 37 (1998) 67–69. http://dx.doi.org/10.1007/s002849900340CrossrefGoogle Scholar

  • [28] Meijer, J., DePierre, J.W., Wang, P.P. and Guengerich, F.P. Purification and characterization of the major microsomal cytochrome P-450 form induced by trans-stilbene oxide in rat liver. Biochim. Biophys. Acta. 789 (1984) 1–9. Google Scholar

  • [29] Bucker, M., Golan, M., Schmassmann, H.U., Glatt, H.R., Stasiecki, P. and Oesch, F. The epoxide hydratase inducer trans-stilbene oxide shifts the metabolic epoxidation of benzo(a)pyrene from the bay-to the K-region and reduces its mutagenicity. Mol. Pharmacol. 16 (1979) 656–666. Google Scholar

  • [30] Williams, J.B., Wang, R., Lu, A.Y. and Pickett, C.B. Rat liver DT-diaphorase: Regulation of functional mRNA levels by 3-methylcholanthrene, trans-stilbene oxide, and phenobarbital. Arch. Biochem. Biophys. 232 (1984) 408–413. http://dx.doi.org/10.1016/0003-9861(84)90556-3CrossrefGoogle Scholar

  • [31] Raschke, W.C., Baird, S., Ralph, P. and Nakoinz, I. Functional macrophage cell lines transformed by abelson leukemia virus. Cell 15 (1978) 261–267. http://dx.doi.org/10.1016/0092-8674(78)90101-0CrossrefGoogle Scholar

  • [32] Giard, D.J., Aaronson, S.A., Todaro, G.J., Arnstein, P., Kersey, J.H., Dosik, H. and Parks, W.P. In vitro cultivation of human tumors: Establishment of cell lines derived from a series of solid tumors. J. Natl. Cancer Inst. 51 (1973) 1417–1423. Google Scholar

  • [33] Lorenz, E., Patel, D.D., Hartung, T. and Schwartz, D.A. Toll-like receptor 4 (TLR4)-deficient murine macrophage cell line as an in vitro assay system to show TLR4-independent signaling of bacteroides fragilis lipopolysaccharide. Infect. Immun. 70 (2002) 4892–4896. http://dx.doi.org/10.1128/IAI.70.9.4892-4896.2002CrossrefGoogle Scholar

  • [34] Foley, G.E., Lazarus, H., Farber, S., Uzman, B.G., Boone, B.A and McCarthy, RE. Continuous culture of human lymphoblasts from peripheral blood of a child with acute leukemia. Cancer 18 (1965) 522–529. http://dx.doi.org/10.1002/1097-0142(196504)18:4<522::AID-CNCR2820180418>3.0.CO;2-JCrossrefGoogle Scholar

  • [35] Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65 (1983) 55–63. http://dx.doi.org/10.1016/0022-1759(83)90303-4CrossrefGoogle Scholar

  • [36] Shah, Y.M., Al-Dhaheri, M., Dong, Y., Ip, C., Jones, F.E. and Rowan, B.G. Selenium disrupts estrogen receptor (alpha) signaling and potentiates tamoxifen antagonism in endometrial cancer cells and tamoxifen-resistant breast cancer cells. Mol. Cancer Ther. 4 (2005) 1239–1249. http://dx.doi.org/10.1158/1535-7163.MCT-05-0046CrossrefGoogle Scholar

  • [37] Bruggisser, R., von Daeniken, K., Jundt, G., Schaffner, W. and Tullberg-Reinert, H. Interference of plant extracts, phytoestrogens and antioxidants with the MTT tetrazolium assay. Planta Med. 68 (2002) 445–448. http://dx.doi.org/10.1055/s-2002-32073CrossrefGoogle Scholar

  • [38] Ovesna, Z., Kozics, K., Bader, Y., Saiko, P., Handler, N., Erker, T. and Szekeres, T. Antioxidant activity of resveratrol, piceatannol and 3,3′,4,4′,5,5′-hexahydroxy-trans-stilbene in three leukemia cell lines. Oncol. Rep. 16 (2006) 617–624. Google Scholar

  • [39] Potter, G.A., Patterson, L.H., Wanogho, E., Perry, P.J., Butler, P.C., Ijaz, T., Ruparelia, K.C., Lamb, J.H., Farmer, P.B., Stanley, L.A. and Burke, M.D. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Br. J. Cancer 86 (2002) 774–778. http://dx.doi.org/10.1038/sj.bjc.6600197CrossrefGoogle Scholar

