Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 14, Issue 1


The interactome: Predicting the protein-protein interactions in cells

Dariusz Plewczyński
  • Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawińskiego 5a, 02-106, Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Krzysztof Ginalski
  • Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawińskiego 5a, 02-106, Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2008-12-24 | DOI: https://doi.org/10.2478/s11658-008-0024-7


The term Interactome describes the set of all molecular interactions in cells, especially in the context of protein-protein interactions. These interactions are crucial for most cellular processes, so the full representation of the interaction repertoire is needed to understand the cell molecular machinery at the system biology level. In this short review, we compare various methods for predicting protein-protein interactions using sequence and structure information. The ultimate goal of those approaches is to present the complete methodology for the automatic selection of interaction partners using their amino acid sequences and/or three dimensional structures, if known. Apart from a description of each method, details of the software or web interface needed for high throughput prediction on the whole genome scale are also provided. The proposed validation of the theoretical methods using experimental data would be a better assessment of their accuracy.

Keywords: Protein-protein interactions; Protein complexes; Docking; PDB Database; Interactome; Protein interaction networks; Physical protein interactions

  • [1] Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 28 (2000) 235–242. CrossrefGoogle Scholar

  • [2] Ginalski, K., von Grotthuss, M., Grishin, N.V. and Rychlewski, L. Detecting distant homology with Meta-BASIC. Nucleic Acids Res. 32 (2004) W576–W581. CrossrefGoogle Scholar

  • [3] Sprinzak, E., Sattath, S. and Margalit, H. How reliable are experimental protein-protein interaction data? J. Mol. Biol. 327 (2003) 919–923. CrossrefGoogle Scholar

  • [4] von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S. and Bork, P. Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417 (2002) 399–403. CrossrefGoogle Scholar

  • [5] Carter, P., Lesk, V.I., Islam, S.A. and Sternberg, M.J. Protein-protein docking using 3D-Dock in rounds 3, 4, and 5 of CAPRI. Proteins 60 (2005) 281–288. CrossrefGoogle Scholar

  • [6] Fariselli, P., Pazos, F., Valencia, A. and Casadio, R. Prediction of protein-protein interaction sites in heterocomplexes with neural networks. Eur. J. Biochem. 269 (2002) 1356–1361. Google Scholar

  • [7] Hoskins, J., Lovell, S. and Blundell, T.L. An algorithm for predicting protein-protein interaction sites: Abnormally exposed amino acid residues and secondary structure elements. Protein Sci. 15 (2006) 1017–1029. CrossrefGoogle Scholar

  • [8] Jothi, R., Cherukuri, P.F., Tasneem, A. and Przytycka, T.M. Coevolutionary analysis of domains in interacting proteins reveals insights into domain-domain interactions mediating protein-protein interactions. J. Mol. Biol. 362 (2006) 861–875. CrossrefGoogle Scholar

  • [9] Tan, K., Shlomi, T., Feizi, H., Ideker, T. and Sharan, R. Transcriptional regulation of protein complexes within and across species. Proc. Natl. Acad. Sci. USA 104 (2007) 1283–1288. CrossrefGoogle Scholar

  • [10] Teichmann, S.A. Principles of protein-protein interactions. Bioinformatics 18 Suppl 2 (2002) S249. CrossrefGoogle Scholar

  • [11] Cusick, M.E., Klitgord, N., Vidal, M. and Hill, D.E. Interactome: gateway into systems biology. Hum. Mol. Genet. 14 Spec No. 2 (2005) R171–R181. CrossrefGoogle Scholar

  • [12] Goh, C.S. and Cohen, F.E. Co-evolutionary analysis reveals insights into protein-protein interactions. J. Mol. Biol. 324 (2002) 177–192. CrossrefGoogle Scholar

  • [13] Sharan, R., Ideker, T., Kelley, B., Shamir, R. and Karp, R.M. Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data. J. Comput. Biol. 12 (2005) 835–846. CrossrefGoogle Scholar

  • [14] Barash, Y., Elidan, G., Kaplan, T. and Friedman, N. CIS: compound importance sampling method for protein-DNA binding site p-value estimation. Bioinformatics 21 (2005) 596–600. CrossrefGoogle Scholar

  • [15] Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz, P., Sittler, T., Karp, R.M. and Ideker, T. Conserved patterns of protein interaction in multiple species. Proc. Natl. Acad. Sci. USA 102 (2005) 1974–1979. CrossrefGoogle Scholar

  • [16] Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R. and Ideker, T. Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc. Natl. Acad. Sci. USA 100 (2003) 11394–11399. CrossrefGoogle Scholar

  • [17] Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U. and Eisenberg, D. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res. 32 (2004) D449–D451. CrossrefGoogle Scholar

  • [18] Alfarano, C., Andrade, C.E., Anthony, K., Bahroos, N., Bajec, M., Bantoft, K., Betel, D., Bobechko, B., Boutilier, K., Burgess, E., Buzadzija, K., Cavero, R., D’Abreo, C., Donaldson, I., Dorairajoo, D., Dumontier, M.J., Dumontier, M.R., Earles, V., Farrall, R., Feldman, H., Garderman, E., Gong, Y., Gonzaga, R., Grytsan, V., Gryz, E., Gu, V., Haldorsen, E., Halupa, A., Haw, R., Hrvojic, A., Hurrell, L., Isserlin, R., Jack, F., Juma, F., Khan, A., Kon, T., Konopinsky, S., Le, V., Lee, E., Ling, S., Magidin, M., Moniakis, J., Montojo, J., Moore, S., Muskat, B., Ng, I., Paraiso, J.P., Parker, B., Pintilie, G., Pirone, R., Salama, J.J., Sgro, S., Shan, T., Shu, Y., Siew, J., Skinner, D., Snyder, K., Stasiuk, R., Strumpf, D., Tuekam, B., Tao, S., Wang, Z., White, M., Willis, R., Wolting, C., Wong, S., Wrong, A., Xin, C., Yao, R., Yates, B., Zhang, S., Zheng, K., Pawson, T., Ouellette, B.F. and Hogue, C.W. The Biomolecular Interaction Network Database and related tools 2005 update. Nucleic Acids Res. 33 (2005) D418–D424. Google Scholar

