Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

See all formats and pricing
More options …
Volume 14, Issue 2


The ceramide structure of GM1 ganglioside differently affects its recovery in low-density membrane fractions prepared from HL-60 cells with or without triton-X100

Mirosława Panasiewicz
  • Departments of Biochemistry and Molecular Biology, Medical Center of Postgraduate Education, Marymoncka 99, 01-813, Warszawa, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hanna Domek
  • Departments of Biochemistry and Molecular Biology, Medical Center of Postgraduate Education, Marymoncka 99, 01-813, Warszawa, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Grażyna Hoser
  • Department of Clinical Cytology, Medical Center of Postgraduate Education, Marymoncka 99, 01-813, Warszawa, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Natalia Fedoryszak
  • Departments of Biochemistry and Molecular Biology, Medical Center of Postgraduate Education, Marymoncka 99, 01-813, Warszawa, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maciej Kawalec
  • Department of Clinical Cytology, Medical Center of Postgraduate Education, Marymoncka 99, 01-813, Warszawa, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tadeusz Pacuszka
  • Departments of Biochemistry and Molecular Biology, Medical Center of Postgraduate Education, Marymoncka 99, 01-813, Warszawa, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-03-13 | DOI: https://doi.org/10.2478/s11658-008-0043-4


Gangliosides are characteristically enriched in various membrane domains that can be isolated as low density membrane fraction insoluble in detergents (detergent-resistant membranes, DRMs) or obtained after homogenization and sonication in 0.5 M sodium carbonate (low-density membranes, LDMs). We assessed the effect of the ceramide structure of four [3H]-labeled GM1 ganglioside molecular species (GM1s) taken up by HL-60 cells on their occurrence in LDMs, and compared it with our previous observations for DRMs. All GM1s contained C18 sphingosine, which was acetylated in GM1(18:1/2) or acylated with C14, C18 or C18:1 fatty acids (Fas)

Keywords: Ceramide; Gangliosides; GM1; Membrane domains; Myristic acid; Sonication

  • [1] Hakomori, S. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu. Rev. Biochem. 50 (1981) 733–764. http://dx.doi.org/10.1146/annurev.bi.50.070181.003505CrossrefGoogle Scholar

  • [2] Wiegandt, H. Gangliosides. In: New Comprehensive Biochemistry (Wiegandt, H. Ed.) Elsevier, Amsterdam, Vol. 10, 1985, 199–260. Google Scholar

  • [3] Degroote, S., Wolthoorn, J. and van Meer, G. The cell biology of glycosphingolipids. Semin. Cell Develop. Biol. 15 (2004) 375–387. http://dx.doi.org/10.1016/j.semcdb.2004.03.007CrossrefGoogle Scholar

  • [4] Spiegel, S., Kassis, S., Wilchek, M. and Fishman, P.H. Direct visualization of redistribution and capping of fluorescent gangliosides on lymphocytes. J. Cell Biol. 99 (1984) 1575–1581. http://dx.doi.org/10.1083/jcb.99.5.1575CrossrefGoogle Scholar

  • [5] Fujita, A., Cheng, J., Hirakawa, M., Furukawa, K., Kusunoki, S. and Fujimoto, T. Gangliosides GM1 and GM3 in the living cell membrane form clusters susceptible to cholesterol depletion and chilling. Mol. Biol. Cell 18 (2007) 2112–2122. http://dx.doi.org/10.1091/mbc.E07-01-0071CrossrefWeb of ScienceGoogle Scholar

  • [6] Thorne, R.F., Mhaidat, N.M., Ralston, K.J. and Burns, G.F. Shed gangliosides provide detergent-independent evidence for Type-3 glycosynapse. Biochem. Biophys. Res. Commun. 356 (2007) 306–311. http://dx.doi.org/10.1016/j.bbrc.2007.02.139CrossrefWeb of ScienceGoogle Scholar

  • [7] Iwabuchi, K., Handa, K. and Hakomori, S. Separation of “glycosphingolipid signaling domain” from caveolin-containing membrane fraction in mouse melanoma B16 cells and its role in cell adhesion coupled with signaling. J. Biol. Chem. 273 (1998) 33766–33773. http://dx.doi.org/10.1074/jbc.273.50.33766CrossrefGoogle Scholar

  • [8] Hakomori, S. Cell adhesion/recognition and signal transduction through glycosphingolipid microdomain. Glycoconjugate J. 17 (2000) 143–151. http://dx.doi.org/10.1023/A:1026524820177CrossrefGoogle Scholar

  • [9] Hakomori, S. The glycosynapse. Proc. Nat. Acad. Sci. U.S.A. 99 (2002) 225–232. http://dx.doi.org/10.1073/pnas.012540899CrossrefGoogle Scholar

  • [10] Simons, M., Friedrichson, T., Schultz, J.B., Pitto, M., Masserini, M. and Kurzhalia, T. Exogenous administration of gangliosides displaces GPI-anchored proteins from lipid microdomains in living cells. Mol. Cell. Biol. 10 (1999) 3187–3193. CrossrefGoogle Scholar

