Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Cellular and Molecular Biology Letters

Editor-in-Chief: /

IMPACT FACTOR increased in 2015: 1.753

SCImago Journal Rank (SJR) 2015: 0.788
Source Normalized Impact per Paper (SNIP) 2015: 0.645
Impact per Publication (IPP) 2015: 1.748

See all formats and pricing
In This Section
Volume 14, Issue 1 (Mar 2009)

The interactome: Predicting the protein-protein interactions in cells

Dariusz Plewczyński
  • Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawińskiego 5a, 02-106, Warsaw, Poland
  • Email:
/ Krzysztof Ginalski
  • Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawińskiego 5a, 02-106, Warsaw, Poland
  • Email:
Published Online: 2008-12-24 | DOI: https://doi.org/10.2478/s11658-008-0024-7


The term Interactome describes the set of all molecular interactions in cells, especially in the context of protein-protein interactions. These interactions are crucial for most cellular processes, so the full representation of the interaction repertoire is needed to understand the cell molecular machinery at the system biology level. In this short review, we compare various methods for predicting protein-protein interactions using sequence and structure information. The ultimate goal of those approaches is to present the complete methodology for the automatic selection of interaction partners using their amino acid sequences and/or three dimensional structures, if known. Apart from a description of each method, details of the software or web interface needed for high throughput prediction on the whole genome scale are also provided. The proposed validation of the theoretical methods using experimental data would be a better assessment of their accuracy.

Keywords: Protein-protein interactions; Protein complexes; Docking; PDB Database; Interactome; Protein interaction networks; Physical protein interactions

  • [1] Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 28 (2000) 235–242. [Crossref]

  • [2] Ginalski, K., von Grotthuss, M., Grishin, N.V. and Rychlewski, L. Detecting distant homology with Meta-BASIC. Nucleic Acids Res. 32 (2004) W576–W581. [Crossref]

  • [3] Sprinzak, E., Sattath, S. and Margalit, H. How reliable are experimental protein-protein interaction data? J. Mol. Biol. 327 (2003) 919–923. [Crossref]

  • [4] von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S. and Bork, P. Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417 (2002) 399–403. [Crossref]

  • [5] Carter, P., Lesk, V.I., Islam, S.A. and Sternberg, M.J. Protein-protein docking using 3D-Dock in rounds 3, 4, and 5 of CAPRI. Proteins 60 (2005) 281–288. [Crossref]

  • [6] Fariselli, P., Pazos, F., Valencia, A. and Casadio, R. Prediction of protein-protein interaction sites in heterocomplexes with neural networks. Eur. J. Biochem. 269 (2002) 1356–1361.

  • [7] Hoskins, J., Lovell, S. and Blundell, T.L. An algorithm for predicting protein-protein interaction sites: Abnormally exposed amino acid residues and secondary structure elements. Protein Sci. 15 (2006) 1017–1029. [Crossref]

  • [8] Jothi, R., Cherukuri, P.F., Tasneem, A. and Przytycka, T.M. Coevolutionary analysis of domains in interacting proteins reveals insights into domain-domain interactions mediating protein-protein interactions. J. Mol. Biol. 362 (2006) 861–875. [Crossref]

  • [9] Tan, K., Shlomi, T., Feizi, H., Ideker, T. and Sharan, R. Transcriptional regulation of protein complexes within and across species. Proc. Natl. Acad. Sci. USA 104 (2007) 1283–1288. [Crossref]

  • [10] Teichmann, S.A. Principles of protein-protein interactions. Bioinformatics 18 Suppl 2 (2002) S249. [Crossref]

  • [11] Cusick, M.E., Klitgord, N., Vidal, M. and Hill, D.E. Interactome: gateway into systems biology. Hum. Mol. Genet. 14 Spec No. 2 (2005) R171–R181. [Crossref]

  • [12] Goh, C.S. and Cohen, F.E. Co-evolutionary analysis reveals insights into protein-protein interactions. J. Mol. Biol. 324 (2002) 177–192. [Crossref]

  • [13] Sharan, R., Ideker, T., Kelley, B., Shamir, R. and Karp, R.M. Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data. J. Comput. Biol. 12 (2005) 835–846. [Crossref]

  • [14] Barash, Y., Elidan, G., Kaplan, T. and Friedman, N. CIS: compound importance sampling method for protein-DNA binding site p-value estimation. Bioinformatics 21 (2005) 596–600. [Crossref]

  • [15] Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz, P., Sittler, T., Karp, R.M. and Ideker, T. Conserved patterns of protein interaction in multiple species. Proc. Natl. Acad. Sci. USA 102 (2005) 1974–1979. [Crossref]

  • [16] Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R. and Ideker, T. Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc. Natl. Acad. Sci. USA 100 (2003) 11394–11399. [Crossref]

  • [17] Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U. and Eisenberg, D. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res. 32 (2004) D449–D451. [Crossref]

  • [18] Alfarano, C., Andrade, C.E., Anthony, K., Bahroos, N., Bajec, M., Bantoft, K., Betel, D., Bobechko, B., Boutilier, K., Burgess, E., Buzadzija, K., Cavero, R., D’Abreo, C., Donaldson, I., Dorairajoo, D., Dumontier, M.J., Dumontier, M.R., Earles, V., Farrall, R., Feldman, H., Garderman, E., Gong, Y., Gonzaga, R., Grytsan, V., Gryz, E., Gu, V., Haldorsen, E., Halupa, A., Haw, R., Hrvojic, A., Hurrell, L., Isserlin, R., Jack, F., Juma, F., Khan, A., Kon, T., Konopinsky, S., Le, V., Lee, E., Ling, S., Magidin, M., Moniakis, J., Montojo, J., Moore, S., Muskat, B., Ng, I., Paraiso, J.P., Parker, B., Pintilie, G., Pirone, R., Salama, J.J., Sgro, S., Shan, T., Shu, Y., Siew, J., Skinner, D., Snyder, K., Stasiuk, R., Strumpf, D., Tuekam, B., Tao, S., Wang, Z., White, M., Willis, R., Wolting, C., Wong, S., Wrong, A., Xin, C., Yao, R., Yates, B., Zhang, S., Zheng, K., Pawson, T., Ouellette, B.F. and Hogue, C.W. The Biomolecular Interaction Network Database and related tools 2005 update. Nucleic Acids Res. 33 (2005) D418–D424.