  • [19] Chatr-Aryamontri, A., Ceol, A., Palazzi, L.M., Nardelli, G., Schneider, M.V., Castagnoli, L. and Cesareni, G. MINT: the Molecular INTeraction database. Nucleic Acids Res. 35 (2007) D572–574. CrossrefGoogle Scholar

  • [20] Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., Mudali, S., Kerrien, S., Orchard, S., Vingron, M., Roechert, B., Roepstorff, P., Valencia, A., Margalit, H., Armstrong, J., Bairoch, A., Cesareni, G., Sherman, D. and Apweiler, R. IntAct: an open source molecular interaction database. Nucleic Acids Res. 32 (2004) D452–D455. CrossrefGoogle Scholar

  • [21] Kerrien, S., Alam-Faruque, Y., Aranda, B., Bancarz, I., Bridge, A., Derow, C., Dimmer, E., Feuermann, M., Friedrichsen, A., Huntley, R., Kohler, C., Khadake, J., Leroy, C., Liban, A., Lieftink, C., Montecchi-Palazzi, L., Orchard, S., Risse, J., Robbe, K., Roechert, B., Thorneycroft, D., Zhang, Y., Apweiler, R. and Hermjakob, H. IntAct - open source resource for molecular interaction data. Nucleic Acids Res. 35 (2007) D561–565. CrossrefGoogle Scholar

  • [22] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T.K., Gronborg, M., Ibarrola, N., Deshpande, N., Shanker, K., Shivashankar, H.N., Rashmi, B.P., Ramya, M.A., Zhao, Z., Chandrika, K.N., Padma, N., Harsha, H.C., Yatish, A.J., Kavitha, M.P., Menezes, M., Choudhury, D.R., Suresh, S., Ghosh, N., Saravana, R., Chandran, S., Krishna, S., Joy, M., Anand, S.K., Madavan, V., Joseph, A., Wong, G.W., Schiemann, W.P., Constantinescu, S.N., Huang, L., Khosravi-Far, R., Steen, H., Tewari, M., Ghaffari, S., Blobe, G.C., Dang, C.V., Garcia, J.G., Pevsner, J., Jensen, O.N., Roepstorff, P., Deshpande, K.S., Chinnaiyan, A.M., Hamosh, A., Chakravarti, A. and Pandey, A. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res. 13 (2003) 2363–2371. CrossrefGoogle Scholar

  • [23] Hoffmann, R. and Valencia, A. Implementing the iHOP concept for navigation of biomedical literature. Bioinformatics 21 Suppl 2 (2005) ii252–ii258. Google Scholar

  • [24] von Mering, C., Jensen, L.J., Snel, B., Hooper, S.D., Krupp, M., Foglierini, M., Jouffre, N., Huynen, M.A. and Bork, P. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 33 (2005) D433–D437. Google Scholar

  • [25] Finn, R.D., Mistry, J., Schuster-Bockler, B., Griffiths-Jones, S., Hollich, V., Lassmann, T., Moxon, S., Marshall, M., Khanna, A., Durbin, R., Eddy, S.R., Sonnhammer, E.L. and Bateman, A. Pfam: clans, web tools and services. Nucleic Acids Res. 34 (2006) D247–D251. CrossrefGoogle Scholar

  • [26] Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25 (1997) 3389–3402. CrossrefGoogle Scholar

  • [27] Jones, D.T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292 (1999) 195–202. CrossrefGoogle Scholar

  • [28] Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin, E.V., Krylov, D.M., Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N., Rao, B.S., Smirnov, S., Sverdlov, A.V., Vasudevan, S., Wolf, Y.I., Yin, J.J. and Natale, D.A. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4 (2003) 41. CrossrefGoogle Scholar

  • [29] Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M. and Sherlock, G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25 (2000) 25–29. CrossrefGoogle Scholar

  • [30] Camon, E., Barrell, D., Lee, V., Dimmer, E. and Apweiler, R. The Gene Ontology Annotation (GOA) Database - an integrated resource of GO annotations to the UniProt Knowledgebase. In Silico Biol 4 (2004) 5–6. Google Scholar

  • [31] Camon, E., Magrane, M., Barrell, D., Binns, D., Fleischmann, W., Kersey, P., Mulder, N., Oinn, T., Maslen, J., Cox, A. and Apweiler, R. The Gene Ontology Annotation (GOA) project: implementation of GO in SWISS-PROT, TrEMBL, and InterPro. Genome Res. 13 (2003) 662–672. CrossrefGoogle Scholar

  • [32] Mao, X., Cai, T., Olyarchuk, J.G. and Wei, L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21 (2005) 3787–3793. CrossrefGoogle Scholar

  • [33] Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. and Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 32 (2004) D277–D280. CrossrefGoogle Scholar

  • [34] Jeong, H., Mason, S.P., Barabasi, A.L. and Oltvai, Z.N. Lethality and centrality in protein networks. Nature 411 (2001) 41–42. CrossrefGoogle Scholar

  • [35] Sprinzak, E., Altuvia, Y. and Margalit, H. Characterization and prediction of protein-protein interactions within and between complexes. Proc. Natl. Acad. Sci. USA 103 (2006) 14718–14723. CrossrefGoogle Scholar

  • [36] Brown, K.R. and Jurisica, I. Online predicted human interaction database. Bioinformatics 21 (2005) 2076–2082. CrossrefGoogle Scholar

  • [37] Cagney, G., Uetz, P. and Fields, S. High-throughput screening for protein-protein interactions using two-hybrid assay. Methods Enzymol. 328 (2000) 3–14. CrossrefGoogle Scholar

  • [38] Uetz, P., Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight, J.R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S. and Rothberg, J.M. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403 (2000) 623–627. Google Scholar

  • [39] Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M. and Sakaki, Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98 (2001) 4569–4574. CrossrefGoogle Scholar