  • [11] Kim, H.Y., Park, S.J., Joe, E.H and Jou, I. Raft-mediated Src homology 2 domain-containing protein-tyrosine phosphatase 2 (SHP-2) regulation in microglia. J. Biol. Chem. 281 (2006) 11872–11878. http://dx.doi.org/10.1074/jbc.M511706200Google Scholar

  • [12] Kabayama, K., Sato, T., Saito, K., Loberto, N., Prinetti, A., Sonnino, S., Kinjo, M., Igarashi, Y. and Inokuchi, J. Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc. Nat. Acad. Sci. U.S.A. 104 (2007) 13678–13683. http://dx.doi.org/10.1073/pnas.0703650104CrossrefGoogle Scholar

  • [13] Odintsova, E., Butters, T.D., Monti, E., Sprong, H., Van Meer, G. and Berditchevski, F. Gangliosides play an important role in the organization of CD82-enriched microdomains. Biochem. J. 400 (2006) 315–325. http://dx.doi.org/10.1042/BJ20060259CrossrefGoogle Scholar

  • [14] Mitsuda, T., Furukawa, K., Fukumoto, S., Miyazaki, H., Urano, T. and Furukawa, K. Overexpression of ganglioside GM1 results in the dispersion of platelet-derived growth factor receptor from glycolipid-enriched microdomains and in the suppression of cell growth signals. J. Biol. Chem. 277 (2002) 11239–11246. http://dx.doi.org/10.1074/jbc.M107756200Google Scholar

  • [15] Nishio, M., Fukumoto, S., Furukawa, K., Ichimura, A., Miyazaki, H., Kusunoki, S., Urano, T. and Furukawa, K. Overexpressed GM1 suppresses nerve growth factor (NGF) signals by modulating the intracellular localization of NGF receptors and membrane fluidity in PC18 cells. J. Biol. Chem. 279 (2004) 33368–33378. http://dx.doi.org/10.1074/jbc.M403816200CrossrefGoogle Scholar

  • [16] Panasiewicz, M., Domek, H., Hoser, G., Kawalec, M. and Pacuszka, T. Structure of the ceramide moiety of GM1 ganglioside determines its occurrence in different detergent-resistant membrane domains. Biochemistry 42 (2003) 6608–6619. http://dx.doi.org/10.1021/bi0206309Google Scholar

  • [17] Heerklotz, H. Triton promotes domain formation in lipid raft mixtures. Biophys. J. 83 (2002) 2693–2701. http://dx.doi.org/10.1016/S0006-3495(02)75278-8CrossrefGoogle Scholar

  • [18] Schuck, S., Honsho, M., Ekroos, K., Shevchenko, S. and Simons, K. Resistance of cell membranes to different detergents. Proc. Nat. Acad. Sci. U.S.A. 100 (2003) 5795–5800. http://dx.doi.org/10.1073/pnas.0631579100CrossrefGoogle Scholar

  • [19] Shogomori, H. and Brown, D.A. Use of detergents to study membrane rafts: the good, the bad, and the ugly. Biol. Chem. 384 (2003) 1259–1263. http://dx.doi.org/10.1515/BC.2003.139CrossrefGoogle Scholar

  • [20] Lichtenberg, D., Goñi, F.M. and Heerklotz, H. Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 30 (2005) 430–436. http://dx.doi.org/10.1016/j.tibs.2005.06.004CrossrefGoogle Scholar

  • [21] Song, K.S., Li S, Okamoto, T., Quilliam, L., Sargiacomo, M. and Lisanti, M.P. Co-purification and direct interaction of ras with caveolin, an integral membrane protein of caveolae microdomains. J. Biol. Chem. 271 (1996) 9690–9697. http://dx.doi.org/10.1074/jbc.271.16.9690CrossrefGoogle Scholar

  • [22] Saqr, H.E., Pearl, D.K. and Yates, A.J. A review and predictive models of ganglioside uptake by biological membranes. J. Neurochem. 61 (1993) 395–411. Google Scholar

  • [23] Schwarzmann, G. Uptake and metabolism of exogenous glycosphingolipids by cultured cells. Semin. Cell Develop. Biol. 12 (2001) 163–171. http://dx.doi.org/10.1006/scdb.2000.0233CrossrefGoogle Scholar

  • [24] Yanagida, M., Nakayama, H., Yoshizaki, F., Fujimura, T., Takamori, K., Ogawa, H. and Iwabuchi, K. Proteomic analysis of plasma membrane lipid rafts of HL-60 cells. Proteomics 7 (2007) 2398–2409. http://dx.doi.org/10.1002/pmic.200700056CrossrefGoogle Scholar

  • [25] Sonnino, S., Chigorno, V. and Tettamanti, G. Preparation of radioactive gangliosides, 3H or 14C isotopically labeled at oligosaccharide or ceramide moieties. Methods Enzymol. 311 (2000) 639–656. http://dx.doi.org/10.1016/S0076-6879(00)11109-7CrossrefGoogle Scholar

