Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 14, Issue 1

Issues

Oral cyclosporine A - the current picture of its liposomal and other delivery systems

Aleksander Czogalla
Published Online: 2008-12-24 | DOI: https://doi.org/10.2478/s11658-008-0041-6

Abstract

The discovery of cyclosporine A was a milestone in organ transplantation and the treatment of autoimmune diseases. However, developing an efficient oral delivery system for this drug is complicated by its poor biopharmaceutical characteristics (low solubility and permeability) and the need to carefully monitor its levels in the blood. Current research is exploring various approaches, including those based on emulsions, microspheres, nanoparticles, and liposomes. Although progress has been made, none of the formulations is flawless. This review is a brief description of the main pharmaceutical systems and devices that have been described for the oral delivery of cyclosporine A in the context of the physicochemical properties of the drug and the character of its interactions with lipid membranes.

Keywords: Cyclosporine A; Physicochemical properties; Oral drug delivery; Liposomes; Nanoparticles

  • [1] O’Neal, M.J., Heckelman, P.E., Koch, C.B., Roman, K.J., Kenny, C.M. and D’Arecca, M.R. (Eds) The Merck Index - an encyclopedia of chemicals, drugs, and biologicals, 14th edition, Merck & Co., Inc., Whitehouse Station, NJ, USA, 2006, 2753. Google Scholar

  • [2] Laven, A. Biosynthesis and mechanism of action of cyclosporins. Prog. Med. Chem. 33 (1996) 53–97. http://dx.doi.org/10.1016/S0079-6468(08)70303-5CrossrefGoogle Scholar

  • [3] Wenger, R.M. Total synthesis of “cyclosporin A” and “cyclosporin H”, two fungal metabolites isolated from species Tolypocladium inflatum Gams. Helv. Chim. Acta 67 (1984) 503–515. http://dx.doi.org/10.1002/hlca.19840670220CrossrefGoogle Scholar

  • [4] Italia, J.L., Bhardwaj, V. and Kumar, M.N.V.R. Disease, destination, dose and delivery aspects of ciclosporin: the state of the art. Drug Discov. Today 11 (2006) 846–854. http://dx.doi.org/10.1016/j.drudis.2006.07.015CrossrefGoogle Scholar

  • [5] Kallen, J., Mikol, V., Quesniaux, V.F.J., Walkinshaw, M.D., Schneider-Scherzer, E.S., Schorgendorfer, K., Weber, G. and Fliri, H.G. Cyclosporins: recent developments in biosynthesis, pharmacology and biology, and clinical applications. in: Biotechnology, a Multivolume Comprehensive Treatise (Rehm, H.J., Reed, G., Puhler, A. and vonDohren, H., Eds), Vol.7, VCH Verlagsgesellschaft, Weinheim, 1997, 535–591. Google Scholar

  • [6] Borel, J.F. Pharmacology and Pharmacokinetics of cyclosporin A. Transpl. Clin. Immunol. 13 (1981) 3–6. Google Scholar

  • [7] Schumacher, A. and Nordheim, A. Progress towards a molecular understanding of cyclosporine A-mediated immunosupression. Clin. Investig. 70 (1992) 773–779. http://dx.doi.org/10.1007/BF00180747CrossrefGoogle Scholar

  • [8] Ready, A. Experience with cyclosporine. Transplant. Proc. 36 (2004) 135S–138S. http://dx.doi.org/10.1016/j.transproceed.2003.12.049CrossrefGoogle Scholar

  • [9] Busauschina, A. Cyclosporine nephrotoxicity. Transplant. Proc. 36 (2004) 2295–2335. http://dx.doi.org/10.1016/j.transproceed.2004.01.021CrossrefGoogle Scholar

  • [10] Durak, I., Karabacak, H.I., Buyukkocak, S., Cimen, M.Y., Kacmaz, M., Omeroglu, E. and Ozturk, H.S. Impaired antioxidant defense system in the kidney tissues from rabbits treated with cyclosporine. Protective effects of vitamins E and C. Nephron 78 (1998) 207–211. http://dx.doi.org/10.1159/000044912CrossrefGoogle Scholar

  • [11] Rezzani, R., Buffoli, B., Rodella, L., Stacchioti, A. and Bianchi, R. Protective role of melatonin in cyclosporine A-induced oxidative stress in rat liver. Int. Immunopharmacol. 5 (2005) 1397–1405. http://dx.doi.org/10.1016/j.intimp.2005.03.021CrossrefGoogle Scholar

