Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Editor-in-Chief: /


IMPACT FACTOR 2016: 1.260
5-year IMPACT FACTOR: 1.506

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.615
Source Normalized Impact per Paper (SNIP) 2016: 0.470

Online
ISSN
1689-1392
See all formats and pricing
More options …
Volume 14, Issue 2 (Jun 2009)

A consensus map of chromosome 6R in rye (Secale cereale L.)

Stefan Stojałowski / Beata Myśków / Paweł Milczarski / Piotr Masojć
Published Online: 2009-03-13 | DOI: https://doi.org/10.2478/s11658-008-0042-5

Abstract

Four F2 mapping populations derived from crosses between rye inbred lines DS2×RXL10, 541×Ot1-3, S120×S76 and 544×Ot0-20 were used to develop a consensus map of chromosome 6R. Thirteen marker loci that were polymorphic in more than one mapping population constituted the basis for the alignment of the four maps using the JoinMap v. 3.0 software package. The consensus map consists of 104 molecular marker loci including RFLPs, RAPDs, AFLPs, SSRs, ISSRs, SCARs, STSs and isozymes. The average distance between the marker loci is 1.3 cM, and the total map length is 135.5 cM. This consensus map may be used as a source of molecular markers for the rapid development of new maps of chromosome 6R in any mapping population.

Keywords: Rye; Consensus map; Molecular markers

  • [1] Geiger, H.H. Strategies of hybrid rye breeding. Vortr. Pflanzenzüchtg. 71 (2007) 1–5. Google Scholar

  • [2] Devos, K.M., Atkinson, M.D., Chinoy, C.N., Francis, H.A., Harcourt, R.L., Koebner, R.M.D., Liu, C.J., Masojć, P., Xie, D.X. and Gale, M.D. Chromosomal rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet. 85 (1993) 673–680. http://dx.doi.org/10.1007/BF00225004CrossrefGoogle Scholar

  • [3] Philipp, U., Wehling, P. and Wricke, G. A linkage map of rye. Theor. Appl. Genet. 88 (1994) 243–248. http://dx.doi.org/10.1007/BF00225904CrossrefGoogle Scholar

  • [4] Loarce, Y., Hueros, G. and Ferrer, E. A molecular linkage map of rye. Theor. Appl. Genet. 93 (1996) 1112–1118. http://dx.doi.org/10.1007/BF00230133CrossrefGoogle Scholar

  • [5] Korzun, V., Malyshev, S., Kartel, N., Westermann, T., Weber, W.E. and Börner, A. A genetic linkage map of rye (Secale cereale L.). Theor. Appl. Genet. 96 (1998) 203–208. http://dx.doi.org/10.1007/s001220050728CrossrefGoogle Scholar

  • [6] Börner, A. and Korzun, V. A consensus linkage map of rye (Secale cereale L.) including 374 RFLPs, 24 isozymes and 15 gene loci. Theor. Appl. Genet. 97 (1998) 1279–1288. http://dx.doi.org/10.1007/s001220051020CrossrefGoogle Scholar

  • [7] Korzun, V., Malyshev, S., Voylokov, A.V. and Börner, A. A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor. Appl. Genet. 102 (2001) 709–717. http://dx.doi.org/10.1007/s001220051701CrossrefGoogle Scholar

  • [8] Saal, B. and Wricke, G. Clustering of amplified fragment lenght polymorphism markers in a linkage map of rye (Secale cereale L.). Plant Breed. 121 (2002) 117–123. http://dx.doi.org/10.1046/j.1439-0523.2002.00698.xCrossrefGoogle Scholar

  • [9] Senft, P. and Wricke, G. An extended genetic map of rye (Secale cereale L.). Plant Breed. 115 (1996) 508–510. http://dx.doi.org/10.1111/j.1439-0523.1996.tb00966.xCrossrefGoogle Scholar

  • [10] Ma, X-F, Wanous, M.K., Houchins, K., Rodriguez Milla, M.A., Goicoechea, P.G. and Wang Z., Molecular linkage mapping in rye (Secale cereale L.). Theor. Appl. Genet. 102 (2001) 517–523. http://dx.doi.org/10.1007/s001220051676CrossrefGoogle Scholar

  • [11] Hackauf, B. and Wehling, P. Development of microsatellite markers in rye: map construction. Plant Breed. Seed Sci. 48 (2003) 143–151. Google Scholar

  • [12] Khlestkina, E.K., Than, M.H.M., Pestsova, E.G., Röder, M.S., Malyshev, S.V., Korzun, V. and Börner A. Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theor. Appl. Genet. 109 (2004) 725–732. http://dx.doi.org/10.1007/s00122-004-1659-zCrossrefGoogle Scholar

  • [13] Milczarski, P., Banek-Tabor, A., Lebiecka, K., Stojałowski, S., Myśków, B. and Masojć P., New genetic map of rye composed of PCR-based molecular markers and its alignment with the reference map of the DS2 × RXL10 intercross. J. Appl. Genet. 48 (2007) 11–24. CrossrefGoogle Scholar

  • [14] Börner, A., Korzun, V., Voylokov, A.V., Worland, A.J. and Weber, W.E. Genetic mapping of quantitative trait loci in rye (Secale cereale L.). Euphytica 116 (2000) 203–209. http://dx.doi.org/10.1023/A:1004052505692CrossrefGoogle Scholar

  • [15] Miedaner, T., Glass, C., Dreyer, F., Wilde, P., Wortmann, H. and Geiger H.H. Mapping of genes for male-fertility restoration in ‘Pampa’ CMS winter rye (Secale cereale L.). Theor. Appl. Genet. 101 (2000) 1226–1233. http://dx.doi.org/10.1007/s001220051601CrossrefGoogle Scholar