  • [26] Wilson, B.S., Steinberg, S.L., Liederman, K., Pfeiffer, J.R., Surviladze, Z., Zhang, J., Samelson, E., Yang, L., Kotula, P.G. and Oliver, J.M. Markers for detergent-resistant lipid rafts occupy distinct and dynamic domains in native membranes. Mol. Biol. Cell 15 (2004) 2580–2592. http://dx.doi.org/10.1091/mbc.E03-08-0574CrossrefGoogle Scholar

  • [27] Ermini, L., Secciani, F., La Sala, G.B., Sabatini, L., Fineschi, D., Hale, G. and Rosami, F. Different glycoforms of the human GPI-anchored antygen CD52 associate differently with lipid microdomains in leukocytem and sperm membranes. Biochem. Biophys. Res. Commun. 338 (2007) 1275–1283. http://dx.doi.org/10.1016/j.bbrc.2005.10.082Google Scholar

  • [28] Foster, L.J., de Hoog, C.L. and Mann, M. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc. Nat. Acad. Sci. U.S.A. 100 (2003) 5813–5818. http://dx.doi.org/10.1073/pnas.0631608100CrossrefGoogle Scholar

  • [29] Pike, L. Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J. Lipid. Res. 47 (2006) 1597–1598. http://dx.doi.org/10.1194/jlr.E600002-JLR200CrossrefGoogle Scholar

  • [30] Brown, D. A. Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology 21 (2006) 430–439. http://dx.doi.org/10.1152/physiol.00032.2006CrossrefGoogle Scholar

  • [31] Brügger, B., Glass, B., Haberkant, P., Leibrecht, I., Wieland, F.T. and Kräusslich, H.G. The HIV lipidome: a raft with an unusual composition. Proc. Nat. Acad. Sci. U.S.A. 103 (2006) 2641–2646. http://dx.doi.org/10.1073/pnas.0511136103CrossrefGoogle Scholar

  • [32] Fridriksson, E.K., Shipkova, P., Sheets, E.D, Holowka, D., Baird B. and McLafferty, F.W. Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry. Biochemistry 38 (1999) 8056–8063. http://dx.doi.org/10.1021/bi9828324CrossrefGoogle Scholar

  • [33] Pitto, M., Parenti, M., Guzzi, F., Magni, F., Palestini, P., Ravasi, D. and Masserini, M. Palmitic is the main fatty acid carried by lipids of detergentresistant membrane fractions from neural and non-neural cells. Neurochem. Res. 27 (2002) 729–734. http://dx.doi.org/10.1023/A:1020240520465CrossrefGoogle Scholar

  • [34] Rex, M., Elliot, M.H., Brush, S. and Anderson, R.E. Detailed characterization of the lipid composition of detergent-resistant membranes from photoreceptor rod outer segment membranes. Invest. Ophtalmol. Vis. Sci. 46 (2005) 1147–1154. http://dx.doi.org/10.1167/iovs.04-1207CrossrefGoogle Scholar

  • [35] Brown, D.A. and London, E. Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J. Biol. Chem. 275 (2000) 17221–17224. http://dx.doi.org/10.1074/jbc.R000005200CrossrefGoogle Scholar

  • [36] Pike, L., Han, X., Chung, K.N. and Gross, R.W. Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry 41 (2002) 2075–2088. http://dx.doi.org/10.1021/bi0156557CrossrefGoogle Scholar

  • [37] Kim, K.B., Kim, S.I., Choo, H.J, Kim, J.H. and Ko, Y.G. Two-dimensional electrophoretic analysis reveals that lipid rafts are intact at physiological temperature. Proteomics 4 (2004) 3527–3535. http://dx.doi.org/10.1002/pmic.200401001CrossrefGoogle Scholar

  • [38] Babiychuk, E.B. and Draeger, A. Biochemical characterization of detergent-resistant membranes: a systematic approach. Biochem. J. 397 (2006) 407–416. http://dx.doi.org/10.1042/BJ20060056CrossrefGoogle Scholar

  • [39] Palestini, P., Alietta, M., Sonnino, S., Tettamanti, G., Thompson, T.E. and Tillack, T.W. Gel phase preference of ganglioside GM1 at low concentration in two-component, two-phase phosphatidylcholine bilayers depends upon the ceramide moiety. Biochim. Biophys. Acta 1235 (1995) 221–230. http://dx.doi.org/10.1016/0005-2736(95)80008-4CrossrefGoogle Scholar

About the article

Published Online: 2009-03-13

Published in Print: 2009-06-01

Citation Information: Cellular and Molecular Biology Letters, Volume 14, Issue 2, Pages 175–189, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-008-0043-4.

Export Citation

© 2008 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Kouji Tanaka, Masaki Yamada, Keiko Tamiya-Koizumi, Reiji Kannagi, Toshifumi Aoyama, Atsushi Hara, and Mamoru Kyogashima
Glycoconjugate Journal, 2011, Volume 28, Number 2, Page 67

Comments (0)

Please log in or register to comment.
Log in