Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Editor-in-Chief: /

IMPACT FACTOR 2016: 1.260
5-year IMPACT FACTOR: 1.506

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.615
Source Normalized Impact per Paper (SNIP) 2016: 0.470

See all formats and pricing
More options …
Volume 14, Issue 2 (Jun 2009)

Perturbation of the lipid phase of a membrane is not involved in the modulation of MRP1 transport activity by flavonoids

Olga Wesołowska / Andrzej Hendrich / Barbara Łania-Pietrzak / Jerzy Wiśniewski / Joseph Molnar / Imre Ocsovszki / Krystyna Michalak
Published Online: 2009-03-13 | DOI: https://doi.org/10.2478/s11658-008-0044-3


The expression of transmembrane transporter multidrug resistance-associated protein 1 (MRP1) confers the multidrug-resistant phenotype (MDR) on cancer cells. Since the activity of the other MDR transporter, P-glycoprotein, is sensitive to membrane perturbation, we aimed to check whether the changes in lipid bilayer properties induced by flavones (apigenin, acacetin) and flavonols (morin, myricetin) were related to their MRP1 inhibitory activity. All the flavonoids inhibited the efflux of MRP1 fluorescent substrate from human erythrocytes and breast cancer cells. Morin was also found to stimulate the ATPase activity of erythrocyte ghosts. All flavonoids intercalated into phosphatidylcholine bilayers as judged by differential scanning calorimetry and fluorescence spectroscopy with the use of two carbocyanine dyes. The model of an intramembrane localization for flavones and flavonols was proposed. No clear relationship was found between the membrane-perturbing activity of flavonoids and their potency to inhibit MRP1. We concluded that mechanisms other than perturbation of the lipid phase of membranes were responsible for inhibition of MRP1 by the flavonoids.

Keywords: Flavonoids; Multidrug resistance-associated protein 1 (MRP1); Lipid bilayer; Carbocyanine dyes

  • [1] Hipfner, D.R., Deeley, R.G. and Cole, S.P. Structural, mechanistic and clinical aspects of MRP1. Biochim. Biophys. Acta 1461 (1999) 359–376. http://dx.doi.org/10.1016/S0005-2736(99)00168-6CrossrefGoogle Scholar

  • [2] Keppler, D., Leier, I. and Jedlitschky, G. Transport of glutathione conjugates and glucuronides by the multidrug resistance proteins MRP1 and MRP2. Biol. Chem. 378 (1997) 787–791. Google Scholar

  • [3] Kamp, D. and Haest, C.W. Evidence for a role of the multidrug resistance protein (MRP) in the outward translocation of NBD-phospholipids in the erythrocyte membrane. Biochim. Biophys. Acta 1372 (1998) 91–101. http://dx.doi.org/10.1016/S0005-2736(98)00049-2CrossrefGoogle Scholar

  • [4] Dekkers, D.W., Comfurius, P., van Gool, R.G., Bevers, E.M. and Zwaal, R.F. Multidrug resistance protein 1 regulates lipid asymmetry in erythrocyte membranes. Biochem. J. 350 (2000) 531–535. http://dx.doi.org/10.1042/0264-6021:3500531CrossrefGoogle Scholar

  • [5] Raggers, R.J., van Helvoort, A., Evers, R. and van Meer, G.R.J. The human multidrug resistance protein MRP1 translocates sphingolipid analogs across the plasma membrane. J. Cell. Sci. 112 (1999) 415–422. Google Scholar

  • [6] Harborne, J.B. and Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 55 (2000) 481–504. http://dx.doi.org/10.1016/S0031-9422(00)00235-1CrossrefGoogle Scholar

  • [7] Dixon, R.A. and Ferreira, D. Genistein. Phytochemistry 60 (2000) 205–211. http://dx.doi.org/10.1016/S0031-9422(02)00116-4CrossrefGoogle Scholar

  • [8] Heim, K.E., Tagliaferro, A.R. and Bobilya, D.J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 13 (2002) 572–584. http://dx.doi.org/10.1016/S0955-2863(02)00208-5CrossrefGoogle Scholar

  • [9] Leslie, E.M., Mao, Q., Oleschuk, C.J., Deeley, R.G. and Cole, S.P. Modulation of multidrug resistance protein 1 (MRP1/ABCC1) transport and ATPase activities by interaction with dietary flavonoids. Mol. Pharmacol. 59 (2001) 1171–1180. Google Scholar