  • [16] Miftahudin, Scoles, G.J. and Gustafson, J.P. AFLP markers tightly linked to the aluminium-tolerance gene Alt3 in rye (Secale cereale L.) Theor. Appl. Genet. 104 (2002) 626–631. http://dx.doi.org/10.1007/s00122-001-0782-3CrossrefGoogle Scholar

  • [17] Milczarski, P. and Masojć, P. Interval mapping of genes controlling growth of rye plants. Plant Breed. Seed Sci. 48 (2003) 135–142. Google Scholar

  • [18] Masojć, P. and Milczarski P. Mapping QTLs for alpha-amylase activity in rye grain. J. Appl. Genet. 46 (2005) 115–123. Google Scholar

  • [19] Masojć, P., Banek-Tabor, A., Milczarski, P. and Twardowska, M. QTLs for resistance to preharvest sprouting in rye (Secale cereale L.) J. Appl. Genet. 48 (2007) 211–217. CrossrefWeb of ScienceGoogle Scholar

  • [20] Somers, D.J., Isaac, P. and Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.) Theor. Appl. Genet. 109 (2004) 1105–1114. http://dx.doi.org/10.1007/s00122-004-1740-7CrossrefGoogle Scholar

  • [21] Wenzl, P., Li, H., Carling, J., Zhou, M., Raman, H., Paul, E., Hearnden, P., Maier, Ch., Xia, L., Caig, V., Ovesna, J., Cakir, M., Poulsen, D., Wang, J., Raman, R., Smith, K.P., Muehlbauer, G.J., Chalmers, K.J., Kleinhofs, A., Huttner, E. and Kilian, A. A high density consensus map of barley linking DarT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7 (2006) 206. http://dx.doi.org/10.1186/1471-2164-7-206CrossrefGoogle Scholar

  • [22] Hearnden, P.R., Eckermann, P.J., McMichael, G.L., Hayden, M.J., Eglinton, J.K. and Chalmers K.J. A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theor. Appl. Genet. 115 (2007) 383–391. http://dx.doi.org/10.1007/s00122-007-0572-7CrossrefGoogle Scholar

  • [23] Myśków, B., Masojć, P., Banek-Tabor, A. and Szołkowski A. Genetic diversity of inbred rye lines evaluated by RAPD analysis. J. Appl. Genet. 42 (2001) 1–14. Google Scholar

  • [24] Masojć, P., Myśków, B. and Milczarski P. Extending a RFLP-based genetic map of rye using random amplified polymorphic DNA (RAPD) and isozyme markers. Theor. Appl. Genet. 102 (2001) 1273–1279. http://dx.doi.org/10.1007/s001220000512CrossrefGoogle Scholar

  • [25] Bednarek, P.T., Masojć, P., Lewandowska, R. and Myśków, B. Saturating rye genetic map with amplified fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) markers. J. Appl. Genet. 44 (2003) 21–33. Google Scholar

  • [26] Stojałowski, S., Milczarski, P. and Masojć, P. Usefulness of ISSR markers for identification of inbred lines and mapping of rye genome. Biul. Inst. Hod. Aklim. Rośl. 231 (2004) 237–246. Google Scholar

  • [27] Stojałowski, S., Jaciubek, M., Masojć, P. Rye SCAR markers for male fertility restoration in the P cytoplasm are also applicable to marker-assisted selection in the C cytoplasm. J. Appl. Genet. 46 (2005) 371–373. Google Scholar

  • [28] Van Ooijen, J.W., Voorrips, R.E., JoinMap® v. 3.0, Software for the calculation of genetic linkage maps. Plant Research International B.V. Wageningen, the Netherlands, 2001. Google Scholar

  • [29] Doligez, A., Adam-Blondon, A.F., Cipriani, G., Di Gaspero, G., Laucou, V., Merdinoglu, D., Meredith, C.P., Riaz, S., Roux, C. and This, P. An itegrated SSR map of grapevine based on five mapping populations Theor. Appl. Genet. 113 (2006) 369–382. http://dx.doi.org/10.1007/s00122-006-0295-1CrossrefGoogle Scholar

About the article

Published Online: 2009-03-13

Published in Print: 2009-06-01


Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-008-0042-5.

Export Citation

© 2008 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Paweł Milczarski, Hanna Bolibok-Brągoszewska, Beata Myśków, Stefan Stojałowski, Katarzyna Heller-Uszyńska, Magdalena Góralska, Piotr Brągoszewski, Grzegorz Uszyński, Andrzej Kilian, Monika Rakoczy-Trojanowska, and Samuel P. Hazen
PLoS ONE, 2011, Volume 6, Number 12, Page e28495
[3]
Meng Li, Zongxiang Tang, Ling Qiu, Yangyang Wang, Shuyao Tang, and Shulan Fu
Journal of Genetics and Genomics, 2016, Volume 43, Number 4, Page 199
[4]
Sandra Święcka, Marcin Berdzik, and Beata Myśków
Journal of Applied Genetics, 2014, Volume 55, Number 4, Page 469
[5]
Beata Myśków, Monika Hanek, Aneta Banek-Tabor, Robert Maciorowski, and Stefan Stojałowski
Journal of Applied Genetics, 2014, Volume 55, Number 1, Page 15
[6]
Jianjian Li, Takashi R. Endo, Mika Saito, Goro Ishikawa, Toshiki Nakamura, and Shuhei Nasuda
Chromosoma, 2013, Volume 122, Number 6, Page 555
[7]
Dong-Dong YIN, Diao-Guo AN, Li-Hui LI, and Hong-Xing XU
Chinese Journal of Eco-Agriculture, 2011, Volume 19, Number 2, Page 477

Comments (0)

Please log in or register to comment.
Log in