  • [19] Chatr-Aryamontri, A., Ceol, A., Palazzi, L.M., Nardelli, G., Schneider, M.V., Castagnoli, L. and Cesareni, G. MINT: the Molecular INTeraction database. Nucleic Acids Res. 35 (2007) D572–574. [Crossref]

  • [20] Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., Mudali, S., Kerrien, S., Orchard, S., Vingron, M., Roechert, B., Roepstorff, P., Valencia, A., Margalit, H., Armstrong, J., Bairoch, A., Cesareni, G., Sherman, D. and Apweiler, R. IntAct: an open source molecular interaction database. Nucleic Acids Res. 32 (2004) D452–D455. [Crossref]

  • [21] Kerrien, S., Alam-Faruque, Y., Aranda, B., Bancarz, I., Bridge, A., Derow, C., Dimmer, E., Feuermann, M., Friedrichsen, A., Huntley, R., Kohler, C., Khadake, J., Leroy, C., Liban, A., Lieftink, C., Montecchi-Palazzi, L., Orchard, S., Risse, J., Robbe, K., Roechert, B., Thorneycroft, D., Zhang, Y., Apweiler, R. and Hermjakob, H. IntAct - open source resource for molecular interaction data. Nucleic Acids Res. 35 (2007) D561–565. [Crossref]

  • [22] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T.K., Gronborg, M., Ibarrola, N., Deshpande, N., Shanker, K., Shivashankar, H.N., Rashmi, B.P., Ramya, M.A., Zhao, Z., Chandrika, K.N., Padma, N., Harsha, H.C., Yatish, A.J., Kavitha, M.P., Menezes, M., Choudhury, D.R., Suresh, S., Ghosh, N., Saravana, R., Chandran, S., Krishna, S., Joy, M., Anand, S.K., Madavan, V., Joseph, A., Wong, G.W., Schiemann, W.P., Constantinescu, S.N., Huang, L., Khosravi-Far, R., Steen, H., Tewari, M., Ghaffari, S., Blobe, G.C., Dang, C.V., Garcia, J.G., Pevsner, J., Jensen, O.N., Roepstorff, P., Deshpande, K.S., Chinnaiyan, A.M., Hamosh, A., Chakravarti, A. and Pandey, A. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res. 13 (2003) 2363–2371. [Crossref]

  • [23] Hoffmann, R. and Valencia, A. Implementing the iHOP concept for navigation of biomedical literature. Bioinformatics 21 Suppl 2 (2005) ii252–ii258.

  • [24] von Mering, C., Jensen, L.J., Snel, B., Hooper, S.D., Krupp, M., Foglierini, M., Jouffre, N., Huynen, M.A. and Bork, P. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 33 (2005) D433–D437.

  • [25] Finn, R.D., Mistry, J., Schuster-Bockler, B., Griffiths-Jones, S., Hollich, V., Lassmann, T., Moxon, S., Marshall, M., Khanna, A., Durbin, R., Eddy, S.R., Sonnhammer, E.L. and Bateman, A. Pfam: clans, web tools and services. Nucleic Acids Res. 34 (2006) D247–D251. [Crossref]

  • [26] Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25 (1997) 3389–3402. [Crossref]

  • [27] Jones, D.T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292 (1999) 195–202. [Crossref]

  • [28] Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin, E.V., Krylov, D.M., Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N., Rao, B.S., Smirnov, S., Sverdlov, A.V., Vasudevan, S., Wolf, Y.I., Yin, J.J. and Natale, D.A. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4 (2003) 41. [Crossref]

  • [29] Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M. and Sherlock, G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25 (2000) 25–29. [Crossref]

  • [30] Camon, E., Barrell, D., Lee, V., Dimmer, E. and Apweiler, R. The Gene Ontology Annotation (GOA) Database - an integrated resource of GO annotations to the UniProt Knowledgebase. In Silico Biol 4 (2004) 5–6.

  • [31] Camon, E., Magrane, M., Barrell, D., Binns, D., Fleischmann, W., Kersey, P., Mulder, N., Oinn, T., Maslen, J., Cox, A. and Apweiler, R. The Gene Ontology Annotation (GOA) project: implementation of GO in SWISS-PROT, TrEMBL, and InterPro. Genome Res. 13 (2003) 662–672. [Crossref]

  • [32] Mao, X., Cai, T., Olyarchuk, J.G. and Wei, L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21 (2005) 3787–3793. [Crossref]

  • [33] Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. and Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 32 (2004) D277–D280. [Crossref]

  • [34] Jeong, H., Mason, S.P., Barabasi, A.L. and Oltvai, Z.N. Lethality and centrality in protein networks. Nature 411 (2001) 41–42. [Crossref]

  • [35] Sprinzak, E., Altuvia, Y. and Margalit, H. Characterization and prediction of protein-protein interactions within and between complexes. Proc. Natl. Acad. Sci. USA 103 (2006) 14718–14723. [Crossref]

  • [36] Brown, K.R. and Jurisica, I. Online predicted human interaction database. Bioinformatics 21 (2005) 2076–2082. [Crossref]

  • [37] Cagney, G., Uetz, P. and Fields, S. High-throughput screening for protein-protein interactions using two-hybrid assay. Methods Enzymol. 328 (2000) 3–14. [Crossref]

  • [38] Uetz, P., Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight, J.R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S. and Rothberg, J.M. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403 (2000) 623–627.