  • [10] Nguyen, H., Zhang, S. and Morris, M.E. Effect of flavonoids on MRP1-mediated transport in Panc-1 cells. J. Pharm. Sci. 92 (2003) 250–257. http://dx.doi.org/10.1002/jps.10283CrossrefGoogle Scholar

  • [11] Bobrowska-Hagerstrand, M., Wrobel, A., Mrowczynska, L., Soderstrom, T., Shirataki, Y., Motohashi, N., Molnar, J., Michalak, K. and Hagerstrand, H. Flavonoids as inhibitors of MRP1-like efflux activity in human erythrocytes. A structure-activity relationship study. Oncol. Res. 13 (2003) 463–469. Google Scholar

  • [12] Lania-Pietrzak, B., Michalak, K., Hendrich, A.B., Mosiadz, D., Grynkiewicz, G., Motohashi, N. and Shirataki, Y. Modulation of MRP1 protein transport by plant, and synthetically modified flavonoids. Life Sci. 77 (2005) 1879–1891. http://dx.doi.org/10.1016/j.lfs.2005.04.005CrossrefGoogle Scholar

  • [13] Critchfield, J.W., Welsh, C.J., Phang, J.M. and Yeh, G.C. Modulation of adriamycin accumulation and efflux by flavonoids in HCT-15 colon cells. Activation of P-glycoprotein as a putative mechanism. Biochem. Pharmacol. 48 (1994 1437–1445. http://dx.doi.org/10.1016/0006-2952(94)90568-1CrossrefGoogle Scholar

  • [14] Zhang, S. and Morris, M.E. Effects of the flavonoids biochanin A, morin, phloretin, and silymarin on P-glycoprotein-mediated transport. J. Pharmacol. Exp. Ther. 304 (2003) 1258–1267. http://dx.doi.org/10.1124/jpet.102.044412CrossrefGoogle Scholar

  • [15] Imai, Y., Tsukahara, S., Asada, S. and Sugimoto, Y. Phytoestrogens/flavonoids reverse breast cancer resistance protein/ABCG2-mediated multidrug resistance. Cancer Res. 64 (2004) 4346–4352. http://dx.doi.org/10.1158/0008-5472.CAN-04-0078CrossrefGoogle Scholar

  • [16] Ferte, J. Analysis of the tangled relationships between P-glycoprotein-mediated multidrug resistance and the lipid phase of the cell membrane. Eur. J. Biochem. 267 (2000) 277–294. http://dx.doi.org/10.1046/j.1432-1327.2000.01046.xCrossrefGoogle Scholar

  • [17] Hendrich, A.B. and Michalak, K. Lipids as a target for drugs modulating multidrug resistance of cancer cells. Curr. Drug Targets 4 (2003) 23–30. http://dx.doi.org/10.2174/1389450033347172CrossrefGoogle Scholar

  • [18] Zordan-Nudo, T., Ling, V., Liu, Z. and Georges, E. Effects of nonionic detergents on P-glycoprotein drug binding and reversal of multidrug resistance. Cancer Res. 53 (1993) 5994–6000. Google Scholar

  • [19] Ford, J.M. and Hait, W.N. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol. Rev. 42 (1990) 155–199. Google Scholar

  • [20] Wadkins, R.M. and Houghton, P.J. The role of drug-lipid interactions in the biological activity of modulators of multi-drug resistance. Biochim. Biophys. Acta 1153 (1993) 225–236. http://dx.doi.org/10.1016/0005-2736(93)90409-SCrossrefGoogle Scholar

  • [21] Drori, S., Eytan, G.D. and Assaraf, Y.G. Potentiation of anticancer-drug cytotoxicity by multidrug-resistance chemosensitizers involves alterations in membrane fluidity leading to increased membrane permeability. Eur. J. Biochem. 228 (1995) 1020–1029. http://dx.doi.org/10.1111/j.1432-1033.1995.tb20352.xCrossrefGoogle Scholar