  • [12] Kahan, B.D. Therapeutic drug monitoring of cyclosporine: 20 years of progress. Transplant. Proc. 36 (2004) 378s–391s. http://dx.doi.org/10.1016/j.transproceed.2004.01.091CrossrefGoogle Scholar

  • [13] Petcher, T.J., Weber, H. and Ruegger, A. Crystal and molecular structure of an iodo-derivative of the cyclic undecapeptide cyclosporin A. Helv. Chim. Acta 59 (1976) p. Google Scholar

  • [14] El Tayar, N., Mark, A.E., Vallat, P., Brunne, R.M., Testa, B. and van Gunsteren, W.F. Solvent-dependent conformation and hydrogen-bonding capacity of cyclosporin A: evidence from partition coefficients and molecular dynamics simulations. J. Med. Chem. 36 (1993) 3757–3764. http://dx.doi.org/10.1021/jm00076a002CrossrefGoogle Scholar

  • [15] Sigma. Product Information. Cyclosporin A. 1996 Sigma Chemical Co. Google Scholar

  • [16] Lechuga-Ballesteros, D., Abdul-Fattach, A., Stevenson, C.L. and Bennett, D.B. Properties and stability of a liquid crystal form of cyclosporine — the first reported naturally occurring peptide that exists as a thermotropic liquid crystal. J. Pharm. Sci. 92 (2003) 1821–1831. http://dx.doi.org/10.1002/jps.10444CrossrefGoogle Scholar

  • [17] Ismailos, G., Peppas, C., Dressman, J. and Macheras, P. Unusual solubility behavior of cyclosporin A in aqueous media. J. Pharm. Pharmacol. 43 (1991) 287–289. CrossrefGoogle Scholar

  • [18] Schote, U., Ganz, P., Fahr, A. and Seelig, J. Interactions of cyclosporines with lipid membranes as studied by solid-state nuclear magnetic resonance spectroscopy and high-sensitivity titration calorimetry. J. Pharm. Sci. 91 (2002) 856–867. http://dx.doi.org/10.1002/jps.10071CrossrefGoogle Scholar

  • [19] Hasumi, H., Nishikawa, T. and Ohtani, H. Effect of temperature on molecular structure of cyclosporin A. Biochem. Mol. Biol. Int. 34 (1994) 505–511. Google Scholar

  • [20] Mueller, R.H., Runge, S., Ravelli, V., Mehnert, W., Thunemann, A.F. and Souto, E.B. Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN®) versus drug nanocrystals. Int. J. Pharm. 317 (2006) 82–89. http://dx.doi.org/10.1016/j.ijpharm.2006.02.045CrossrefGoogle Scholar

  • [21] Hamel, A.R., Hubler, F., Carrupt, A., Wenger, R.M. and Mutter, M. Cyclosporin A prodrugs: design, synthesis and biophysical properties. J. Peptide Res. 63 (2004) 147–154. http://dx.doi.org/10.1111/j.1399-3011.2003.00111.xCrossrefGoogle Scholar

  • [22] Lallemand, F., Perottet, P., Felt-Baeyens, O., Kloeti, W., Philippoz, F., Marfurt, J., Besseghir, K. and Gurny, R. A water-soluble prodrug of cyclosporine A for ocular application: a stability study. Eur. J. Pharm. Sci. 26 (2005) 124–129. http://dx.doi.org/10.1016/j.ejps.2005.05.003CrossrefGoogle Scholar

  • [23] Ran, Y., Zhao, L., Xu, Q. and Yalkowsky, S.H. Solubilization of Cyclosporin A. AAPS Pharm. Sci. Tech. 2 (2001) 2. http://dx.doi.org/10.1208/pt020102CrossrefGoogle Scholar

  • [24] Weber, C., Wider, G., von Freyberg, B., Traber, R., Braun, W., Widmer, H. and Wuthrich, K. The NMR structure of cyclosporin A bound to cyclophilin in aqueous solution. Biochemistry 30 (1991) 6563–6574. http://dx.doi.org/10.1021/bi00240a029CrossrefGoogle Scholar

  • [25] Altschuh, D., Vix, O., Rees, B. and Thierry, J.C. A conformation of cyclosporin A in aqueous environment revealed by the X-ray structure of a cyclosporin-Fab complex. Science 256 (1992) 92–94. http://dx.doi.org/10.1126/science.1566062CrossrefGoogle Scholar