  • [39] Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M. and Sakaki, Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98 (2001) 4569–4574. [Crossref]

  • [40] Ito, T., Chiba, T. and Yoshida, M. Exploring the protein interactome using comprehensive two-hybrid projects. Trends Biotechnol. 19 (2001) S23–S27. [Crossref]

  • [41] Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M. and Seraphin, B. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17 (1999) 1030–1032. [Crossref]

  • [42] Bader, G.D. and Hogue, C.W. Analyzing yeast protein-protein interaction data obtained from different sources. Nat. Biotechnol. 20 (2002) 991–997 [Crossref]

  • [43] Chen, T., Jaffe, J.D. and Church, G.M. Algorithms for identifying protein cross-links via tandem mass spectrometry. J. Comput. Biol. 8 (2001) 571–583. [Crossref]

  • [44] Ito, T., Ota, K., Kubota, H., Yamaguchi, Y., Chiba, T., Sakuraba, K. and Yoshida, M. Roles for the two-hybrid system in exploration of the yeast protein interactome. Mol. Cell. Proteomics 1 (2002) 561–566. [Crossref]

  • [45] McDermott, J., Bumgarner, R. and Samudrala, R. Functional annotation from predicted protein interaction networks. Bioinformatics 21 (2005) 3217–3226. [Crossref]

  • [46] Morrison, J.L., Breitling, R., Higham, D.J. and Gilbert, D.R. A lock-and-key model for protein-protein interactions. Bioinformatics 22 (2006) 2012–2019. [Crossref]

  • [47] Schweitzer, B., Predki, P. and Snyder, M. Microarrays to characterize protein interactions on a whole-proteome scale. Proteomics 3 (2003) 2190–2199. [Crossref]

  • [48] Tong, A.H., Drees, B., Nardelli, G., Bader, G.D., Brannetti, B., Castagnoli, L., Evangelista, M., Ferracuti, S., Nelson, B., Paoluzi, S., Quondam, M., Zucconi, A., Hogue, C.W., Fields, S., Boone, C. and Cesareni, G. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295 (2002) 321–324. [Crossref]

  • [49] Walhout, A.J., Boulton, S.J. and Vidal, M. Yeast two-hybrid systems and protein interaction mapping projects for yeast and worm. Yeast 17 (2000) 88–94. [Crossref]

  • [50] Wehr, M.C., Laage, R., Bolz, U., Fischer, T.M., Grunewald, S., Scheek, S., Bach, A., Nave, K.A. and Rossner, M.J. Monitoring regulated protein-protein interactions using split TEV. Nat. Methods 3 (2006) 985–993. [Crossref]

  • [51] Wu, X., Zhu, L., Guo, J., Zhang, D.Y. and Lin, K. Prediction of yeast protein-protein interaction network: insights from the Gene Ontology and annotations. Nucleic Acids Res. 34 (2006) 2137–2150. [Crossref]

  • [52] Yarmush, M.L. and Jayaraman, A. Advances in proteomic technologies. Annu. Rev. Biomed. Eng. 4 (2002) 349–373. [Crossref]

  • [53] Marcotte, E.M., Pellegrini, M., Ng, H.L., Rice, D.W., Yeates, T.O. and Eisenberg, D. Detecting protein function and protein-protein interactions from genome sequences. Science 285 (1999) 751–753. [Crossref]

  • [54] Troyanskaya, O.G., Dolinski, K., Owen, A.B., Altman, R.B. and Botstein, D. A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc. Natl. Acad. Sci. USA 100 (2003) 8348–8353. [Crossref]

  • [55] Lu, L., Lu, H. and Skolnick, J. MULTIPROSPECTOR: an algorithm for the prediction of protein-protein interactions by multimeric threading. Proteins 49 (2002) 350–364. [Crossref]

  • [56] Smith, G.R. and Sternberg, M.J. Prediction of protein-protein interactions by docking methods. Curr. Opin. Struct. Biol. 12 (2002) 28–35. [Crossref]

  • [57] Wodak, S.J. and Mendez, R. Prediction of protein-protein interactions: the CAPRI experiment, its evaluation and implications. Curr. Opin. Struct. Biol. 14 (2004) 242–249. [Crossref]

  • [58] Jones, S. and Thornton, J.M. Analysis of protein-protein interaction sites using surface patches. J. Mol. Biol. 272 (1997) 121–132. [Crossref]

  • [59] Lo Conte, L., Chothia, C. and Janin, J. The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285 (1999) 2177–2198.