  • [22] Pajeva, I.K., Wiese, M., Cordes, H.P. and Seydel, J.K. Membrane interactions of some catamphiphilic drugs and relation to their multidrug-resistance-reversing ability. J. Cancer Res. Clin. Oncol. 122 (1996) 27–40. http://dx.doi.org/10.1007/BF01203070CrossrefGoogle Scholar

  • [23] Hendrich, A.B., Wesolowska, O., Motohashi, N., Molnar, J. and Michalak, K. New phenothiazine-type multidrug resistance modifiers: anti-MDR activity versus membrane perturbing potency. Biochem. Biophys. Res. Commun. 304 (2003) 260–265. http://dx.doi.org/10.1016/S0006-291X(03)00580-1CrossrefGoogle Scholar

  • [24] Bobrowska-Hagerstrand, M., Wrobel, A., Mrowczynska, L., Soderstrom, T. and Hagerstrand, H. Modulation of MRP1-like efflux activity in human erythrocytes caused by membrane perturbing agents. Mol. Membr. Biol. 20 (2003) 255–259. http://dx.doi.org/10.1080/0968768031000106320Google Scholar

  • [25] Alqawi, O. and Georges, E. The multidrug resistance protein ABCC1 drug-binding domains show selective sensitivity to mild detergents. Biochem. Biophys. Res. Commun. 303 (2003) 1135–1141. http://dx.doi.org/10.1016/S0006-291X(03)00492-3Google Scholar

  • [26] Marbeuf-Gueye, C., Stierle, V., Sudwan, P., Salerno, M. and Garnier-Suillerot, A. Perturbation of membrane microdomains in GLC4 multidrug-resistant lung cancer cells-modification of ABCC1 (MRP1) localization and functionality. FEBS J. 274 (2007) 1470–1480. http://dx.doi.org/10.1111/j.1742-4658.2007.05688.xGoogle Scholar

  • [27] Klappe, K., Hinrichs, J.W., Kroesen, B.J., Sietsma, H. and Kok, J.W. MRP1 and glucosylceramide are coordinately over expressed and enriched in rafts during multidrug resistance acquisition in colon cancer cells. Int. J. Cancer 110 (2004) 511–522. http://dx.doi.org/10.1002/ijc.20140CrossrefGoogle Scholar

  • [28] Hendrich, A.B. Flavonoid-membrane interactions: possible consequences for biological effects of some polyphenolic compounds. Acta Pharmacol. Sin. 27 (2006) 27–40. http://dx.doi.org/10.1111/j.1745-7254.2006.00238.xCrossrefGoogle Scholar

  • [29] Trompier, D., Baubichon-Cortay, H., Chang, X.B., Maitrejean, M., Barron, D., Riordon, J.R. and Di Pietro, A. Multiple flavonoid-binding sites within multidrug resistance protein MRP1. Cell. Mol. Life Sci. 60 (2003) 1–14. http://dx.doi.org/10.1007/s000180300000Google Scholar

  • [30] Wu, C.P., Calcagno, A.M., Hladky, S.B., Ambudkar, S.V. and Barrand, M.A. Modulatory effects of plant phenols on human multidrug-resistance proteins 1, 4 and 5 (ABCC1, 4 and 5). FEBS J. 272 (2005) 4725–4740. http://dx.doi.org/10.1111/j.1742-4658.2005.04888.xCrossrefGoogle Scholar

  • [31] Steck, T.L. and Kant, J.A. Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes. Methods Enzymol. 31 (1973) 172–180. http://dx.doi.org/10.1016/0076-6879(74)31019-1CrossrefGoogle Scholar

  • [32] Lowry, O.H., Roserbrough, N.J., Farr, A.L. and Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193 (1951) 265–275. Google Scholar

  • [33] Rychlik, B., Balcerczyk, A., Klimczak, A. and Bartosz, G. The role of multidrug resistance protein 1 (MRP1) in transport of fluorescent anions across the human erythrocyte membrane. J. Membr. Biol. 193 (2003) 79–90. http://dx.doi.org/10.1007/s00232-002-2009-1CrossrefGoogle Scholar

  • [34] Van Veldhoven, P.P. and Mannaerts, G.P. Inorganic and organic phosphate measurements in the nanomolar range. Anal. Biochem. 161 (1987) 45–48. http://dx.doi.org/10.1016/0003-2697(87)90649-XCrossrefGoogle Scholar