  • [26] Klages, J., Neubauer, C., Coles, M., Kessler, H. and Luy, B. Structure refinement of cyclosporin A in chloroform by using RDCs measured in a stretched PDMS-gel. Chembiochem 6 (2005) 1672–1678. http://dx.doi.org/10.1002/cbic.200500146CrossrefGoogle Scholar

  • [27] Kajitani, K., Fujihashi, M., Kobayashi, Y., Shimizu, S., Tsujimoto, Y. and Miki, K. Crystal structure of human cyclophilin D in complex with its inhibitor, cyclosporine A at 0.96-Å resolution. Proteins 70 (2008) 1635–1639. http://dx.doi.org/10.1002/prot.21855CrossrefGoogle Scholar

  • [28] Ouyang, C., Choice, E., Holland, J., Meloche, M. and Madden, T.D. Liposomal cyclosporine. Characterization of drug incorporation and interbilayer exchange. Transplantation 60 (1995) 999–1006. http://dx.doi.org/10.1097/00007890-199511150-00021CrossrefGoogle Scholar

  • [29] Fahr, A. and Reiter, G. Biophysical characterisation of liposomal delivery systems for lipophilic drugs: Cyclosporin A as an example. Cell. Mol. Biol. Lett. 4 (1999) 611–623. Google Scholar

  • [30] Fahr, A., Holz, M. and Fricker, G. Liposomal formulations of Cyclosporin A: influence of lipid type and dose on pharmacokinetics. Pharm. Res. 12 (1995) 1189–1197. http://dx.doi.org/10.1023/A:1016220211925CrossrefGoogle Scholar

  • [31] Fahr, A., Nimmerfall, F. and Wenger, R. Interactions of Cyclosporin A and some derivatives with model membranes: Binding and ion permeability changes. Transplant. Proc. 26 (1994) 2837–2841. Google Scholar

  • [32] Fahr, A., van Hoogevest, P., May, S., Bergstrand, N. and Leigh, M.L.S. Transfer of lipophilic drugs between liposomal membranes and biological interfaces: consequences for drug delivery. Eur. J. Pharm. Sci. 26 (2005) 251–265. http://dx.doi.org/10.1016/j.ejps.2005.05.012CrossrefGoogle Scholar

  • [33] Lambros, M.P. and Rahman, Y.E. Effects of cyclosporin A on model lipid membranes. Chem. Phys. Lipids 131 (2004) 63–69. http://dx.doi.org/10.1016/j.chemphyslip.2004.04.002CrossrefGoogle Scholar

  • [34] Soderlund, T., Lehtonen, J.Y.A. and Kinnunen, P.K.J. Interactions of cyclosporin A with phospholipid membranes: effect of cholesterol. Mol. Pharmacol. 55 (1999) 32–38. Google Scholar

  • [35] Wiedmann, T.S., Trouard, T., Shekar, S.C., Polikandritou, M. and Rahman, Y.E. Interaction of cyclosporin A with dipalmitoylphosphatidylcholine. Biochim. Biophys. Acta 1023 (1990) 12–18. http://dx.doi.org/10.1016/0005-2736(90)90003-7CrossrefGoogle Scholar

  • [36] Stuhne-Sekalec, L. and Stanacev, N.Z. Liposomes as cyclosporin A carriers: the influence of ordering of hydrocarbon chains of phosphatidylglycerol liposomes on the association with and topography of cyclosporin A. J. Microencapsul. 8 (1991) 283–294. http://dx.doi.org/10.3109/02652049109069554CrossrefGoogle Scholar

  • [37] Freise, C.E., Liu, T., Hong, K.L., Osorio, R.W., Papahadjopoulos, D., Ferrell, L., Ascher, N.L. and Roberts, J.P. The increased efficacy and decreased nephrotoxicity of a cyclosporine liposome. Transplantation 57 (1994) 928–932. http://dx.doi.org/10.1097/00007890-199403270-00027CrossrefGoogle Scholar

  • [38] Thiel, G., Hermle, M. and Brunner, F.P. Acutely impaired renal function during intravenous administration of cyclosporine A: a cremophor side-effect. Clin. Nephrol. 25 (1986) S40–S42. Google Scholar

  • [39] Alangary, A.A., Bayomi, M.A., Khidr, S.N., Almeshal, M.A. and Aldardiri, M. Characterization, stability and in vivo targeting of liposomal formulations containing cyclosporine. Int. J. Pharm. 114 (1995) 221–225. http://dx.doi.org/10.1016/0378-5173(94)00243-XCrossrefGoogle Scholar