  • [60] Glaser, F., Steinberg, D.M., Vakser, I.A. and Ben-Tal, N. Residue frequencies and pairing preferences at protein-protein interfaces. Proteins 43 (2001) 89–102. [Crossref]

  • [61] Hu, Z., Ma, B., Wolfson, H. and Nussinov, R. Conservation of polar residues as hot spots at protein interfaces. Proteins 39 (2000) 331–342. [Crossref]

  • [62] DeLano, W.L. Unraveling hot spots in binding interfaces: progress and challenges. Curr. Opin. Struct. Biol. 12 (2002) 14–20. [Crossref]

  • [63] Pellegrini, M., Marcotte, E.M. and Yeates, T.O. A fast algorithm for genome-wide analysis of proteins with repeated sequences. Proteins 35 (1999) 440–446. [Crossref]

  • [64] Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95 (1998) 14863–14868. [Crossref]

  • [65] Sprinzak, E. and Margalit, H. Correlated sequence-signatures as markers of protein-protein interaction. J. Mol. Biol. 311 (2001) 681–692. [Crossref]

  • [66] Bock, J.R. and Gough, D.A. Predicting protein-protein interactions from primary structure. Bioinformatics 17 (2001) 455–460. [Crossref]

  • [67] Gallet, X., Charloteaux, B., Thomas, A. and Brasseur, R. A fast method to predict protein interaction sites from sequences. J. Mol. Biol. 302 (2000) 917–926. [Crossref]

  • [68] Ofran, Y. and Rost, B. Predicted protein-protein interaction sites from local sequence information. FEBS Lett. 544 (2003) 236–239.

  • [69] Jones, S. and Thornton, J.M. Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA 93 (1996) 13–20. [Crossref]

  • [70] Nooren, I.M. and Thornton, J.M. Diversity of protein-protein interactions. Embo J. 22 (2003) 3486–3492. [Crossref]

  • [71] Nooren, I.M. and Thornton, J.M. Structural characterisation and functional significance of transient protein-protein interactions. J. Mol. Biol. 325 (2003) 991–1018. [Crossref]

  • [72] Bahadur, R.P., Chakrabarti, P., Rodier, F. and Janin, J. A dissection of specific and non-specific protein-protein interfaces. J. Mol. Biol. 336 (2004) 943–955. [Crossref]

  • [73] Ofran, Y. and Rost, B. Analysing six types of protein-protein interfaces. J. Mol. Biol. 325 (2003) 377–387. [Crossref]

  • [74] Saha, R.P., Bahadur, R.P. and Chakrabarti, P. Interresidue contacts in proteins and protein-protein interfaces and their use in characterizing the homodimeric interface. J. Proteome Res. 4 (2005) 1600–1609. [Crossref]

  • [75] Bordner, A.J. and Abagyan, R. Statistical analysis and prediction of protein-protein interfaces. Proteins 60 (2005) 353–366. [Crossref]

  • [76] Neuvirth, H., Raz, R. and Schreiber, G. ProMate: a structure based prediction program to identify the location of protein-protein binding sites. J. Mol. Biol. 338 (2004) 181–199.

  • [77] Chung, J.L., Wang, W. and Bourne, P.E. Exploiting sequence and structure homologs to identify protein-protein binding sites. Proteins 62 (2006) 630–640.

  • [78] Valdar, W.S. and Thornton, J.M. Protein-protein interfaces: analysis of amino acid conservation in homodimers. Proteins 42 (2001) 108–124. [Crossref]

  • [79] Yao, H., Kristensen, D.M., Mihalek, I., Sowa, M.E., Shaw, C., Kimmel, M., Kavraki, L. and Lichtarge, O. An accurate, sensitive, and scalable method to identify functional sites in protein structures. J. Mol. Biol. 326 (2003) 255–261. [Crossref]

  • [80] Aloy, P., Querol, E., Aviles, F.X. and Sternberg, M.J. Automated structure-based prediction of functional sites in proteins: applications to assessing the validity of inheriting protein function from homology in genome annotation and to protein docking. J. Mol. Biol. 311 (2001) 395–408. [Crossref]

  • [81] Berezin, C., Glaser, F., Rosenberg, J., Paz, I., Pupko, T., Fariselli, P., Casadio, R. and Ben-Tal, N. ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics 20 (2004) 1322–1324. [Crossref]

  • [82] Caffrey, D.R., Somaroo, S., Hughes, J.D., Mintseris, J. and Huang, E.S. Are protein-protein interfaces more conserved in sequence than the rest of the protein surface? Protein Sci. 13 (2004) 190–202. [Crossref]

  • [83] Yan, C., Dobbs, D. and Honavar, V. A two-stage classifier for identification of protein-protein interface residues. Bioinformatics 20 Suppl 1 (2004) I371–I378. [Crossref]

  • [84] Porollo, A. and Meller, J. Prediction-based fingerprints of protein-protein interactions. Proteins 66 (2006) 630–645. [Crossref]

  • [85] Koike, A. and Takagi, T. Prediction of protein-protein interaction sites using support vector machines. Protein Eng. Des. Sel. 17 (2004) 165–173. [Crossref]

  • [86] Jansen, R., Yu, H., Greenbaum, D., Kluger, Y., Krogan, N.J., Chung, S., Emili, A., Snyder, M., Greenblatt, J.F. and Gerstein, M. A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302 (2003) 449–453. [Crossref]

  • [87] Liu, X., Zhang, L.M. and Zheng, W.M. Prediction of protein secondary structure based on residue pairs. J. Bioinform. Comput. Biol. 2 (2004) 343–352. [Crossref]

  • [88] Zhang, L.V., Wong, S.L., King, O.D. and Roth, F.P. Predicting co-complexed protein pairs using genomic and proteomic data integration. BMC Bioinformatics 5 (2004) 38. [Crossref]

  • [89] Zhou, H.X. and Shan, Y. Prediction of protein interaction sites from sequence profile and residue neighbor list. Proteins 44 (2001) 336–343 [Crossref]

  • [90] Hesse, H. and Hoefgen, R. On the way to understand biological complexity in plants: S-nutrition as a case study for systems biology. Cell. Mol. Biol. Lett. 11 (2006) 37–56.