  • [40] Ito, T., Chiba, T. and Yoshida, M. Exploring the protein interactome using comprehensive two-hybrid projects. Trends Biotechnol. 19 (2001) S23–S27. CrossrefGoogle Scholar

  • [41] Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M. and Seraphin, B. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17 (1999) 1030–1032. CrossrefGoogle Scholar

  • [42] Bader, G.D. and Hogue, C.W. Analyzing yeast protein-protein interaction data obtained from different sources. Nat. Biotechnol. 20 (2002) 991–997 CrossrefGoogle Scholar

  • [43] Chen, T., Jaffe, J.D. and Church, G.M. Algorithms for identifying protein cross-links via tandem mass spectrometry. J. Comput. Biol. 8 (2001) 571–583. CrossrefGoogle Scholar

  • [44] Ito, T., Ota, K., Kubota, H., Yamaguchi, Y., Chiba, T., Sakuraba, K. and Yoshida, M. Roles for the two-hybrid system in exploration of the yeast protein interactome. Mol. Cell. Proteomics 1 (2002) 561–566. CrossrefGoogle Scholar

  • [45] McDermott, J., Bumgarner, R. and Samudrala, R. Functional annotation from predicted protein interaction networks. Bioinformatics 21 (2005) 3217–3226. CrossrefGoogle Scholar

  • [46] Morrison, J.L., Breitling, R., Higham, D.J. and Gilbert, D.R. A lock-and-key model for protein-protein interactions. Bioinformatics 22 (2006) 2012–2019. CrossrefGoogle Scholar

  • [47] Schweitzer, B., Predki, P. and Snyder, M. Microarrays to characterize protein interactions on a whole-proteome scale. Proteomics 3 (2003) 2190–2199. CrossrefGoogle Scholar

  • [48] Tong, A.H., Drees, B., Nardelli, G., Bader, G.D., Brannetti, B., Castagnoli, L., Evangelista, M., Ferracuti, S., Nelson, B., Paoluzi, S., Quondam, M., Zucconi, A., Hogue, C.W., Fields, S., Boone, C. and Cesareni, G. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295 (2002) 321–324. CrossrefGoogle Scholar

  • [49] Walhout, A.J., Boulton, S.J. and Vidal, M. Yeast two-hybrid systems and protein interaction mapping projects for yeast and worm. Yeast 17 (2000) 88–94. CrossrefGoogle Scholar

  • [50] Wehr, M.C., Laage, R., Bolz, U., Fischer, T.M., Grunewald, S., Scheek, S., Bach, A., Nave, K.A. and Rossner, M.J. Monitoring regulated protein-protein interactions using split TEV. Nat. Methods 3 (2006) 985–993. CrossrefGoogle Scholar

  • [51] Wu, X., Zhu, L., Guo, J., Zhang, D.Y. and Lin, K. Prediction of yeast protein-protein interaction network: insights from the Gene Ontology and annotations. Nucleic Acids Res. 34 (2006) 2137–2150. CrossrefGoogle Scholar

  • [52] Yarmush, M.L. and Jayaraman, A. Advances in proteomic technologies. Annu. Rev. Biomed. Eng. 4 (2002) 349–373. CrossrefGoogle Scholar

  • [53] Marcotte, E.M., Pellegrini, M., Ng, H.L., Rice, D.W., Yeates, T.O. and Eisenberg, D. Detecting protein function and protein-protein interactions from genome sequences. Science 285 (1999) 751–753. CrossrefGoogle Scholar

  • [54] Troyanskaya, O.G., Dolinski, K., Owen, A.B., Altman, R.B. and Botstein, D. A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc. Natl. Acad. Sci. USA 100 (2003) 8348–8353. CrossrefGoogle Scholar

  • [55] Lu, L., Lu, H. and Skolnick, J. MULTIPROSPECTOR: an algorithm for the prediction of protein-protein interactions by multimeric threading. Proteins 49 (2002) 350–364. CrossrefGoogle Scholar

  • [56] Smith, G.R. and Sternberg, M.J. Prediction of protein-protein interactions by docking methods. Curr. Opin. Struct. Biol. 12 (2002) 28–35. CrossrefGoogle Scholar

  • [57] Wodak, S.J. and Mendez, R. Prediction of protein-protein interactions: the CAPRI experiment, its evaluation and implications. Curr. Opin. Struct. Biol. 14 (2004) 242–249. CrossrefGoogle Scholar

  • [58] Jones, S. and Thornton, J.M. Analysis of protein-protein interaction sites using surface patches. J. Mol. Biol. 272 (1997) 121–132. CrossrefGoogle Scholar

  • [59] Lo Conte, L., Chothia, C. and Janin, J. The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285 (1999) 2177–2198. Google Scholar

  • [60] Glaser, F., Steinberg, D.M., Vakser, I.A. and Ben-Tal, N. Residue frequencies and pairing preferences at protein-protein interfaces. Proteins 43 (2001) 89–102. CrossrefGoogle Scholar

  • [61] Hu, Z., Ma, B., Wolfson, H. and Nussinov, R. Conservation of polar residues as hot spots at protein interfaces. Proteins 39 (2000) 331–342. CrossrefGoogle Scholar

  • [62] DeLano, W.L. Unraveling hot spots in binding interfaces: progress and challenges. Curr. Opin. Struct. Biol. 12 (2002) 14–20. CrossrefGoogle Scholar

  • [63] Pellegrini, M., Marcotte, E.M. and Yeates, T.O. A fast algorithm for genome-wide analysis of proteins with repeated sequences. Proteins 35 (1999) 440–446. CrossrefGoogle Scholar

  • [64] Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95 (1998) 14863–14868. CrossrefGoogle Scholar

  • [65] Sprinzak, E. and Margalit, H. Correlated sequence-signatures as markers of protein-protein interaction. J. Mol. Biol. 311 (2001) 681–692. CrossrefGoogle Scholar

  • [66] Bock, J.R. and Gough, D.A. Predicting protein-protein interactions from primary structure. Bioinformatics 17 (2001) 455–460. CrossrefGoogle Scholar