  • [40] Amidon, G.L., Lennernas, H., Shah, V.P. and Crison, J.R. A theoretical basis for a biopharmaceutical drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12 (1995) 413–420. http://dx.doi.org/10.1023/A:1016212804288CrossrefGoogle Scholar

  • [41] Mithani, S.D., Bakatselou, V., TenHoor, C.N. and Dressman, J.B. Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharm. Res. 13 (1996) 163–167. http://dx.doi.org/10.1023/A:1016062224568CrossrefGoogle Scholar

  • [42] Wu, C.Y., Benet, L.Z., Hebert, M.F., Gupta, S.K., Rowland, M., Gomez, D.Y. and Wacher, V.J. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: Studies with cyclosporine. Clin. Pharmacol. Ther. 58 (1995) 492–497. http://dx.doi.org/10.1016/0009-9236(95)90168-XCrossrefGoogle Scholar

  • [43] Kelly, P.A., Wang, H., Napoli, K.L., Kahan, B.D. and Strobel, H.W. Metabolism of cyclosporine by cytochromes P450 3A9 and 3A4. Eur. J. Drug Metab. Pharmacokinet. 24 (1999) 321–328. Google Scholar

  • [44] Hebert, M.F. Contributions of hepatic and intestinal metabolism and P-glycoprotein to cyclosporine and tacrolimus oral drug delivery. Adv. Drug. Deliv. Rev. 27 (1997) 201–214. http://dx.doi.org/10.1016/S0169-409X(97)00043-4CrossrefGoogle Scholar

  • [45] Fricker, G., Drewe, J., Huwyler, J., Gutmann, H. and Beglinger, C. Relevance of p-glycoprotein for the enteral absorption of cyclosporin A: in vitro in vivo correlation. Br. J. Pharmacol. 118 (1996) 1841–1847. Google Scholar

  • [46] Lown, K.S., Mayo, R.R., Leichtman, A.B., Hsiao, H.L., Turgeon, D.K., Schmiedlin-Ren, P., Brown, M.B., Guo, W., Rossi, S.J., Benet, L.Z. and Watkins, P.B. Role of intestinal P- glycoprotein (mdr1) in interpatient variation in the oral bioavailability of cyclosporine. Clin. Pharmacol. Ther. 62 (1997) 248–260. http://dx.doi.org/10.1016/S0009-9236(97)90027-8CrossrefGoogle Scholar

  • [47] Johnston, A., Marsden, J.T., Hla, K.K., Henry, J.A. and Holt, D.W. The effect of vehicle on oral absorption of cyclosporin. Br. J. Clin. Pharmacol. 21 (1986) 331–333. CrossrefGoogle Scholar

  • [48] Kovarik, J.M., Mueller, E.A., van Bree, J.B., Tetzloff, W. and Kutz, K. Reduced inter- and intraindividual variability in cyclosporine pharmacokinetics from a microemulsion formulation. J. Pharm. Sci. 83 (1994) 444–446. http://dx.doi.org/10.1002/jps.2600830336CrossrefGoogle Scholar

  • [49] Dunn, C.J., Wagstaff, A.J., Perry, C.M., Plosker, G.L. and Goa, K.L. Cyclosporin. An updated review of the pharmacokinetic properties, clinical efficiacy and tolerability of a microemulsion-based formulation (Neoral®) in organ transplantation. Drugs 61 (2001) 1957–2016. http://dx.doi.org/10.2165/00003495-200161130-00006CrossrefGoogle Scholar

  • [50] Cattaneo, D., Perico, N. and Remuzzi, G. Generic cyclosporine formulations: more open questions than answers. Transpl. Int. 18 (2005) 371–378. http://dx.doi.org/10.1111/j.1432-2277.2005.00078.xCrossrefGoogle Scholar

  • [51] Pollard, S., Nashan, B., Johnston, A., Hoyer, P., Belitsky, P., Keown, P. and Helderman, H. A pharmacokinetic and clinical review of the potential clinical impact of using different formulations of cyclosporin A. Clin. Ther. 25 (2003) 1654–1669. http://dx.doi.org/10.1016/S0149-2918(03)80161-3CrossrefGoogle Scholar

  • [52] Venkataram, S., Awni, W.M., Jordan, K. and Rahman, Y.E. Pharmacokinetics of two alternative dosage forms for cyclosporine: liposomes and intralipid. J. Pharm. Sci. 79 (1990) 216–219. http://dx.doi.org/10.1002/jps.2600790307CrossrefGoogle Scholar