  • [40] Piver, B., Fer, M., Vitrac, X., Merillon, J.M., Dreano, Y., Berthou, F. and Lucas, D. Involvement of cytochrome P450 1A2 in the biotransformation of trans-resveratrol in human liver microsomes. Biochem. Pharmacol. 68 (2004) 773–782. http://dx.doi.org/10.1016/j.bcp.2004.05.008CrossrefGoogle Scholar

  • [41] Zheng, L.F., Wei, Q.Y., Cai, Y.J., Fang, J.G., Zhou, B., Yang, L. and Liu, Z.L. DNA damage induced by resveratrol and its synthetic analogues in the presence of cu (II) ions: mechanism and structure-activity relationship. Free Radic. Biol. Med. 41 (2006) 1807–1816. http://dx.doi.org/10.1016/j.freeradbiomed.2006.09.007CrossrefGoogle Scholar

  • [42] Huang, X.F., Ruan, B.F., Wang, X.T., Xu, C., Ge, H.M., Zhu, H.L. and Tan, R.X. Synthesis and cytotoxic evaluation of a series of resveratrol derivatives modified in C2 position. Eur. J. Med. Chem. 42 (2007) 263–267. http://dx.doi.org/10.1016/j.ejmech.2006.08.006CrossrefGoogle Scholar

  • [43] Roberti, M., Pizzirani, D., Simoni, D., Rondanin, R., Baruchello, R., Bonora, C., Buscemi, F., Grimaudo, S. and Tolomeo, M. Synthesis and biological evaluation of resveratrol and analogues as apoptosis-inducing agents. J. Med. Chem. 46 (2003) 3546–3554. http://dx.doi.org/10.1021/jm030785uCrossrefGoogle Scholar

  • [44] Matsuoka, A., Takeshita, K., Furuta, A., Ozaki, M., Fukuhara, K. and Miyata, N. The 4′-hydroxy group is responsible for the in vitro cytogenetic activity of resveratrol. Mutat. Res. 521(2002) 29–35. Google Scholar

  • [45] Fukuhara, K., Nagakawa, M., Nakanishi, I., Ohkubo, K., Imai, K., Urano, S., Fukuzumi, S., Ozawa, T., Ikota, N., Mochizuki, M., Miyata, N. and Okuda, H. Structural basis for DNA-cleaving activity of resveratrol in the presence of cu(II). Bioorg. Med. Chem. 14 (2006) 1437–1443. http://dx.doi.org/10.1016/j.bmc.2005.09.070CrossrefGoogle Scholar

  • [46] Cadenas, E. Antioxidant and prooxidant functions of DT-diaphorase in quinone metabolism. Biochem. Pharmacol. 49 (1995) 127–140. http://dx.doi.org/10.1016/S0006-2952(94)00333-5CrossrefGoogle Scholar

  • [47] Galati, G. and O’Brien, P.J. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Rad. Biol. Med. 37 (2004) 287–303. http://dx.doi.org/10.1016/j.freeradbiomed.2004.04.034CrossrefGoogle Scholar

  • [48] Bernhard, D., Tinhofer, I., Tonko, M., Hubl, H., Ausserlechner, M.J., Greil, R., Kofler, R. and Csordas, A. Resveratrol causes arrest in the S-phase prior to fas-independent apoptosis in CEM-C7H2 acute leukemia cells. Cell Death Differ. 7 (2000) 834–842. http://dx.doi.org/10.1038/sj.cdd.4400719CrossrefGoogle Scholar

  • [49] Tsan, M.F., White, J.E., Maheshwari, J.G. and Chikkappa, G. Anti-leukemia effect of resveratrol. Leuk. Lymphoma 43 (2002) 983–987. CrossrefGoogle Scholar

  • [50] Zunino, S.J. and Storms, D. H. Resveratrol-induced apoptosis is enhanced in acute lymphoblastic leukemia cells by modulation of the mitochondrial permeability transition pore. Cancer Lett. 240 (2006) 123–134. http://dx.doi.org/10.1016/j.canlet.2005.09.001CrossrefGoogle Scholar

  • [51] Wu, S.L., Yu, L., Pan, C.E., Jiao, X.Y., Lv, Y., Fu, J. and Meng, K.W. Apoptosis of lymphocytes in allograft in a rat liver transplantation model induced by resveratrol. Pharmacol. Res. 54 (2006) 19–23. http://dx.doi.org/10.1016/j.phrs.2006.01.011CrossrefGoogle Scholar