  • [67] Gallet, X., Charloteaux, B., Thomas, A. and Brasseur, R. A fast method to predict protein interaction sites from sequences. J. Mol. Biol. 302 (2000) 917–926. CrossrefGoogle Scholar

  • [68] Ofran, Y. and Rost, B. Predicted protein-protein interaction sites from local sequence information. FEBS Lett. 544 (2003) 236–239. Google Scholar

  • [69] Jones, S. and Thornton, J.M. Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA 93 (1996) 13–20. CrossrefGoogle Scholar

  • [70] Nooren, I.M. and Thornton, J.M. Diversity of protein-protein interactions. Embo J. 22 (2003) 3486–3492. CrossrefGoogle Scholar

  • [71] Nooren, I.M. and Thornton, J.M. Structural characterisation and functional significance of transient protein-protein interactions. J. Mol. Biol. 325 (2003) 991–1018. CrossrefGoogle Scholar

  • [72] Bahadur, R.P., Chakrabarti, P., Rodier, F. and Janin, J. A dissection of specific and non-specific protein-protein interfaces. J. Mol. Biol. 336 (2004) 943–955. CrossrefGoogle Scholar

  • [73] Ofran, Y. and Rost, B. Analysing six types of protein-protein interfaces. J. Mol. Biol. 325 (2003) 377–387. CrossrefGoogle Scholar

  • [74] Saha, R.P., Bahadur, R.P. and Chakrabarti, P. Interresidue contacts in proteins and protein-protein interfaces and their use in characterizing the homodimeric interface. J. Proteome Res. 4 (2005) 1600–1609. CrossrefGoogle Scholar

  • [75] Bordner, A.J. and Abagyan, R. Statistical analysis and prediction of protein-protein interfaces. Proteins 60 (2005) 353–366. CrossrefGoogle Scholar

  • [76] Neuvirth, H., Raz, R. and Schreiber, G. ProMate: a structure based prediction program to identify the location of protein-protein binding sites. J. Mol. Biol. 338 (2004) 181–199. Google Scholar

  • [77] Chung, J.L., Wang, W. and Bourne, P.E. Exploiting sequence and structure homologs to identify protein-protein binding sites. Proteins 62 (2006) 630–640. Google Scholar

  • [78] Valdar, W.S. and Thornton, J.M. Protein-protein interfaces: analysis of amino acid conservation in homodimers. Proteins 42 (2001) 108–124. CrossrefGoogle Scholar

  • [79] Yao, H., Kristensen, D.M., Mihalek, I., Sowa, M.E., Shaw, C., Kimmel, M., Kavraki, L. and Lichtarge, O. An accurate, sensitive, and scalable method to identify functional sites in protein structures. J. Mol. Biol. 326 (2003) 255–261. CrossrefGoogle Scholar

  • [80] Aloy, P., Querol, E., Aviles, F.X. and Sternberg, M.J. Automated structure-based prediction of functional sites in proteins: applications to assessing the validity of inheriting protein function from homology in genome annotation and to protein docking. J. Mol. Biol. 311 (2001) 395–408. CrossrefGoogle Scholar

  • [81] Berezin, C., Glaser, F., Rosenberg, J., Paz, I., Pupko, T., Fariselli, P., Casadio, R. and Ben-Tal, N. ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics 20 (2004) 1322–1324. CrossrefGoogle Scholar

  • [82] Caffrey, D.R., Somaroo, S., Hughes, J.D., Mintseris, J. and Huang, E.S. Are protein-protein interfaces more conserved in sequence than the rest of the protein surface? Protein Sci. 13 (2004) 190–202. CrossrefGoogle Scholar

  • [83] Yan, C., Dobbs, D. and Honavar, V. A two-stage classifier for identification of protein-protein interface residues. Bioinformatics 20 Suppl 1 (2004) I371–I378. CrossrefGoogle Scholar

  • [84] Porollo, A. and Meller, J. Prediction-based fingerprints of protein-protein interactions. Proteins 66 (2006) 630–645. CrossrefGoogle Scholar

  • [85] Koike, A. and Takagi, T. Prediction of protein-protein interaction sites using support vector machines. Protein Eng. Des. Sel. 17 (2004) 165–173. CrossrefGoogle Scholar

  • [86] Jansen, R., Yu, H., Greenbaum, D., Kluger, Y., Krogan, N.J., Chung, S., Emili, A., Snyder, M., Greenblatt, J.F. and Gerstein, M. A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302 (2003) 449–453. CrossrefGoogle Scholar

  • [87] Liu, X., Zhang, L.M. and Zheng, W.M. Prediction of protein secondary structure based on residue pairs. J. Bioinform. Comput. Biol. 2 (2004) 343–352. CrossrefGoogle Scholar

  • [88] Zhang, L.V., Wong, S.L., King, O.D. and Roth, F.P. Predicting co-complexed protein pairs using genomic and proteomic data integration. BMC Bioinformatics 5 (2004) 38. CrossrefGoogle Scholar

  • [89] Zhou, H.X. and Shan, Y. Prediction of protein interaction sites from sequence profile and residue neighbor list. Proteins 44 (2001) 336–343 CrossrefGoogle Scholar

  • [90] Hesse, H. and Hoefgen, R. On the way to understand biological complexity in plants: S-nutrition as a case study for systems biology. Cell. Mol. Biol. Lett. 11 (2006) 37–56. Google Scholar

  • [91] Hsieh, C.J., Chen, M.J., Liao, Y.L. and Liao, T.N. Polymorphisms of the uridine-diphosphoglucuronosyltransferase 1A1 gene and coronary artery disease. Cell. Mol. Biol. Lett. 13 (2008) 1–10. Google Scholar

  • [92] Huang, B., Chu, C.H., Chen, S.L., Juan, H.F. and Chen, Y.M. A proteomics study of the mung bean epicotyl regulated by brassinosteroids under conditions of chilling stress. Cell. Mol. Biol. Lett. 11 (2006) 264–278. Google Scholar