  • [53] Aramaki, Y., Tomizawa, H., Hara, T., Yachi, K., Kikuchi, H. and Tsuchiya, S. Stability of liposomes in vitro and their uptake by rat Peyer’s patches following oral administration. Pharm. Res. 10 (1993) 1228–1231. http://dx.doi.org/10.1023/A:1018936806278CrossrefGoogle Scholar

  • [54] Guo, J., Ping, Q. and Chen, Y. Pharmacokinetic behavior of cyclosporin A in rabbits by oral administration of lecithin vesicle and sandimmun neoral. Int. J. Pharm. 216 (2001) 17–21. http://dx.doi.org/10.1016/S0378-5173(00)00680-3CrossrefGoogle Scholar

  • [55] Shah, N.M., Parikh, J., Namdeo, A., Subramanian, N. and Bhowmick, S. Preparation, characterization and in vivo studies of proliposomes containing Cyclosporine A. J. Nanosci. Nanotechnol. 6 (2006) 2967–2973. http://dx.doi.org/10.1166/jnn.2006.403CrossrefGoogle Scholar

  • [56] Al-Meshal, M.A., Khidr, S.H., Bayomi, M.A. and Al-Angary, A.A. Oral administration of liposomes containing cyclosporine: a pharmacokinetic study. Int. J. Pharm. 168 (1998) 163–168. http://dx.doi.org/10.1016/S0378-5173(98)00066-0CrossrefGoogle Scholar

  • [57] Bravo Gonzalez, R.C., Huwyler, J., Walter, I., Mountfield, R. and Bittner, B. Improved oral bioavailability of cyclosporin A in male Wistar rats. Comparison of a Solutol HS 15 containing self-dispersing formulation and a microsuspension. Int. J. Pharm. 245 (2002) 143–151. http://dx.doi.org/10.1016/S0378-5173(02)00339-3CrossrefGoogle Scholar

  • [58] Murdan, S., Andrysek, T. and Son, D. Novel gels and their dispersions — oral drug delivery systems for ciclosporin. Int. J. Pharm. 300 (2005) 113–124. CrossrefGoogle Scholar

  • [59] Kim, S.J., Choi, H.K. and Lee, Y.B. Pharmacokinetic and pharmacodynamic evaluation of cyclosporin A O/W-emulsion in rats. Int. J. Pharm. 249 (2002) 149–156. http://dx.doi.org/10.1016/S0378-5173(02)00490-8CrossrefGoogle Scholar

  • [60] Kim, S.J., Choi, H.K., Suh, S.P. and Lee, Y.B. Pharmacokinetic and pharmacodynamic evaluation of cyclosporin A O/W-emulsion and microsphere formulations in rabbits. Eur. J. Pharm. Sci. 15 (2002) 497–502. http://dx.doi.org/10.1016/S0928-0987(02)00048-9CrossrefGoogle Scholar

  • [61] Woo, J.S., Piao, M.G., Li, D.X., Ryu, D.S., Choi, J.Y., Kim, J.A., Kim, J.H., Jin, S.G., Kim, D.D., Lyoo, W.S., Yong, C.S. and Choi, H.G. Development of cyclosporin A-loaded hyaluronic microsphere with enhanced oral bioavailability. Int. J. Pharm. 345 (2007) 134–141. http://dx.doi.org/10.1016/j.ijpharm.2007.08.050CrossrefGoogle Scholar

  • [62] Lee, E.J., Lee, S.W., Choi, H.G. and Kim, C.K. Bioavailibility of cyclosporin A dispersed in sodium lauryl sulfate-dextrin based solid microspheres. Int. J. Pharm. 218 (2001) 125–131. http://dx.doi.org/10.1016/S0378-5173(01)00621-4CrossrefGoogle Scholar

  • [63] Zhang, Q., Yie, G., Li, Y., Yang, Q. and Nagai, T. Studies on the cyclosporin A loaded stearic acid nanoparticles. Int. J. Pharm. 200 (2000) 153–159. http://dx.doi.org/10.1016/S0378-5173(00)00361-6CrossrefGoogle Scholar

  • [64] Francis, M.F., Cristea, M., Yang, Y. and Winnik, F.M. Engineering polysaccharide-based polymeric micelles to enhance permeability of cyclosporin A across Caco-2 cells. Pharm. Res. 22 (2005) 209–219. http://dx.doi.org/10.1007/s11095-004-1188-0CrossrefGoogle Scholar

