Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

See all formats and pricing
More options …
Volume 13, Issue 4

The effect of calnexin deletion on the expression level of binding protein (BiP) under heat stress conditions in Saccharomyces cerevisiae

Huili Zhang / Bingjie Hu / Yanyan Ji / Akio Kato / Youtao Song
Published Online: 2008-10-17 | DOI: https://doi.org/10.2478/s11658-008-0026-5


In order to investigate the effect of calnexin deletion on the induction of the main ER molecular chaperone BiP, we cultured the wild-type and calnexin-disrupted Saccharomyces cerevisiae strains under normal and stressed conditions. The growth rate of the calnexin-disrupted yeast was almost the same as that of the wild-type yeast under those conditions. However, the induced level of BiP mRNA in the ER was evidently higher in calnexin-disrupted S. cerevisiae than in the wild-type at 37°C, but was almost the same in the two strains under normal conditions. The Western blot analysis results for BiP protein expression in the ER showed a parallel in the mRNA levels in the two strains. It is suggested that under heat stress conditions, the induction of BiP in the ER might recover part of the function of calnexin in calnexin-disrupted yeast, and result in the same growth rate as in wild-type yeast.

Keywords: Calnexin; Molecular chaperone; BiP; Heat stress

  • [1] Ou, W.J., Cameron, P.H., Thomas, D.Y. and Bergeron, J.J.M. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 364 (1993) 771–776. http://dx.doi.org/10.1038/364771a0CrossrefGoogle Scholar

  • [2] Bergeron, J.J.M., Brenner, M.B., Thomas, D.Y. and Williams, D.B. Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem. Sci. 19 (1994) 124–128. http://dx.doi.org/10.1016/0968-0004(94)90205-4CrossrefGoogle Scholar

  • [3] Letourneur, O., Sechi, S., Willete-Brown, J., Robertson, M.W. and Kinet J.P. Glycosylation of human truncated Fc epsilon RI alpha chain is necessary for efficient folding in the endoplasmic reticulum. J. Biol. Chem. 270 (1995) 8249–8256. http://dx.doi.org/10.1074/jbc.270.14.8249CrossrefGoogle Scholar

  • [4] Degen, E., Cohen-Doyle, M.F. and Williams, D.B. Efficient dissociation of the p88 chaperone from major histocompatibility complex class I molecules requires both beta 2-microglobulin and peptide. J. Exp. Med. 175 (1992) 1653–1661. http://dx.doi.org/10.1084/jem.175.6.1653CrossrefGoogle Scholar

  • [5] Hammond, C., Braakman, I. and Helenius, A. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc. Natl. Acad. Sci. USA 91 (1994) 913–917. http://dx.doi.org/10.1073/pnas.91.3.913CrossrefGoogle Scholar

  • [6] Jackson, M.R., Cohen-Doyle, M.F., Peterson, P. A. and Williams, D.B. Regulation of MHC class I transport by the molecular chaperone, calnexin (p88, IP90). Science 263 (1994) 384–387. http://dx.doi.org/10.1126/science.8278813CrossrefGoogle Scholar

  • [7] Ware, F.E., Vassilakos, A., Peterson, P.A., Jackson, M.R., Lehrman, M.A. and Williams, D.B. The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J. Biol. Chem. 270 (1995) 4697–4704. http://dx.doi.org/10.1074/jbc.270.9.4697CrossrefGoogle Scholar

  • [8] Parlati, F., Dominguez, M., Bergeron, J.M. and Thomas, D.Y. Saccharomyces cerevisiae CNE1 encodes an endoplasmic reticulum (ER) membrane protein with sequence similarity to calnexin and calreticulin and functions as a constituent of the ER quality control apparatus. J. Biol. Chem. 270 (1995) 244–253. http://dx.doi.org/10.1074/jbc.270.1.244CrossrefGoogle Scholar

  • [9] Jakob, C.A., Burda, P. S., te Heesen, S., Aebi, M. and Roth, J. Genetic tailoring of N-linked oligosaccharides: the role of glucose residues in glycoprotein processing of Saccharomyces cerevisiae in vivo. Glycobiology 8 (1998) 155–164. http://dx.doi.org/10.1093/glycob/8.2.155CrossrefGoogle Scholar

  • [10] Mori, K., Ogawa, N., Kawahara, T., Yanagi, H. and Yura, T. Palindrome with spacer of one nucleotide is characteristic of the cis-acting unfolded protein response element in Saccharomyces cerevisiae. J. Biol. Chem. 273 (1998) 9912–9920. http://dx.doi.org/10.1074/jbc.273.16.9912CrossrefGoogle Scholar

  • [11] Shahinian, S., Dijkgraaf, G.J.P., Sdicu, A.M., Thomas, D.Y., Jakob, C.A., Aebi, M., and Bussey, H. Involvement of Protein N-Glycosyl Chain Glucosylation and Processing in the Biosynthesis of Cell Wall-1,6-Glucan of Saccharomyces cerevisiae. Genetics 149 (1998) 843–856. Web of ScienceGoogle Scholar