  • [93] Knizewski, L., Steczkiewicz, K., Kuchta, K., Wyrwicz, L., Plewczynski, D., Kolinski, A., Rychlewski, L. and Ginalski, K. Uncharacterized DUF1574 leptospira proteins are SGNH hydrolases. Cell Cycle 7 (2008) 542–544. CrossrefGoogle Scholar

  • [94] Korohoda, W. and Wilk, A. Cell electrophoresis - a method for cell separation and research into cell surface properties. Cell. Mol. Biol. Lett. 13 (2008) 312–326. Google Scholar

  • [95] Li, J., Ji, C., Zheng, H., Fei, X., Zheng, M., Dai, J., Gu, S., Xie, Y. and Mao, Y. Molecular cloning and characterization of a novel human gene containing 4 ankyrin repeat domains. Cell. Mol. Biol. Lett. 10 (2005) 185–193. Google Scholar

  • [96] Liu, S.J., Zhang, D.Q., Sui, X.M., Zhang, L., Cai, Z.W., Sun, L.Q., Liu, Y.J., Xue, Y. and Hu, G.F. The inhibition of in vivo tumorigenesis of osteosarcoma (OS)-732 cells by antisense human osteopontin RNA. Cell. Mol. Biol. Lett. 13 (2008) 11–19. Google Scholar

  • [97] Miyamato, T., Sato, H., Yogev, L., Kleiman, S., Namiki, M., Koh, E., Sakugawa, N., Hayashi, H., Ishikawa, M., Lamb, D.J. and Sengoku, K. Is a genetic defect in Fkbp6 a common cause of azoospermia in humans? Cell. Mol. Biol. Lett. 11 (2006) 557–569. Google Scholar

  • [98] Wisniewska, A., Draus, J. and Subczynski, W.K. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes. Cell. Mol. Biol. Lett. 8 (2003) 147–159. Google Scholar

  • [99] Wladyka, B. and Pustelny, K. Regulation of bacterial protease activity. Cell. Mol. Biol. Lett. 13 (2008) 212–229. Google Scholar

  • [100] Cottage, A., Mullan, L., Portela, M.B., Hellen, E., Carver, T., Patel, S., Vavouri, T., Elgar, G. and Edwards, Y.J. Molecular characterisation of the SAND protein family: a study based on comparative genomics, structural bioinformatics and phylogeny. Cell. Mol. Biol. Lett. 9 (2004) 739–753 Google Scholar

  • [101] Gronemeyer, H. and Miturski, R. Molecular mechanisms of retinoid action. Cell. Mol. Biol. Lett. 6 (2001) 3–52. Google Scholar

  • [102] Agoston, V., Cemazar, M., Kajan, L. and Pongor, S. Graph-representation of oxidative folding pathways. BMC Bioinformatics 6 (2005) 19. CrossrefGoogle Scholar

  • [103] Kajan, L., Kertesz-Farkas, A., Franklin, D., Ivanova, N., Kocsor, A. and Pongor, S. Application of a simple likelihood ratio approximant to protein sequence classification. Bioinformatics 22 (2006) 2865–2869. CrossrefGoogle Scholar

  • [104] Kocsor, A., Kertesz-Farkas, A., Kajan, L. and Pongor, S. Application of compression-based distance measures to protein sequence classification: a methodological study. Bioinformatics 22 (2006) 407–412. CrossrefGoogle Scholar

  • [105] Vlahovicek, K., Kajan, L., Agoston, V. and Pongor, S. The SBASE domain sequence resource, release 12: prediction of protein domain-architecture using support vector machines. Nucleic Acids Res. 33 (2005) D223–D225. Google Scholar

  • [106] Vlahovicek, K., Kajan, L., Murvai, J., Hegedus, Z. and Pongor, S. The SBASE domain sequence library, release 10: domain architecture prediction. Nucleic Acids Res. 31 (2003) 403–405. CrossrefGoogle Scholar

  • [107] von Grotthuss, M., Plewczynski, D., Ginalski, K., Rychlewski, L. and Shakhnovich, E.I. PDB-UF: database of predicted enzymatic functions for unannotated protein structures from structural genomics. BMC Bioinformatics 7 (2006) 53. CrossrefGoogle Scholar

  • [108] Wyrwicz, L.S., Koczyk, G., Rychlewski, L. and Plewczynski, D. ProteinSplit: splitting of multi-domain proteins using prediction of ordered and disordered regions in protein sequences for virtual structural genomics. J. Phys. Condens. Matter 19 (2007) 285222. CrossrefGoogle Scholar

  • [109] Grabarkiewicz, T., Grobelny, P., Hoffmann, M. and Mielcarek, J. DFT study on hydroxy acid-lactone interconversion of statins: The case of fluvastatin. Org. Biomol. Chem. 4 (2006) 4299–4306. CrossrefGoogle Scholar

  • [110] Grabarkiewicz, T. and Hoffmann, M. Syn- and anti-conformations of 5′- deoxy- and 5′-O-methyl-uridine 2′,3′-cyclic monophosphate. J. Mol. Model. 12 (2006) 205–212. Google Scholar

  • [111] Hoffmann, M., Chrzanowska, M., Hermann, T. and Rychlewski, J. Modeling of purine derivatives transport across cell membranes based on their partition coefficient determination and quantum chemical calculations. J. Med. Chem. 48 (2005) 4482–4486. CrossrefGoogle Scholar

  • [112] Hoffmann, M. and Marciniec, B. Quantum chemical study of the mechanism of ethylene elimination in silylative coupling of olefins. J. Mol. Model. 13 (2007) 477–483. CrossrefGoogle Scholar

  • [113] Hoffmann, M., Plutecka, A., Rychlewska, U., Kucybala, Z., Paczkowski, J. and Pyszka, I. New type of bonding formed from an overlap between pi aromatic and pi C=O molecular orbitals stabilizes the coexistence in one molecule of the ionic and neutral meso-ionic forms of imidazopyridine. J. Phys. Chem. A Mol. Spectrosc. Kinet. Environ. Gen. Theory 109 (2005) 4568–4574. Google Scholar