  • [65] Lee, W.K., Park, J.Y., Yang, E.H., Suh, H., Kim, S.H., Chung, D.S., Choi, K., Yang, C.W. and Park, J.S. Investigation of the factors influencing the release rates of cyclosporin A-loaded micro- and nanoparticles prepared by high-pressure homogenizer. J. Control. Release 84 (2002) 115–123. http://dx.doi.org/10.1016/S0168-3659(02)00239-0CrossrefGoogle Scholar

  • [66] Italia, J.L., Bhatt, D.K., Bhardwaj, V., Tikoo, K. and Kumar, M.N. PLGA nanoparticles for oral delivery of cyclosporine: nephrotoxicity and pharmacokinetic studies in comparison to Sandimmune Neoral. J. Control. Release 119 (2007) 197–206. http://dx.doi.org/10.1016/j.jconrel.2007.02.004CrossrefGoogle Scholar

  • [67] Gref, R., Quellec, P., Sanchez, A., Calvo, P., Dellacherie, E. and Alonso, M.J. Development and characterization of CyA-loaded poly(lactic acid)-poly(ethylene glycol)PEG micro- and nanoparticles. Comparison with conventional PLA particulate carriers. Eur. J. Pharm. Biopharm. 51 (2001) 111–118. http://dx.doi.org/10.1016/S0939-6411(00)00143-0CrossrefGoogle Scholar

  • [68] Molpeceres, J., Chacón, M., Guzmán, M., Berges, L. and del Rosario Aberturas, M. A polycaprolactone nanoparticle formulation of cyclosporine improves the prediction of area under the curve using a limited sampling strategy. Int. J. Pharm. 187 (1999) 101–113. http://dx.doi.org/10.1016/S0378-5173(99)00177-5CrossrefGoogle Scholar

  • [69] Varela, M.C., Guzman, M., Molpeceres, J., del Rosario Aberturas, M., Rodriguez-Puyol, D. and Rodriguez-Puyol, M. Cyclosporine-loaded polycaprolactone nanoparticles: immunosuppression and nephrotoxicity in rats. Eur. J. Pharm. Sci. 12 (2001) 471–478. http://dx.doi.org/10.1016/S0928-0987(00)00198-6CrossrefGoogle Scholar

  • [70] Dai, J., Nagai, T., Wang, X., Zhang, T., Meng, M. and Zhang, Q. pH-sensitive nanoparticles for improving the oral bioavailability of cyclosporine A. Int. J. Pharm. 280 (2004) 229–240. http://dx.doi.org/10.1016/j.ijpharm.2004.05.006CrossrefGoogle Scholar

  • [71] Wang, X.Q., Huang, J., Dai, J.D., Zhang, T., Lu, W.L., Zhang, H., Zhang, X., Wang, J.C. and Zhang, Q. Long-term studies on the stability and oral bioavailibility of cyclosporine A nanoparticle colloid. Int. J. Pharm. 322 (2006) 146–153. http://dx.doi.org/10.1016/j.ijpharm.2006.05.021CrossrefGoogle Scholar

  • [72] Wang, X.Q.W., Dai, J.D., Chen, Z., Zhang, T., Xia, G.M., Nagai, T. and Zhang, Q. Bioavailability and pharmacokinetics of cyclosporine A-loaded pH-sensitive nanoparticles for oral administration. J. Control Release 97 (2004) 421–429. CrossrefGoogle Scholar

  • [73] El-Shabouri, M.H. Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int. J. Pharm. 249 (2002) 101–108. http://dx.doi.org/10.1016/S0378-5173(02)00461-1CrossrefGoogle Scholar

  • [74] Cheng, W.P., Gray, A.I., Tetley, L., Hang Tle, B., Schätzlein, A.G. and Uchegbu, I.F. Polyelectrolyte nanoparticles with high drug loading enhance the oral uptake of hydrophobic compounds. Biomacromolecules 7 (2006) 1509–1520. http://dx.doi.org/10.1021/bm060130lCrossrefGoogle Scholar

  • [75] Liu, C., Zhu, S.J., Zhou, Y., Wei, Y.P. and Pei, Y.Y. Enhancement of dissolution of cyclosporine A using solid dispersions with polyoxyethylene (40) stearate. Pharmazie 61 (2006) 681–684. Google Scholar

  • [76] Liu, C., Wu, J., Shi, B., Zhang, Y., Gao, T. and Pei, Y. Enhancing the bioavailability of cyclosporine a using solid dispersion containing polyoxyethylene (40) stearate. Drug Dev. Ind. Pharm. 32 (2006) 115–123. http://dx.doi.org/10.1080/03639040500388573CrossrefGoogle Scholar