  • [52] Mizutani, K., Ikeda, K., Kawai, Y. and Yamori, Y. Resveratrol stimulates the proliferation and differentiation of osteoblastic MC3T3-E1 cells. Biochem. Biophys. Res. Commun. 253 (1998) 859–863. http://dx.doi.org/10.1006/bbrc.1998.9870CrossrefGoogle Scholar

  • [53] Dai, Z., Li, Y., Quarles, L.D., Song, T., Pan, W., Zhou, H. and Xiao, Z. Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomed. 14 (2007) 806–814. http://dx.doi.org/10.1016/j.phymed.2007.04.003CrossrefGoogle Scholar

  • [54] Inoue, K. and Creveling, C.R. Immunocytochemical localization of catechol-O-methyltransferase in the oviduct and in macrophages in corpora lutea of rat. Cell Tissue Res. 245 (1986) 623–628. http://dx.doi.org/10.1007/BF00218564CrossrefGoogle Scholar

About the article

Published Online: 2008-10-17

Published in Print: 2008-12-01


Citation Information: Cellular and Molecular Biology Letters, Volume 13, Issue 4, Pages 553–569, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-008-0022-9.

Export Citation

© 2008 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Asteria Luzardo-Álvarez, Iván Lamela-Gómez, Francisco Otero-Espinar, and José Blanco-Méndez
Pharmaceutics, 2019, Volume 11, Number 6, Page 249
[2]
Manuel Nieto-Domínguez, Laura I. de Eugenio, Pablo Peñalver, Efres Belmonte-Reche, Juan Carlos Morales, Ana Poveda, Jesús Jiménez-Barbero, Alicia Prieto, Francisco J. Plou, and María Jesús Martínez
Journal of Agricultural and Food Chemistry, 2017
[3]
Jonathan Kershaw and Kee-Hong Kim
Journal of Medicinal Food, 2017, Volume 20, Number 5, Page 427
[4]
Jenna L. Dziki, Derek S. Wang, Catalina Pineda, Brian M. Sicari, Theresa Rausch, and Stephen F. Badylak
Journal of Biomedical Materials Research Part A, 2017, Volume 105, Number 1, Page 138
[5]
Christelle A. Adiabouah Achy-Brou and Blase Billack
Plant Foods for Human Nutrition, 2016, Volume 71, Number 3, Page 272
[7]
Valentina Trotta, Wing-Hin Lee, Ching-Yee Loo, Paul M. Young, Daniela Traini, and Santo Scalia
European Journal of Pharmaceutical Sciences, 2016, Volume 86, Page 20
[8]
Luzminda Carlos-Hilario, Richard Shimshock, Cherie Ng, Jon-Paul Bingham, and David A. Christopher
Plant Biotechnology Reports, 2015, Volume 9, Number 5, Page 307
[9]
Babajan Banaganapalli, Chaitanya Mulakayala, Madhusudana Pulaganti, Naveen Mulakayala, CM Anuradha, Chitta Suresh Kumar, Noor Ahmad Shaik, Jumana Yousuf Al-Aama, and Dhananjaya Gudla
OMICS: A Journal of Integrative Biology, 2013, Volume 17, Number 11, Page 568
[11]
Hui Li, Xiangyu Xu, Min Liu, Dezhi Sun, and Linwei Li
Thermochimica Acta, 2010, Volume 510, Number 1-2, Page 168
[12]
Hanna Piotrowska, Malgorzata Kucinska, and Marek Murias
Mutation Research/Reviews in Mutation Research, 2012, Volume 750, Number 1, Page 60
[13]
M. Sengottuvelan, K. Deeptha, and N. Nalini
Chemico-Biological Interactions, 2009, Volume 181, Number 2, Page 193
[14]
R. González, I. Ballester, R. López-Posadas, M. D. Suárez, A. Zarzuelo, O. Martínez-Augustin, and F. Sánchez De Medina
Critical Reviews in Food Science and Nutrition, 2011, Volume 51, Number 4, Page 331
[16]
M. Savio, T. Coppa, L. Bianchi, V. Vannini, G. Maga, L. Forti, O. Cazzalini, M.C. Lazzè, P. Perucca, E. Prosperi, and L.A. Stivala
The International Journal of Biochemistry & Cell Biology, 2009, Volume 41, Number 12, Page 2493
[17]
Hai-Shu Lin, Bing-De Yue, and Paul C. Ho
Biomedical Chromatography, 2009, Volume 23, Number 12, Page 1308

Comments (0)

Please log in or register to comment.
Log in