  • [114] Hoffmann, M. and Rychlewski, J. Effects of substituting a OH group by a F atom in D-glucose. Ab initio and DFT analysis. J. Am. Chem. Soc. 123 (2001) 2308–2316. CrossrefGoogle Scholar

  • [115] Hoffmann, M., Rychlewski, J., Chrzanowska, M. and Hermann, T. Mechanism of activation of an immunosuppressive drug: azathioprine. Quantum chemical study on the reaction of azathioprine with cysteine. J. Am. Chem. Soc. 123 (2001) 6404–6409. CrossrefGoogle Scholar

  • [116] Plutecka, A., Hoffmann, M., Rychlewska, U., Kucybala, Z., Paczkowski, J. and Pyszka, I. Relationship between structure and photoinitiating abilities of selected bromide salts of 2-oxo-2,3-dihydro-1H-imidazo[1,2-a]pyridine (IMP): influence of the solvent and the substitution in benzaldehyde on the course of its reaction with IMP. Acta Crystallogr. B 62 (2006) 135–142. Google Scholar

  • [117] Hoffmann, M., Eitner, K., von Grotthuss, M., Rychlewski, L., Banachowicz, E., Grabarkiewicz, T., Szkoda, T. and Kolinski, A. Three dimensional model of severe acute respiratory syndrome coronavirus helicase ATPase catalytic domain and molecular design of severe acute respiratory syndrome coronavirus helicase inhibitors. J. Comput. Aided Mol. Des. 20 (2006) 305–319. CrossrefGoogle Scholar

  • [118] Ostrowski, J., Rubel, T., Wyrwicz, L.S., Mikula, M., Bielasik, A., Butruk, E. and Regula, J. Three clinical variants of gastroesophageal reflux disease form two distinct gene expression signatures. J. Mol. Med. 84 (2006) 872–882. CrossrefGoogle Scholar

  • [119] Paziewska, A., Wyrwicz, L.S., Bujnicki, J.M., Bomsztyk, K. and Ostrowski, J. Cooperative binding of the hnRNP K three KH domains to mRNA targets. FEBS Lett. 577 (2004) 134–140. Google Scholar

  • [120] Paziewska, A., Wyrwicz, L.S. and Ostrowski, J. The binding activity of yeast RNAs to yeast Hek2p and mammalian hnRNP K proteins, determined using the three-hybrid system. Cell. Mol. Biol. Lett. 10 (2005) 227–235. Google Scholar

  • [121] von Grotthuss, M., Koczyk, G., Pas, J., Wyrwicz, L.S. and Rychlewski, L. Ligand-Info small-molecule Meta-Database. Comb. Chem. High. Throughput Screen. 7 (2004) 757–761. CrossrefGoogle Scholar

  • [122] von Grotthuss, M., Pas, J. and Rychlewski, L. Ligand-Info, searching for similar small compounds using index profiles. Bioinformatics 19 (2003) 1041–1042. CrossrefGoogle Scholar

  • [123] von Grotthuss, M., Wyrwicz, L.S. and Rychlewski, L. mRNA cap-1 methyltransferase in the SARS genome. Cell 113 (2003) 701–702. Google Scholar

  • [124] Wyrwicz, L.S. and Rychlewski, L. Herpes glycoprotein gL is distantly related to chemokine receptor ligands. Antiviral Res. 75 (2007) 83–86. CrossrefGoogle Scholar

  • [125] Zemojtel, T., Frohlich, A., Palmieri, M.C., Kolanczyk, M., Mikula, I., Wyrwicz, L.S., Wanker, E.E., Mundlos, S., Vingron, M., Martasek, P. and Durner, J. Plant nitric oxide synthase: a never-ending story? Trends Plant Sci. 11 (2006) 524–525; author reply 526-528. Google Scholar

  • [126] Plewczynski, D., Hoffmann, M., von Grotthuss, M., Ginalski, K. and Rychewski, L. In silico prediction of SARS protease inhibitors by virtual high throughput screening. Chem. Biol. Drug Design 69 (2007) 269–279. CrossrefGoogle Scholar

  • [127] Plewczynski, D., Hoffmann, M., von Grotthuss, M., Knizewski, L., Rychewski, L., Eitner, K. and Ginalski, K. Modelling of potentially promising SARS protease inhibitors. J. Phys. Condens. Matter 19 (2007) 285207. CrossrefGoogle Scholar

  • [128] Feder, M., Pas, J., Wyrwicz, L.S. and Bujnicki, J.M. Molecular phylogenetics of the RrmJ/fibrillarin superfamily of ribose 2′-Omethyltransferases. Gene 302 (2003) 129–138. CrossrefGoogle Scholar

  • [129] Ginalski, K., Pas, J., Wyrwicz, L.S., von Grotthuss, M., Bujnicki, J.M. and Rychlewski, L. ORFeus: Detection of distant homology using sequence profiles and predicted secondary structure. Nucleic Acids Res. 31 (2003) 3804–3807. CrossrefGoogle Scholar

  • [130] Klimek-Tomczak, K., Mikula, M., Dzwonek, A., Paziewska, A., Wyrwicz, L.S., Hennig, E.E. and Ostrowski, J. Mitochondria-associated satellite I RNA binds to hnRNP K protein. Acta Biochim. Pol. 53 (2006) 169–178. Google Scholar

  • [131] Klimek-Tomczak, K., Wyrwicz, L.S., Jain, S., Bomsztyk, K. and Ostrowski, J. Characterization of hnRNP K protein-RNA interactions. J. Mol. Biol. 342 (2004) 1131–1141. Google Scholar

  • [132] Pas, J., von Grotthuss, M., Wyrwicz, L.S., Rychlewski, L. and Barciszewski, J. Structure prediction, evolution and ligand interaction of CHASE domain. FEBS Lett. 576 (2004) 287–290. Google Scholar

  • [133] von Grotthuss, M., Pas, J., Wyrwicz, L., Ginalski, K. and Rychlewski, L. Application of 3D-Jury, GRDB, and Verify3D in fold recognition. Proteins 53 Suppl 6 (2003) 418–423. CrossrefGoogle Scholar