  • [35] Ferreira, M.J., Gyemant, N., Madureira, A.M., Tanaka, M., Koos, K., Didziapetris, R. and Molnar, J. The effects of jatrophane derivatives on the reversion of MDR1-and MRP-mediated multidrug resistance in the MDAMB-231 (HTB-26) cell line. Anticancer Res. 25 (2005) 4173–4178. Google Scholar

  • [36] Matsumoto, Y., Takano, H., Kunishio, K., Nagao, S. and Fojo, T. Expression of drug resistance genes in VP-16 and mAMSA-selected human carcinoma cells. Jpn. J. Cancer Res. 92 (2001) 778–784. Google Scholar

  • [37] Pastan, I., Gottesman, M.M., Ueda, K., Lovelace, E., Rutherford, A.V. and Willingham, M.C. A retrovirus carrying an MDR1 cDNA confers multidrug resistance and polarized expression of P-glycoprotein in MDCK cells. Proc. Natl. Acad. Sci. USA 85 (1988) 4486–4490. http://dx.doi.org/10.1073/pnas.85.12.4486CrossrefGoogle Scholar

  • [38] Ghose, A.K., Pritchett, A. and Crippen, G.M. Atomic physicochemical parameters for three dimensional structure activity relationships III: modelling hydrophobic interactions. J. Comput. Chem. 9 (1988) 80–90. http://dx.doi.org/10.1002/jcc.540090111CrossrefGoogle Scholar

  • [39] Pulaski, L., Jedlitschky, G., Leier, I., Buchholz, U. and Keppler, D. Identification of the multidrug-resistance protein (MRP) as the glutathione-S-conjugate export pump of erythrocytes. Eur. J. Biochem. 241 (1996) 644–648. http://dx.doi.org/10.1111/j.1432-1033.1996.00644.xCrossrefGoogle Scholar

  • [40] Klokouzas, A., Wu, C.P., van Veen, H.W., Barrand, M.A. and Hladky, S.B. cGMP and glutathione-conjugate transport in human erythrocytes. Eur. J. Biochem. 270 (2003) 3696–3708. http://dx.doi.org/10.1046/j.1432-1033.2003.03753.xCrossrefGoogle Scholar

  • [41] Jedlitschky, G., Burchell, B. and Keppler, D. The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. J. Biol. Chem. 275 (2000) 30069–30074. http://dx.doi.org/10.1074/jbc.M005463200CrossrefGoogle Scholar

  • [42] Wesolowska, O., Mosiadz, D., Motohashi, N., Kawase, M. and Michalak, K. Phenothiazine maleates stimulate MRP1 transport activity in human erythrocytes. Biochim. Biophys. Acta 1720 (2005) 52–58. http://dx.doi.org/10.1016/j.bbamem.2005.11.011CrossrefGoogle Scholar

  • [43] McAleer, M.A., Breen, M.A., White, N.L. and Matthews, N. pABC11 (also known as MOAT-C and MRP5), a member of the ABC family of proteins, has anion transporter activity but does not confer multidrug resistance when over-expressed in human embryonic kidney 293 cells. J. Biol. Chem. 274 (1999) 23541–23548. http://dx.doi.org/10.1074/jbc.274.33.23541CrossrefGoogle Scholar

  • [44] Klokouzas, A., Barrand, M.A. and Hladky, S.B. Effects of clotrimazole on transport mediated by multidrug resistance associated protein 1 (MRP1) in human erythrocytes and tumour cells. FEBS Lett. 268 (2001) 6569–6577. Google Scholar

  • [45] Rychlik, B., Pulaski, L., Sokal, A., Soszynski, M. and Bartosz, G. Transport of organic anions by multidrug resistance-associated protein in the erythrocyte. Acta Biochim. Pol. 47 (2000) 763–772. Google Scholar

  • [46] Bobrowska-Hagerstrand, M., Wrobel, A., Rychlik, B., Bartosz, G., Soderstrom, T., Shirataki, Y., Motohashi, N., Molnar, J., Michalak, K. and Hagerstrand, H. Monitoring of MRP-like activity in human erythrocytes: inhibitory effect of isoflavones. Blood Cells Mol. Dis. 27 (2001) 894–900. http://dx.doi.org/10.1006/bcmd.2001.0459CrossrefGoogle Scholar