  • [91] Hsieh, C.J., Chen, M.J., Liao, Y.L. and Liao, T.N. Polymorphisms of the uridine-diphosphoglucuronosyltransferase 1A1 gene and coronary artery disease. Cell. Mol. Biol. Lett. 13 (2008) 1–10.

  • [92] Huang, B., Chu, C.H., Chen, S.L., Juan, H.F. and Chen, Y.M. A proteomics study of the mung bean epicotyl regulated by brassinosteroids under conditions of chilling stress. Cell. Mol. Biol. Lett. 11 (2006) 264–278.

  • [93] Knizewski, L., Steczkiewicz, K., Kuchta, K., Wyrwicz, L., Plewczynski, D., Kolinski, A., Rychlewski, L. and Ginalski, K. Uncharacterized DUF1574 leptospira proteins are SGNH hydrolases. Cell Cycle 7 (2008) 542–544. [Crossref]

  • [94] Korohoda, W. and Wilk, A. Cell electrophoresis - a method for cell separation and research into cell surface properties. Cell. Mol. Biol. Lett. 13 (2008) 312–326.

  • [95] Li, J., Ji, C., Zheng, H., Fei, X., Zheng, M., Dai, J., Gu, S., Xie, Y. and Mao, Y. Molecular cloning and characterization of a novel human gene containing 4 ankyrin repeat domains. Cell. Mol. Biol. Lett. 10 (2005) 185–193.

  • [96] Liu, S.J., Zhang, D.Q., Sui, X.M., Zhang, L., Cai, Z.W., Sun, L.Q., Liu, Y.J., Xue, Y. and Hu, G.F. The inhibition of in vivo tumorigenesis of osteosarcoma (OS)-732 cells by antisense human osteopontin RNA. Cell. Mol. Biol. Lett. 13 (2008) 11–19.

  • [97] Miyamato, T., Sato, H., Yogev, L., Kleiman, S., Namiki, M., Koh, E., Sakugawa, N., Hayashi, H., Ishikawa, M., Lamb, D.J. and Sengoku, K. Is a genetic defect in Fkbp6 a common cause of azoospermia in humans? Cell. Mol. Biol. Lett. 11 (2006) 557–569.

  • [98] Wisniewska, A., Draus, J. and Subczynski, W.K. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes. Cell. Mol. Biol. Lett. 8 (2003) 147–159.

  • [99] Wladyka, B. and Pustelny, K. Regulation of bacterial protease activity. Cell. Mol. Biol. Lett. 13 (2008) 212–229.

  • [100] Cottage, A., Mullan, L., Portela, M.B., Hellen, E., Carver, T., Patel, S., Vavouri, T., Elgar, G. and Edwards, Y.J. Molecular characterisation of the SAND protein family: a study based on comparative genomics, structural bioinformatics and phylogeny. Cell. Mol. Biol. Lett. 9 (2004) 739–753

  • [101] Gronemeyer, H. and Miturski, R. Molecular mechanisms of retinoid action. Cell. Mol. Biol. Lett. 6 (2001) 3–52.

  • [102] Agoston, V., Cemazar, M., Kajan, L. and Pongor, S. Graph-representation of oxidative folding pathways. BMC Bioinformatics 6 (2005) 19. [Crossref]

  • [103] Kajan, L., Kertesz-Farkas, A., Franklin, D., Ivanova, N., Kocsor, A. and Pongor, S. Application of a simple likelihood ratio approximant to protein sequence classification. Bioinformatics 22 (2006) 2865–2869. [Crossref]

  • [104] Kocsor, A., Kertesz-Farkas, A., Kajan, L. and Pongor, S. Application of compression-based distance measures to protein sequence classification: a methodological study. Bioinformatics 22 (2006) 407–412. [Crossref]

  • [105] Vlahovicek, K., Kajan, L., Agoston, V. and Pongor, S. The SBASE domain sequence resource, release 12: prediction of protein domain-architecture using support vector machines. Nucleic Acids Res. 33 (2005) D223–D225.

  • [106] Vlahovicek, K., Kajan, L., Murvai, J., Hegedus, Z. and Pongor, S. The SBASE domain sequence library, release 10: domain architecture prediction. Nucleic Acids Res. 31 (2003) 403–405. [Crossref]

  • [107] von Grotthuss, M., Plewczynski, D., Ginalski, K., Rychlewski, L. and Shakhnovich, E.I. PDB-UF: database of predicted enzymatic functions for unannotated protein structures from structural genomics. BMC Bioinformatics 7 (2006) 53. [Crossref]

  • [108] Wyrwicz, L.S., Koczyk, G., Rychlewski, L. and Plewczynski, D. ProteinSplit: splitting of multi-domain proteins using prediction of ordered and disordered regions in protein sequences for virtual structural genomics. J. Phys. Condens. Matter 19 (2007) 285222. [Crossref]

  • [109] Grabarkiewicz, T., Grobelny, P., Hoffmann, M. and Mielcarek, J. DFT study on hydroxy acid-lactone interconversion of statins: The case of fluvastatin. Org. Biomol. Chem. 4 (2006) 4299–4306. [Crossref]

  • [110] Grabarkiewicz, T. and Hoffmann, M. Syn- and anti-conformations of 5′- deoxy- and 5′-O-methyl-uridine 2′,3′-cyclic monophosphate. J. Mol. Model. 12 (2006) 205–212.