  • [134] von Grotthuss, M., Plewczynski, D., Ginalski, K., Rychlewski, L. and Shakhnovich, E.I. PDB-UF: database of predicted enzymatic functions for unannotated protein structures from structural genomics. BMC Bioinformatics 7 (2006) 53. CrossrefGoogle Scholar

  • [135] von Grotthuss, M., Wyrwicz, L.S., Pas, J. and Rychlewski, L. Predicting protein structures accurately. Science 304 (2004) 1597–1599; author reply 1597–1599. CrossrefGoogle Scholar

  • [136] Wyrwicz, L.S., von Grotthuss, M., Pas, J. and Rychlewski, L. How unique is the rice transcriptome? Science 303 (2004) 168; author reply 168. CrossrefGoogle Scholar

  • [137] Plewczynski, D., Jaroszewski, L., Godzik, A., Kloczkowski, A. and Rychlewski, L. Molecular modeling of phosphorylation sites in proteins using a database of local structure segments. J. Mol. Mod. 11 (2005) 431–438. CrossrefGoogle Scholar

  • [138] Plewczynski, D., Tkacz, A., Godzik, A. and Rychlewski, L. A support vector machine approach to the identification of phosphorylation sites. Cell. Mol. Biol. Lett. 10 (2005) 73–89. Google Scholar

  • [139] Plewczynski, D., Tkacz, A., Wyrwicz, L., Godzik, A., Kloczkowski, A. and Rychlewski, L. Support-vector-machine classification of linear functional motifs in proteins. J. Mol. Mod. 12 (2006) 453–461. CrossrefGoogle Scholar

  • [140] Plewczynski, D., Tkacz, A., Wyrwicz, L.S. and Rychlewski, L. AutoMotif server: prediction of single residue post-translational modifications in proteins. Bioinformatics 21 (2005) 2525–2527. CrossrefGoogle Scholar

  • [141] Plewczynski, D., Tkacz, A., Wyrwicz, L.S., Rychlewski, L. and Ginalski, K. AutoMotif Server for prediction of phosphorylation sites in proteins using support vector machine: 2007 update. J. Mol. Mod. 14 (2008) 69–76. Google Scholar

  • [142] Plewczynski, D., Slabinski, L., Tkacz, A., Kajan, L., Holm, L., Ginalski, K. and Rychlewski, L. The RPSP: Web server for prediction of signal peptides. Polymer 48 (2007) 5493–5496. CrossrefGoogle Scholar

  • [143] Fernandez-Ballester, G. and Serrano, L. Prediction of protein-protein interaction based on structure. Methods Mol. Biol. 340 (2006) 207–234 Google Scholar

  • [144] Plewczynski, D., Pas, J., von Grotthuss, M. and Rychlewski, L. Comparison of proteins based on segments structural similarity). Acta Bioch. Pol. 51 (2004) 161–172. Google Scholar

  • [145] Plewczynski, D., Rychlewski, L., Ye, Y.Z., Jaroszewski, L. and Godzik, A. Integrated web service for improving alignment quality based on segments comparison. BMC Bioinformatics 5 (2004) 98. CrossrefGoogle Scholar

  • [146] Kinch, L.N., Ginalski, K., Rychlewski, L. and Grishin, N.V. Identification of novel restriction endonuclease-like fold families among hypothetical proteins. Nucleic Acids Res. 33 (2005) 3598–3605. CrossrefGoogle Scholar

  • [147] Ginalski, K., Elofsson, A., Fischer, D. and Rychlewski, L. 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics 19 (2003) 1015–1018. CrossrefGoogle Scholar

  • [148] Ginalski, K. and Rychlewski, L. Detection of reliable and unexpected protein fold predictions using 3D-Jury. Nucleic Acids Res. 31 (2003) 3291–3292. CrossrefGoogle Scholar

  • [149] Bu, D., Zhao, Y., Cai, L., Xue, H., Zhu, X., Lu, H., Zhang, J., Sun, S., Ling, L., Zhang, N., Li, G. and Chen, R. Topological structure analysis of the protein-protein interaction network in budding yeast. Nucleic Acids Res. 31 (2003) 2443–2450. CrossrefGoogle Scholar

  • [150] Sen, T.Z., Kloczkowski, A. and Jernigan, R.L. Functional clustering of yeast proteins from the protein-protein interaction network. BMC Bioinformatics 7 (2006) 355. CrossrefGoogle Scholar

  • [151] Ogmen, U., Keskin, O., Aytuna, A.S., Nussinov, R. and Gursoy, A. PRISM: protein interactions by structural matching. Nucleic Acids Res. 33 (2005) W331–W336. CrossrefGoogle Scholar

  • [152] Aytuna, A.S., Gursoy, A. and Keskin, O. Prediction of protein-protein interactions by combining structure and sequence conservation in protein interfaces. Bioinformatics 21 (2005) 2850–2855. CrossrefGoogle Scholar

  • [153] Aloy, P., Bottcher, B., Ceulemans, H., Leutwein, C., Mellwig, C., Fischer, S., Gavin, A.C., Bork, P., Superti-Furga, G., Serrano, L. and Russell, R.B. Structure-based assembly of protein complexes in yeast. Science 303 (2004) 2026-2029. CrossrefGoogle Scholar

  • [154] Aloy, P. and Russell, R.B. Interrogating protein interaction networks through structural biology. Proc. Natl. Acad. Sci. USA 99 (2002) 5896–5901. CrossrefGoogle Scholar

  • [155] Aloy, P. and Russell, R.B. InterPreTS: protein interaction prediction through tertiary structure. Bioinformatics 19 (2003) 161–162. CrossrefGoogle Scholar

  • [156] Ben-Hur, A. and Noble, W.S. Kernel methods for predicting protein-protein interactions. Bioinformatics 21 Suppl 1 (2005) i38–46. Google Scholar