  • [47] van Zanden, J.J., Wortelboer, H.M., Bijlsma, S., Punt, A., Usta, M., Bladeren, P.J., Rietjens, I.M. and Cnubben, N.H. Quantitative structure activity relationship studies on the flavonoid mediated inhibition of multidrug resistance proteins 1 and 2. Biochem. Pharmacol. 69 (2005) 699–708. http://dx.doi.org/10.1016/j.bcp.2004.11.002CrossrefGoogle Scholar

  • [48] van Zanden, J.J., de Mul, A., Wortelboer, H.M., Usta, M., van Bladeren, P.J., Rietjens, I.M. and Cnubben, N.H. Reversal of in vitro cellular MRP1 and MRP2 mediated vincristine resistance by the flavonoid myricetin. Biochem. Pharmacol. 69 (2005) 1657–1665. http://dx.doi.org/10.1016/j.bcp.2005.03.001CrossrefGoogle Scholar

  • [49] Phang, J.M., Poore, C.M., Lopaczynska, J. and Yeh, G.C. Flavonol-stimulated efflux of 7,12-dimethylbenz(a)anthracene in multidrug-resistant breast cancer cells. Cancer Res. 53 (1993) 5977–5981. Google Scholar

  • [50] Castro, A.F. and Altenberg, G.A. Inhibition of drug transport by genistein in multidrug-resistant cells expressing P-glycoprotein. Biochem. Pharmacol. 53 (1997) 89–93. http://dx.doi.org/10.1016/S0006-2952(96)00657-0CrossrefGoogle Scholar

  • [51] Boumendjel, A., Di Pietro, A., Dumontet, C. and Barron, D. Recent advances in the discovery of flavonoids and analogs with high-affinity binding to P-glycoprotein responsible for cancer cell multidrug resistance. Med. Res. Rev. 22 (2002) 512–529. http://dx.doi.org/10.1002/med.10015CrossrefGoogle Scholar

  • [52] Ikegawa, T., Ohtani, H., Koyabu, N., Juichi, M., Iwase, Y., Ito, C., Furukawa, H., Naito, M., Tsuruo, T. and Sawada, Y. Inhibition of P-glycoprotein by flavonoid derivatives in adriamycin-resistant human myelogenous leukemia (K562/ADM) cells. Cancer Lett. 177 (2002) 89–93. http://dx.doi.org/10.1016/S0304-3835(01)00761-3CrossrefGoogle Scholar

  • [53] Conseil, G., Baubichon-Cortay, H., Dayan, G., Jault, J.M., Barron, D. and Di Pietro, A. Flavonoids: a class of modulators with bifunctional interactions at vicinal ATP-and steroid-binding sites on mouse P-glycoprotein. Proc. Natl. Acad. Sci. USA 95 (1998) 9831–9836. http://dx.doi.org/10.1073/pnas.95.17.9831CrossrefGoogle Scholar

  • [54] Hooijberg, J.H., Pinedo, H.M., Vrasdonk, C., Priebe, W., Lankelma, J. and Broxterman, H.J. The effect of glutathione on the ATPase activity of MRP1 in its natural membranes. FEBS Lett. 469 (2000) 47–51. http://dx.doi.org/10.1016/S0014-5793(00)01238-2CrossrefGoogle Scholar

  • [55] Di Pietro, A., Conseil, G., Perez-Victoria, J.M., Dayan, G., Baubichon-Cortay, H., Trompier, D., Steinfels, E., Jault, J.M., de Wet, H., Maitrejean, M., Comte, G., Boumendjel, A., Mariotte, A.M., Dumontet, C., McIntosh, D.B., Goffeau, A., Castanys, S., Gamarro, F. and Barron, D. Modulation by flavonoids of cell multidrug resistance mediated by P-glycoprotein and related ABC transporters. Cell. Mol. Life Sci. 59 (2002) 307–322. http://dx.doi.org/10.1007/s00018-002-8424-8CrossrefGoogle Scholar

  • [56] Mao, Q., Leslie, E.M., Deeley, R.G. and Cole, S.P. ATPase activity of purified and reconstituted multidrug resistance protein MRP1 from drug-selected H69AR cells. Biochim. Biophys. Acta 1461 (1999) 69–82. http://dx.doi.org/10.1016/S0005-2736(99)00150-9CrossrefGoogle Scholar