  • [111] Hoffmann, M., Chrzanowska, M., Hermann, T. and Rychlewski, J. Modeling of purine derivatives transport across cell membranes based on their partition coefficient determination and quantum chemical calculations. J. Med. Chem. 48 (2005) 4482–4486. [Crossref]

  • [112] Hoffmann, M. and Marciniec, B. Quantum chemical study of the mechanism of ethylene elimination in silylative coupling of olefins. J. Mol. Model. 13 (2007) 477–483. [Crossref]

  • [113] Hoffmann, M., Plutecka, A., Rychlewska, U., Kucybala, Z., Paczkowski, J. and Pyszka, I. New type of bonding formed from an overlap between pi aromatic and pi C=O molecular orbitals stabilizes the coexistence in one molecule of the ionic and neutral meso-ionic forms of imidazopyridine. J. Phys. Chem. A Mol. Spectrosc. Kinet. Environ. Gen. Theory 109 (2005) 4568–4574.

  • [114] Hoffmann, M. and Rychlewski, J. Effects of substituting a OH group by a F atom in D-glucose. Ab initio and DFT analysis. J. Am. Chem. Soc. 123 (2001) 2308–2316. [Crossref]

  • [115] Hoffmann, M., Rychlewski, J., Chrzanowska, M. and Hermann, T. Mechanism of activation of an immunosuppressive drug: azathioprine. Quantum chemical study on the reaction of azathioprine with cysteine. J. Am. Chem. Soc. 123 (2001) 6404–6409. [Crossref]

  • [116] Plutecka, A., Hoffmann, M., Rychlewska, U., Kucybala, Z., Paczkowski, J. and Pyszka, I. Relationship between structure and photoinitiating abilities of selected bromide salts of 2-oxo-2,3-dihydro-1H-imidazo[1,2-a]pyridine (IMP): influence of the solvent and the substitution in benzaldehyde on the course of its reaction with IMP. Acta Crystallogr. B 62 (2006) 135–142.

  • [117] Hoffmann, M., Eitner, K., von Grotthuss, M., Rychlewski, L., Banachowicz, E., Grabarkiewicz, T., Szkoda, T. and Kolinski, A. Three dimensional model of severe acute respiratory syndrome coronavirus helicase ATPase catalytic domain and molecular design of severe acute respiratory syndrome coronavirus helicase inhibitors. J. Comput. Aided Mol. Des. 20 (2006) 305–319. [Crossref]

  • [118] Ostrowski, J., Rubel, T., Wyrwicz, L.S., Mikula, M., Bielasik, A., Butruk, E. and Regula, J. Three clinical variants of gastroesophageal reflux disease form two distinct gene expression signatures. J. Mol. Med. 84 (2006) 872–882. [Crossref]

  • [119] Paziewska, A., Wyrwicz, L.S., Bujnicki, J.M., Bomsztyk, K. and Ostrowski, J. Cooperative binding of the hnRNP K three KH domains to mRNA targets. FEBS Lett. 577 (2004) 134–140.

  • [120] Paziewska, A., Wyrwicz, L.S. and Ostrowski, J. The binding activity of yeast RNAs to yeast Hek2p and mammalian hnRNP K proteins, determined using the three-hybrid system. Cell. Mol. Biol. Lett. 10 (2005) 227–235.

  • [121] von Grotthuss, M., Koczyk, G., Pas, J., Wyrwicz, L.S. and Rychlewski, L. Ligand-Info small-molecule Meta-Database. Comb. Chem. High. Throughput Screen. 7 (2004) 757–761. [Crossref]

  • [122] von Grotthuss, M., Pas, J. and Rychlewski, L. Ligand-Info, searching for similar small compounds using index profiles. Bioinformatics 19 (2003) 1041–1042. [Crossref]

  • [123] von Grotthuss, M., Wyrwicz, L.S. and Rychlewski, L. mRNA cap-1 methyltransferase in the SARS genome. Cell 113 (2003) 701–702.

  • [124] Wyrwicz, L.S. and Rychlewski, L. Herpes glycoprotein gL is distantly related to chemokine receptor ligands. Antiviral Res. 75 (2007) 83–86. [Crossref]

  • [125] Zemojtel, T., Frohlich, A., Palmieri, M.C., Kolanczyk, M., Mikula, I., Wyrwicz, L.S., Wanker, E.E., Mundlos, S., Vingron, M., Martasek, P. and Durner, J. Plant nitric oxide synthase: a never-ending story? Trends Plant Sci. 11 (2006) 524–525; author reply 526-528.

  • [126] Plewczynski, D., Hoffmann, M., von Grotthuss, M., Ginalski, K. and Rychewski, L. In silico prediction of SARS protease inhibitors by virtual high throughput screening. Chem. Biol. Drug Design 69 (2007) 269–279. [Crossref]

  • [127] Plewczynski, D., Hoffmann, M., von Grotthuss, M., Knizewski, L., Rychewski, L., Eitner, K. and Ginalski, K. Modelling of potentially promising SARS protease inhibitors. J. Phys. Condens. Matter 19 (2007) 285207. [Crossref]

  • [128] Feder, M., Pas, J., Wyrwicz, L.S. and Bujnicki, J.M. Molecular phylogenetics of the RrmJ/fibrillarin superfamily of ribose 2′-Omethyltransferases. Gene 302 (2003) 129–138. [Crossref]

  • [129] Ginalski, K., Pas, J., Wyrwicz, L.S., von Grotthuss, M., Bujnicki, J.M. and Rychlewski, L. ORFeus: Detection of distant homology using sequence profiles and predicted secondary structure. Nucleic Acids Res. 31 (2003) 3804–3807. [Crossref]

  • [130] Klimek-Tomczak, K., Mikula, M., Dzwonek, A., Paziewska, A., Wyrwicz, L.S., Hennig, E.E. and Ostrowski, J. Mitochondria-associated satellite I RNA binds to hnRNP K protein. Acta Biochim. Pol. 53 (2006) 169–178.