  • [77] Mueller, R.H., Runge, S.A., Ravelli, V., Thunemann, A.F., Mehnert, W. and Souto, E.B. Cyclosporine-loaded solid lipid nanoparticles (SLN®): Drug-lipid physicochemical interactions and characterization of drug incorporation. Eur. J. Pharm. Biopharm. 68 (2008) 535–544. http://dx.doi.org/10.1016/j.ejpb.2007.07.006CrossrefGoogle Scholar

  • [78] Bekerman, T., Golenser, J. and Domb, A. Cyclosporin nanoparticulate lipospheres for oral administration. J. Pharm. Sci. 93 (2004) 1264–1270. http://dx.doi.org/10.1002/jps.20057CrossrefGoogle Scholar

  • [79] Van Drooge, D.J., Hinrichs, W.L. and Frijlink, H.W. Incorporation of lipophilic drugs in sugar glasses by lyophilization using a mixture of water and tertiary butyl alcohol as solvent. J. Pharm. Sci. 93 (2004) 713–725. http://dx.doi.org/10.1002/jps.10590CrossrefGoogle Scholar

  • [80] Miyake, K., Arima, H., Irie, T., Hirayama, F. and Uekama, K. Enhanced absorption of cyclosporin A by complexation with dimethyl-beta-cyclodextrin in bile duct-cannulated and -noncannulated rats. Biol. Pharm. Bull. 22 (1999) 66–72. CrossrefGoogle Scholar

  • [81] Sharma, P., Varma, M.V.S., Chwala, H.P.S. and Panchagnula, R. Absorption enhancement, mechanistic and toxicity studies of medium chain fatty acids, cyclodextrins and bile salts as peroral absorption enhancers. Il Farmaco 60 (2005) 884–893. http://dx.doi.org/10.1016/j.farmac.2005.08.008CrossrefGoogle Scholar

About the article

Published Online: 2008-12-24

Published in Print: 2009-03-01


Citation Information: Cellular and Molecular Biology Letters, Volume 14, Issue 1, Pages 139–152, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-008-0041-6.