  • [57] Chang, X.B., Hou, Y.X. and Riordan, J.R. ATPase activity of purified multidrug resistance-associated protein. J. Biol. Chem. 272 (1997) 30962–30968. http://dx.doi.org/10.1074/jbc.272.49.30962CrossrefGoogle Scholar

  • [58] Hooijberg, J.H., Broxterman, H.J., Heijn, M., Fles, D.L., Lankelma, J. and Pinedo, H.M. Modulation by (iso)flavonoids of the ATPase activity of the multidrug resistance protein. FEBS Lett. 413 (1997) 344–348. http://dx.doi.org/10.1016/S0014-5793(97)00940-XCrossrefGoogle Scholar

  • [59] Hooijberg, J.H., Broxterman, H.J., Scheffer, G.L., Vrasdonk, C., Heijn, M., de Jong, M.C., Scheper, R.J., Lankelma, J. and Pinedo, H.M. Potent interaction of flavopiridol with MRP1. Br. J. Cancer 81 (1999) 269–276. http://dx.doi.org/10.1038/sj.bjc.6690687CrossrefGoogle Scholar

  • [60] Jain, M.K. and Wu, N.M. Effect of small molecules on the dipalmitoyl lecithin liposomal bilayer: III. Phase transition in lipid bilayer. J. Membr. Biol. 34 (1977) 157–201. http://dx.doi.org/10.1007/BF01870299CrossrefGoogle Scholar

  • [61] Saija, A., Bonina, F., Trombetta, D., Tomaino, A., Montenegro, L., Smeriglio, P. and Castelli, F. Flavonoid-biomembrane interactions: A calorimetric study on dipalmitoylphosphatidylcholine vesicles. Int. J. Pharmaceutics 124 (1995) 1–8. http://dx.doi.org/10.1016/0378-5173(95)00051-JCrossrefGoogle Scholar

  • [62] Hendrich, A.B., Malon, R., Pola, A., Shirataki, Y., Motohashi, N. and Michalak, K. Differential interaction of Sophora isoflavonoids with lipid bilayers. Eur. J. Pharm. Sci. 16 (2002) 201–208. http://dx.doi.org/10.1016/S0928-0987(02)00106-9CrossrefGoogle Scholar

  • [63] Ollila, F., Haing, K., Vuorela, P., Vuorela, H. and Slotte, J.P. Characterization of flavonoid-biomembrane interactions. Arch. Biochem. Biophys. 399 (2002) 103–108. http://dx.doi.org/10.1006/abbi.2001.2759CrossrefGoogle Scholar

  • [64] Bhowmik, B.B., Basu, S. and Ray, D. Photophysical studies of 3,3′ dioctadecyloxacarbocyanine dye in model biological membranes and different solvents. Chem. Phys. Lipids 109 (2001) 175–183. http://dx.doi.org/10.1016/S0009-3084(00)00218-8CrossrefGoogle Scholar

  • [65] Sidorowicz, A., Pola, A. and Dobryszycki, P. Spectral properties of 3,3′-diethyloxadicarbocyanine included in phospholipid liposomes. J. Photochem. Photobiol. B 38 (1997) 94–97. http://dx.doi.org/10.1016/S1011-1344(96)07431-3CrossrefGoogle Scholar

  • [66] Sidorowicz, A., Mora, C., Jablonka, S., Pola, A., Modrzycka, T., Mosiadz, D. and Michalak, K. Spectral properties of two betaine-type cyanine dyes in surfactant micelles and in the presence of phospholipids. J. Mol. Struct. 744–747 (2005) 711–716. http://dx.doi.org/10.1016/j.molstruc.2004.12.053CrossrefGoogle Scholar

  • [67] Krishna, M.M. and Periasamy, N. Location and orientation of DODCI in lipid bilayer membranes: effects of lipid chain length and unsaturation. Biochim. Biophys. Acta 1461 (1999) 58–68. http://dx.doi.org/10.1016/S0005-2736(99)00149-2CrossrefGoogle Scholar