  • [131] Klimek-Tomczak, K., Wyrwicz, L.S., Jain, S., Bomsztyk, K. and Ostrowski, J. Characterization of hnRNP K protein-RNA interactions. J. Mol. Biol. 342 (2004) 1131–1141.

  • [132] Pas, J., von Grotthuss, M., Wyrwicz, L.S., Rychlewski, L. and Barciszewski, J. Structure prediction, evolution and ligand interaction of CHASE domain. FEBS Lett. 576 (2004) 287–290.

  • [133] von Grotthuss, M., Pas, J., Wyrwicz, L., Ginalski, K. and Rychlewski, L. Application of 3D-Jury, GRDB, and Verify3D in fold recognition. Proteins 53 Suppl 6 (2003) 418–423. [Crossref]

  • [134] von Grotthuss, M., Plewczynski, D., Ginalski, K., Rychlewski, L. and Shakhnovich, E.I. PDB-UF: database of predicted enzymatic functions for unannotated protein structures from structural genomics. BMC Bioinformatics 7 (2006) 53. [Crossref]

  • [135] von Grotthuss, M., Wyrwicz, L.S., Pas, J. and Rychlewski, L. Predicting protein structures accurately. Science 304 (2004) 1597–1599; author reply 1597–1599. [Crossref]

  • [136] Wyrwicz, L.S., von Grotthuss, M., Pas, J. and Rychlewski, L. How unique is the rice transcriptome? Science 303 (2004) 168; author reply 168. [Crossref]

  • [137] Plewczynski, D., Jaroszewski, L., Godzik, A., Kloczkowski, A. and Rychlewski, L. Molecular modeling of phosphorylation sites in proteins using a database of local structure segments. J. Mol. Mod. 11 (2005) 431–438. [Crossref]

  • [138] Plewczynski, D., Tkacz, A., Godzik, A. and Rychlewski, L. A support vector machine approach to the identification of phosphorylation sites. Cell. Mol. Biol. Lett. 10 (2005) 73–89.

  • [139] Plewczynski, D., Tkacz, A., Wyrwicz, L., Godzik, A., Kloczkowski, A. and Rychlewski, L. Support-vector-machine classification of linear functional motifs in proteins. J. Mol. Mod. 12 (2006) 453–461. [Crossref]

  • [140] Plewczynski, D., Tkacz, A., Wyrwicz, L.S. and Rychlewski, L. AutoMotif server: prediction of single residue post-translational modifications in proteins. Bioinformatics 21 (2005) 2525–2527. [Crossref]

  • [141] Plewczynski, D., Tkacz, A., Wyrwicz, L.S., Rychlewski, L. and Ginalski, K. AutoMotif Server for prediction of phosphorylation sites in proteins using support vector machine: 2007 update. J. Mol. Mod. 14 (2008) 69–76.

  • [142] Plewczynski, D., Slabinski, L., Tkacz, A., Kajan, L., Holm, L., Ginalski, K. and Rychlewski, L. The RPSP: Web server for prediction of signal peptides. Polymer 48 (2007) 5493–5496. [Crossref]

  • [143] Fernandez-Ballester, G. and Serrano, L. Prediction of protein-protein interaction based on structure. Methods Mol. Biol. 340 (2006) 207–234

  • [144] Plewczynski, D., Pas, J., von Grotthuss, M. and Rychlewski, L. Comparison of proteins based on segments structural similarity). Acta Bioch. Pol. 51 (2004) 161–172.

  • [145] Plewczynski, D., Rychlewski, L., Ye, Y.Z., Jaroszewski, L. and Godzik, A. Integrated web service for improving alignment quality based on segments comparison. BMC Bioinformatics 5 (2004) 98. [Crossref]

  • [146] Kinch, L.N., Ginalski, K., Rychlewski, L. and Grishin, N.V. Identification of novel restriction endonuclease-like fold families among hypothetical proteins. Nucleic Acids Res. 33 (2005) 3598–3605. [Crossref]

  • [147] Ginalski, K., Elofsson, A., Fischer, D. and Rychlewski, L. 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics 19 (2003) 1015–1018. [Crossref]

  • [148] Ginalski, K. and Rychlewski, L. Detection of reliable and unexpected protein fold predictions using 3D-Jury. Nucleic Acids Res. 31 (2003) 3291–3292. [Crossref]

  • [149] Bu, D., Zhao, Y., Cai, L., Xue, H., Zhu, X., Lu, H., Zhang, J., Sun, S., Ling, L., Zhang, N., Li, G. and Chen, R. Topological structure analysis of the protein-protein interaction network in budding yeast. Nucleic Acids Res. 31 (2003) 2443–2450. [Crossref]

  • [150] Sen, T.Z., Kloczkowski, A. and Jernigan, R.L. Functional clustering of yeast proteins from the protein-protein interaction network. BMC Bioinformatics 7 (2006) 355. [Crossref]

  • [151] Ogmen, U., Keskin, O., Aytuna, A.S., Nussinov, R. and Gursoy, A. PRISM: protein interactions by structural matching. Nucleic Acids Res. 33 (2005) W331–W336. [Crossref]

  • [152] Aytuna, A.S., Gursoy, A. and Keskin, O. Prediction of protein-protein interactions by combining structure and sequence conservation in protein interfaces. Bioinformatics 21 (2005) 2850–2855. [Crossref]

  • [153] Aloy, P., Bottcher, B., Ceulemans, H., Leutwein, C., Mellwig, C., Fischer, S., Gavin, A.C., Bork, P., Superti-Furga, G., Serrano, L. and Russell, R.B. Structure-based assembly of protein complexes in yeast. Science 303 (2004) 2026-2029. [Crossref]

  • [154] Aloy, P. and Russell, R.B. Interrogating protein interaction networks through structural biology. Proc. Natl. Acad. Sci. USA 99 (2002) 5896–5901. [Crossref]

  • [155] Aloy, P. and Russell, R.B. InterPreTS: protein interaction prediction through tertiary structure. Bioinformatics 19 (2003) 161–162. [Crossref]

  • [156] Ben-Hur, A. and Noble, W.S. Kernel methods for predicting protein-protein interactions. Bioinformatics 21 Suppl 1 (2005) i38–46.