  • [12] Denzel, A., Molinari, M., Trigueros, C., Martin, J.E., Velmurgan, S., Brown, S., Stamp, G. and Owen, M.J. Early postnatal death and motor disorders in mice congenitally deficient in calnexin expression. Mol. Cell Biol. 22 (2002) 7398–7404. http://dx.doi.org/10.1128/MCB.22.21.7398-7404.2002CrossrefGoogle Scholar

  • [13] Song, Y., Sata, J., Saito, A., Usui, M., Azakami, H. and Akio, K. Effects of calnexin deletion in Saccharomyces cerevisiae on the secretion of glycosylated lysozymes. J. Biochem. 130 (2001) 757–764. Google Scholar

  • [14] Zhang, H., He, J., Ji, Y., Kato, A. and Song, Y. The effect of calnexin deletion on the expression level of PDI in Saccharomyces cerevisiae under heat stress conditions. Cell Mol. Biol. Lett. 13 (2007) 38–48. http://dx.doi.org/10.2478/s11658-007-0033-yWeb of ScienceCrossrefGoogle Scholar

  • [15] Stronge, V.S., Saito, Y., Ihara, Y. and Williams, D.B. Relationship between calnexin and BiP in duppressing aggregation and promoting refolding of protein and glycoprotein substrates. J. Biol. Chem. 276 (2001) 39779–39787. http://dx.doi.org/10.1074/jbc.M107091200CrossrefGoogle Scholar

  • [16] Choukhi, A.L., Ung, S., Wychowski, C. and Dubuisson, J. Involvement of endoplasmic reticulum chaperones in the folding of hepatitis c virus glycoproteins. J. Virol. 72 (1998) 3851–3858. Google Scholar

  • [17] Lith, M.V., Karala, A.R., Bown, D., Gatehouse, J.A., Ruddock, L.W., Saunders, PTK, and Benham., A.M. A developmentally regulated chaperone complex for the endoplasmic reticulum of male haploid germ cells. Mol. Biol. Cell. 18 (2007) 2795–2804. http://dx.doi.org/10.1091/mbc.E07-02-0147CrossrefWeb of ScienceGoogle Scholar

  • [18] Fourn, V.L., Fernandez, S.S., Ferrand, M. and Franc, J.L. Competition between calnexin and BiP in the endoplasmic reticulum can lead to the folding or degradation of human thyroperoxidase. Biochemistry 45 (2006) 7380–7388. http://dx.doi.org/10.1021/bi060415iCrossrefGoogle Scholar

  • [19] Lee, W., Kim, K.R., Singaravelu, G., Park, B-J., Kim, D.H., Ahnn, J. and Yoo, Y.J. Alternative chaperone machinery may compensate for calreticulin/calnexin deficiency in Caenorhabditis elegans. Proteomics 6 (2006) 1329–1339. http://dx.doi.org/10.1002/pmic.200500320CrossrefGoogle Scholar

  • [20] Siebert, P.D. and Larrick, J.W. Competitive PCR. Nature 359 (1992) 557–558. http://dx.doi.org/10.1038/359557a0CrossrefGoogle Scholar

  • [21] Rose, M.D., Misra, L.M. and Vogel, J.P. KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell 57 (1989) 1211–1221. http://dx.doi.org/10.1016/0092-8674(89)90058-5CrossrefGoogle Scholar

  • [22] Lamantia, M., Miura, T., Tachikawa, H., Kaplan, H.A., Lennarz, W.J. and Mizunaga, T. Glycosylation site binding protein and protein disulfide isomerase are identical and essential for cell viability in yeast. Proc. Natl. Acad. Sci. USA 88 (1991) 4453–4457. http://dx.doi.org/10.1073/pnas.88.10.4453CrossrefGoogle Scholar

  • [23] Arima, H., Kinoshita, T., Ibrahim H.R., Azakami, H. and Kato, A. Enhanced secretion of hydrophobic peptide fused lysozyme by the introduction of N-glycosylation signal and the disruption of calnexin gene in Saccharomyces cerevisiae. FEBS Lett. 440 (1998) 89–92. http://dx.doi.org/10.1016/S0014-5793(98)01437-9CrossrefGoogle Scholar

  • [24] Brodsky, J.L. and Schekman, R. The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Plainview, N.Y. (Marimoto RI, Tissieres A and Georgopoulos C), (1994) pp. 85–109. Google Scholar

  • [25] MinHee, K.K. and EunDuck, P.K. Differential interaction of molecular chaperones with procollagen I and type IV collagen in corneal endothelial cells. Mol. Vis. 8 (2002) 1–9. Google Scholar

About the article

Published Online: 2008-10-17

Published in Print: 2008-12-01

Citation Information: Cellular and Molecular Biology Letters, Volume 13, Issue 4, Pages 621–631, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-008-0026-5.

Export Citation

© 2008 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in