  • [68] Lopes, S. and Castanho, M.A. Does aliphatic chain length influence carbocyanines’ orientation in supported lipid multilayers? J. Fluorescence 14 (2004) 281–287. http://dx.doi.org/10.1023/B:JOFL.0000024560.17546.97CrossrefGoogle Scholar

  • [69] Scheidt, H.A., Pampel, A., Nissler, L., Gebhardt, R. and Huster, D. Investigation of the membrane localization and distribution of flavonoids by high-resolution magic angle spinning NMR spectroscopy. Biochim. Biophys. Acta 1663 (2004) 97–107. http://dx.doi.org/10.1016/j.bbamem.2004.02.004CrossrefGoogle Scholar

  • [70] Siarheyeva, A., Lopez, J.J. and Glaubitz, C. Localization of multidrug transporter substrates within model membranes. Biochemistry 45 (2006) 6203–6211. http://dx.doi.org/10.1021/bi0524870CrossrefGoogle Scholar

  • [71] Yu, J., Cheng, Y., Xie, L. and Zhang, R. Effects of genistein and daidzein on membrane characteristics of HCT cells. Nutr. Cancer 33 (1999) 100–104. http://dx.doi.org/10.1080/01635589909514755CrossrefGoogle Scholar

  • [72] Oteiza, P.I., Erlejman, A.G., Verstraeten, S.V., Keen, C.L. and Fraga, C.G. Flavonoid-membrane interactions: a protective role of flavonoids at the membrane surface? Clin. Develop. Immunol. 12 (2005) 19–25. http://dx.doi.org/10.1080/10446670410001722168CrossrefGoogle Scholar

About the article

Published Online: 2009-03-13

Published in Print: 2009-06-01

Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-008-0044-3.

Export Citation

© 2008 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Saikat Dewanjee, Tarun Dua, Niloy Bhattacharjee, Anup Das, Moumita Gangopadhyay, Ritu Khanra, Swarnalata Joardar, Muhammad Riaz, Vincenzo Feo, and Muhammad Zia-Ul-Haq
Molecules, 2017, Volume 22, Number 6, Page 871
Paulina Strugała, Sylwia Cyboran-Mikołajczyk, Anna Dudra, Paulina Mizgier, Alicja Z. Kucharska, Teresa Olejniczak, and Janina Gabrielska
The Journal of Membrane Biology, 2016, Volume 249, Number 3, Page 393
Marco Paini, Sean Ryan Daly, Bahar Aliakbarian, Ali Fathi, Elmira Arab Tehrany, Patrizia Perego, Fariba Dehghani, and Peter Valtchev
Colloids and Surfaces B: Biointerfaces, 2015, Volume 136, Page 1067
Aysegul Cort and Tomris Ozben
Nutrition and Cancer, 2015, Volume 67, Number 3, Page 411
Ana Ferreira, Sarah Pousinho, Ana Fortuna, Amílcar Falcão, and Gilberto Alves
Phytochemistry Reviews, 2015, Volume 14, Number 2, Page 233
Olga S. Ostroumova, Evgeny G. Chulkov, Olga V. Stepanenko, and Ludmila V. Schagina
Chemistry and Physics of Lipids, 2014, Volume 178, Page 77
Olga Wesołowska, Justyna Gąsiorowska, Joanna Petrus, Bogusława Czarnik-Matusewicz, and Krystyna Michalak
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2014, Volume 1838, Number 1, Page 173
Yuri A. Kim, Yury S. Tarahovsky, Elena A. Yagolnik, Svetlana M. Kuznetsova, and Eugeny N. Muzafarov
Biochemical and Biophysical Research Communications, 2013, Volume 431, Number 4, Page 680
Bożena Pawlikowska-Pawlęga, Lucjan E. Misiak, Barbara Zarzyka, Roman Paduch, Antoni Gawron, and Wiesław I. Gruszecki
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2013, Volume 1828, Number 2, Page 518
Michal Ciolkowski, Monika Rozanek, Michal Szewczyk, Barbara Klajnert, and Maria Bryszewska
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2011, Volume 1808, Number 11, Page 2714
Maksim Ionov, Ilnora Tukfatullina, Bakhtiyar Salakhutdinov, Nina Baram, Maria Bryszewska, and Takhir Aripov
Cellular and Molecular Biology Letters, 2010, Volume 15, Number 1

Comments (0)

Please log in or register to comment.
Log in