  • [157] Ben-Hur, A. and Noble, W.S. Choosing negative examples for the prediction of protein-protein interactions. BMC Bioinformatics 7 Suppl 1 (2006) S2.

  • [158] Gomez, S.M., Noble, W.S. and Rzhetsky, A. Learning to predict proteinprotein interactions from protein sequences. Bioinformatics 19 (2003) 1875–1881. [Crossref]

  • [159] Nanni, L. and Lumini, A. An ensemble of K-local hyperplanes for predicting protein-protein interactions. Bioinformatics 22 (2006) 1207–1210. [Crossref]

  • [160] Sun, S., Zhao, Y., Jiao, Y., Yin, Y., Cai, L., Zhang, Y., Lu, H., Chen, R. and Bu, D. Faster and more accurate global protein function assignment from protein interaction networks using the MFGO algorithm. FEBS Lett. 580 (2006) 1891–1896.

  • [161] Bordner, A.J. and Abagyan, R.A. Large-scale prediction of protein geometry and stability changes for arbitrary single point mutations. Proteins 57 (2004) 400–413. [Crossref]

  • [162] Lu, H., Zhu, X., Liu, H., Skogerbo, G., Zhang, J., Zhang, Y., Cai, L., Zhao, Y., Sun, S., Xu, J., Bu, D. and Chen, R. The interactome as a tree-an attempt to visualize the protein-protein interaction network in yeast. Nucleic Acids Res. 32 (2004) 4804–4811. [Crossref]

  • [163] Plewczynski, D., Spieser, S.A.H. and Koch, U. Assessing different classification methods for virtual screening. J. Chem. Inf. Mod. 46 (2006) 1098–1106. [Crossref]

  • [164] Plewczynski, D., von Grotthuss, M., Spieser, S.A.H., Rychlewski, L., Wyrwicz, L.S., Ginalski, K. and Koch, U. Target specific compound identification using a support vector machine. Comb. Chem. High Throughput Screen. 10 (2007) 189–196.

  • [165] Plewczynski, D., Spieser, S.A. and Koch, U. Assessing different classification methods for virtual screening. J. Chem. Inf. Model. 46 (2006) 1098–1106. [Crossref]

  • [166] Sen, T.Z., Kloczkowski, A., Jernigan, R.L., Yan, C., Honavar, V., Ho, K.M., Wang, C.Z., Ihm, Y., Cao, H., Gu, X. and Dobbs, D. Predicting binding sites of hydrolase-inhibitor complexes by combining several methods. BMC Bioinformatics 5 (2004) 205. [Crossref]

  • [167] Donald, J.E., Hubner, I.A., Rotemberg, V.M., Shakhnovich, E.I. and Mirny, L.A. CoC: a database of universally conserved residues in protein folds. Bioinformatics 21 (2005) 2539–2540. [Crossref]

  • [168] Mirny, L.A., Abkevich, V.I. and Shakhnovich, E.I. How evolution makes proteins fold quickly. Proc. Natl. Acad. Sci. USA 95 (1998) 4976–4981. [Crossref]

  • [169] Mirny, L.A. and Shakhnovich, E.I. Universally conserved positions in protein folds: reading evolutionary signals about stability, folding kinetics and function. J. Mol. Biol. 291 (1999) 177–196. [Crossref]

About the article

Published Online: 2008-12-24

Published in Print: 2009-03-01

Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-008-0024-7. Export Citation

© 2008 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Zhong-Ru Xie, Jiawen Chen, Yilin Zhao, and Yinghao Wu
BMC Bioinformatics, 2015, Volume 16, Number 1
Jiawen Chen, Zhong-Ru Xie, and Yinghao Wu
Proteins: Structure, Function, and Bioinformatics, 2014, Volume 82, Number 10, Page 2512
Pascal Braun, Sébastien Aubourg, Jelle Van Leene, Geert De Jaeger, and Claire Lurin
Annual Review of Plant Biology, 2013, Volume 64, Number 1, Page 161
Kajetan Juszczak, Jolanta Kaszuba-Zwoińska, Paulina Chorobik, Agata Ziomber, and Piotr Thor
Cellular and Molecular Biology Letters, 2012, Volume 17, Number 2
Ciro Leonardo Pierri, Giovanni Parisi, and Vito Porcelli
Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2010, Volume 1804, Number 9, Page 1695
Haibin Gu, Pengcheng Zhu, Yinming Jiao, Yijun Meng, and Ming Chen
BMC Bioinformatics, 2011, Volume 12, Number 1, Page 161
Dariusz Plewczynski and Tomas Klingström
Cellular and Molecular Biology Letters, 2011, Volume 16, Number 2
Marc Vidal, Michael E. Cusick, and Albert-László Barabási
Cell, 2011, Volume 144, Number 6, Page 986

Comments (0)

Please log in or register to comment.
Log in