  • [157] Ben-Hur, A. and Noble, W.S. Choosing negative examples for the prediction of protein-protein interactions. BMC Bioinformatics 7 Suppl 1 (2006) S2. Google Scholar

  • [158] Gomez, S.M., Noble, W.S. and Rzhetsky, A. Learning to predict proteinprotein interactions from protein sequences. Bioinformatics 19 (2003) 1875–1881. CrossrefGoogle Scholar

  • [159] Nanni, L. and Lumini, A. An ensemble of K-local hyperplanes for predicting protein-protein interactions. Bioinformatics 22 (2006) 1207–1210. CrossrefGoogle Scholar

  • [160] Sun, S., Zhao, Y., Jiao, Y., Yin, Y., Cai, L., Zhang, Y., Lu, H., Chen, R. and Bu, D. Faster and more accurate global protein function assignment from protein interaction networks using the MFGO algorithm. FEBS Lett. 580 (2006) 1891–1896. Google Scholar

  • [161] Bordner, A.J. and Abagyan, R.A. Large-scale prediction of protein geometry and stability changes for arbitrary single point mutations. Proteins 57 (2004) 400–413. CrossrefGoogle Scholar

  • [162] Lu, H., Zhu, X., Liu, H., Skogerbo, G., Zhang, J., Zhang, Y., Cai, L., Zhao, Y., Sun, S., Xu, J., Bu, D. and Chen, R. The interactome as a tree-an attempt to visualize the protein-protein interaction network in yeast. Nucleic Acids Res. 32 (2004) 4804–4811. CrossrefGoogle Scholar

  • [163] Plewczynski, D., Spieser, S.A.H. and Koch, U. Assessing different classification methods for virtual screening. J. Chem. Inf. Mod. 46 (2006) 1098–1106. CrossrefGoogle Scholar

  • [164] Plewczynski, D., von Grotthuss, M., Spieser, S.A.H., Rychlewski, L., Wyrwicz, L.S., Ginalski, K. and Koch, U. Target specific compound identification using a support vector machine. Comb. Chem. High Throughput Screen. 10 (2007) 189–196. Google Scholar

  • [165] Plewczynski, D., Spieser, S.A. and Koch, U. Assessing different classification methods for virtual screening. J. Chem. Inf. Model. 46 (2006) 1098–1106. CrossrefGoogle Scholar

  • [166] Sen, T.Z., Kloczkowski, A., Jernigan, R.L., Yan, C., Honavar, V., Ho, K.M., Wang, C.Z., Ihm, Y., Cao, H., Gu, X. and Dobbs, D. Predicting binding sites of hydrolase-inhibitor complexes by combining several methods. BMC Bioinformatics 5 (2004) 205. CrossrefGoogle Scholar

  • [167] Donald, J.E., Hubner, I.A., Rotemberg, V.M., Shakhnovich, E.I. and Mirny, L.A. CoC: a database of universally conserved residues in protein folds. Bioinformatics 21 (2005) 2539–2540. CrossrefGoogle Scholar

  • [168] Mirny, L.A., Abkevich, V.I. and Shakhnovich, E.I. How evolution makes proteins fold quickly. Proc. Natl. Acad. Sci. USA 95 (1998) 4976–4981. CrossrefGoogle Scholar

  • [169] Mirny, L.A. and Shakhnovich, E.I. Universally conserved positions in protein folds: reading evolutionary signals about stability, folding kinetics and function. J. Mol. Biol. 291 (1999) 177–196. CrossrefGoogle Scholar

About the article

Published Online: 2008-12-24

Published in Print: 2009-03-01

Citation Information: Cellular and Molecular Biology Letters, Volume 14, Issue 1, Pages 1–22, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-008-0024-7.

Export Citation

© 2008 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Raj P. Kandpal, Beatrice Saviola, and Jeffrey Felton
BioTechniques, 2009, Volume 46, Number 5, Page 351
L. I. Golubeva, M. S. Shupletsov, and S. V. Mashko
Applied Biochemistry and Microbiology, 2017, Volume 53, Number 7, Page 733
Zhong-Ru Xie, Jiawen Chen, and Yinghao Wu
Scientific Reports, 2017, Volume 7, Page 46622
Jiawen Chen, Zhong-Ru Xie, and Yinghao Wu
Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2017, Volume 1865, Number 2, Page 142
José Ignacio Garzón, Lei Deng, Diana Murray, Sagi Shapira, Donald Petrey, and Barry Honig
eLife, 2016, Volume 5
Zhong-Ru Xie, Jiawen Chen, Yilin Zhao, and Yinghao Wu
BMC Bioinformatics, 2015, Volume 16, Number 1
Jiawen Chen, Zhong-Ru Xie, and Yinghao Wu
Proteins: Structure, Function, and Bioinformatics, 2014, Volume 82, Number 10, Page 2512
Pascal Braun, Sébastien Aubourg, Jelle Van Leene, Geert De Jaeger, and Claire Lurin
Annual Review of Plant Biology, 2013, Volume 64, Number 1, Page 161
Kajetan Juszczak, Jolanta Kaszuba-Zwoińska, Paulina Chorobik, Agata Ziomber, and Piotr Thor
Cellular and Molecular Biology Letters, 2012, Volume 17, Number 2
Ciro Leonardo Pierri, Giovanni Parisi, and Vito Porcelli
Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2010, Volume 1804, Number 9, Page 1695
Haibin Gu, Pengcheng Zhu, Yinming Jiao, Yijun Meng, and Ming Chen
BMC Bioinformatics, 2011, Volume 12, Number 1, Page 161
Dariusz Plewczynski and Tomas Klingström
Cellular and Molecular Biology Letters, 2011, Volume 16, Number 2
Piyali Chatterjee, Subhadip Basu, Mahantapas Kundu, Mita Nasipuri, and Dariusz Plewczynski
Cellular and Molecular Biology Letters, 2011, Volume 16, Number 2
Marc Vidal, Michael E. Cusick, and Albert-László Barabási
Cell, 2011, Volume 144, Number 6, Page 986

Comments (0)

Please log in or register to comment.
Log in