Export Citation

© 2008 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Chang Hyun Park, Mee Kum Kim, Eun Chul Kim, Jae Yong Kim, Tae-Im Kim, Hong Kyun Kim, Jong Suk Song, Kyung-Chul Yoon, Do Hyung Lee, Hyung Keun Lee, Tae-Young Chung, Chul Young Choi, and Hyun Seung Kim
Korean Journal of Ophthalmology, 2019, Volume 33, Number 4, Page 343
[2]
Chang Hyun Park, Hyung Keun Lee, Mee Kum Kim, Eun Chul Kim, Jae Yong Kim, Tae-im Kim, Hong Kyun Kim, Jong Suk Song, Kyung Chul Yoon, Do Hyung Lee, Tae-Young Chung, Chul Young Choi, and Hyun Seung Kim
BMC Ophthalmology, 2019, Volume 19, Number 1
[3]
Dhrumi Patel and Sarika Wairkar
Drug Delivery and Translational Research, 2019
[4]
Ahmed A. Abdulhussein Al-Ali, Rasmus Blaaholm Nielsen, Bente Steffansen, René Holm, and Carsten Uhd Nielsen
International Journal of Pharmaceutics, 2019, Volume 566, Page 410
[5]
Paula Berton, Manish Kumar Mishra, Hemant Choudhary, Allan S. Myerson, and Robin D. Rogers
ACS Omega, 2019, Volume 4, Number 5, Page 7938
[6]
Małgorzata Jurak, Agnieszka Ewa Wiącek, Kacper Przykaza, Agata Ładniak, and Klaudia Woźniak
Journal of Thermal Analysis and Calorimetry, 2019
[7]
Alexandros Kourentas, Maria Vertzoni, Vicky Barmpatsalou, Patrick Augustijns, Stefania Beato, James Butler, Rene Holm, Neils Ouwerkerk, Joerg Rosenberg, Tomokazu Tajiri, Christer Tannergren, Mira Symillides, and Christos Reppas
The AAPS Journal, 2018, Volume 20, Number 4
[8]
Sumit Bhatnagar, Kirti Dhingra Verma, Yongjun Hu, Eshita Khera, Aaron Priluck, David Smith, and Greg M. Thurber
Molecular Pharmaceutics, 2018
[9]
Anita Wnętrzak, Katarzyna Makyła-Juzak, Anna Chachaj-Brekiesz, Ewelina Lipiec, Nuria Vila Romeu, and Patrycja Dynarowicz-Latka
Colloids and Surfaces B: Biointerfaces, 2018
[10]
Ditlev Birch, Ragna G. Diedrichsen, Philip C. Christophersen, Huiling Mu, and Hanne M. Nielsen
European Journal of Pharmaceutical Sciences, 2018
[11]
Frédéric Lallemand, Mathieu Schmitt, Jean-Louis Bourges, Robert Gurny, Simon Benita, and Jean-Sébastien Garrigue
European Journal of Pharmaceutics and Biopharmaceutics, 2017, Volume 117, Page 14
[12]
Hiroki Suzuki, Kodai Ueno, Takahiro Mizumoto, Yoshiki Seto, Hideyuki Sato, and Satomi Onoue
European Journal of Pharmaceutical Sciences, 2017, Volume 96, Page 107
[13]
Ana Carmona-Ribeiro and Letícia de Melo Carrasco
International Journal of Molecular Sciences, 2014, Volume 15, Number 10, Page 18040
[14]
Dongmei Jiang, Jin Zeng, Yuan Zhu, Guanghui Zhou, Wenwen Deng, Ximing Xu, and Jiangnan Yu
Drug Development and Industrial Pharmacy, 2016, Volume 42, Number 7, Page 1174
[15]
Praew Thansandote, Robert M. Harris, Hannah L. Dexter, Graham L. Simpson, Sandeep Pal, Richard J. Upton, and Klara Valko
Bioorganic & Medicinal Chemistry, 2015, Volume 23, Number 2, Page 322
[16]
A N Ilinskaya and M A Dobrovolskaia
British Journal of Pharmacology, 2014, Volume 171, Number 17, Page 3988
[17]
Xi Zhang, Yueneng Yi, Jianping Qi, Yi Lu, Zhiqiang Tian, Yunchang Xie, Hailong Yuan, and Wei Wu
International Journal of Pharmaceutics, 2013, Volume 452, Number 1-2, Page 233
[18]
Li Tang, Jamil Azzi, Mincheol Kwon, Marwan Mounayar, Rong Tong, Qian Yin, Robert Moore, Nikolaos Skartsis, Timothy M. Fan, Reza Abdi, and Jianjun Cheng
Journal of Transplantation, 2012, Volume 2012, Page 1
[19]
Ziyaur Rahman, Ahmed S. Zidan, Muhammad J. Habib, and Mansoor A. Khan
International Journal of Pharmaceutics, 2010, Volume 389, Number 1-2, Page 186
[20]
Sara Biagiotti, Luigia Rossi, Marzia Bianchi, Elisa Giacomini, Francesca Pierigè, Giordano Serafini, Pier Giulio Conaldi, and Mauro Magnani
Journal of Controlled Release, 2011, Volume 154, Number 3, Page 306
[21]
Satomi Onoue, Hideyuki Sato, Kumiko Ogawa, Yohei Kawabata, Takahiro Mizumoto, Kayo Yuminoki, Naofumi Hashimoto, and Shizuo Yamada
International Journal of Pharmaceutics, 2010, Volume 399, Number 1-2, Page 94
[22]
Subhashis Chakraborty, Dali Shukla, Brahmeshwar Mishra, and Sanjay Singh
European Journal of Pharmaceutics and Biopharmaceutics, 2009, Volume 73, Number 1, Page 1
[23]
K. Mondon, M. Zeisser-Labouèbe, R. Gurny, and M. Möller
European Journal of Pharmaceutics and Biopharmaceutics, 2011, Volume 77, Number 1, Page 56
[24]
Slim Azouzi, Sandrine Morandat, and Karim El Kirat
Langmuir, 2011, Volume 27, Number 15, Page 9465
[25]
Samar Hamdy, Azita Haddadi, Anooshirvan Shayeganpour, Aws Alshamsan, Hamidreza Montazeri Aliabadi, and Afsaneh Lavasanifar
The AAPS Journal, 2011, Volume 13, Number 2, Page 159
[26]
Gert Fricker, Torsten Kromp, Armin Wendel, Alfred Blume, Jürgen Zirkel, Herbert Rebmann, Constanze Setzer, Ralf-Olaf Quinkert, Frank Martin, and Christel Müller-Goymann
Pharmaceutical Research, 2010, Volume 27, Number 8, Page 1469

Comments (0)

Please log in or register to comment.
Log in