Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Editor-in-Chief: /


IMPACT FACTOR 2016: 1.260
5-year IMPACT FACTOR: 1.506

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.615
Source Normalized Impact per Paper (SNIP) 2016: 0.470

Online
ISSN
1689-1392
See all formats and pricing
More options …
Volume 14, Issue 2 (Jun 2009)

Activation of the heat shock response in a primary cellular model of motoneuron neurodegeneration-evidence for neuroprotective and neurotoxic effects

Bernadett Kalmar
  • Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Linda Greensmith
  • Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-03-13 | DOI: https://doi.org/10.2478/s11658-009-0002-8

Abstract

Pharmacological up-regulation of heat shock proteins (hsps) rescues motoneurons from cell death in a mouse model of amyotrophic lateral sclerosis. However, the relationship between increased hsp expression and neuronal survival is not straightforward. Here we examined the effects of two pharmacological agents that induce the heat shock response via activation of HSF-1, on stressed primary motoneurons in culture. Although both arimoclomol and celastrol induced the expression of Hsp70, their effects on primary motoneurons in culture were significantly different. Whereas arimoclomol had survival-promoting effects, rescuing motoneurons from staurosporin and H2O2 induced apoptosis, celastrol not only failed to protect stressed motoneurons from apoptosis under same experimental conditions, but was neurotoxic and induced neuronal death. Immunostaining of celastrol-treated cultures for hsp70 and activated caspase-3 revealed that celastrol treatment activates both the heat shock response and the apoptotic cell death cascade. These results indicate that not all agents that activate the heat shock response will necessarily be neuroprotective.

Keywords: Amyotrophic Lateral Sclerosis; Heat shock protein; SOD1 mice; Neuroprotection; Motoneuron; Arimoclomol; Celastrol

  • [1] Samali, A. and Cotter, T.G. Heat shock proteins increase resistance to apoptosis. Exp. Cell Res. 223 (1996) 163–170. http://dx.doi.org/10.1006/excr.1996.0070CrossrefGoogle Scholar

  • [2] Beere, H.M. and Green, D.R. Stress management - heat shock protein-70 and the regulation of apoptosis. Trends Cell Biol. 11 (2001) 6–10. http://dx.doi.org/10.1016/S0962-8924(00)01874-2CrossrefGoogle Scholar

  • [3] Garofalo, O., Kennedy, P.G., Swash, M., Martin, J.E., Luthert, P., Anderton, B.H. and Leigh, P.N. Ubiquitin and heat shock protein expression in amyotrophic lateral sclerosis. Neuropathol. Appl. Neurobiol. 17 (1991) 39–45. http://dx.doi.org/10.1111/j.1365-2990.1991.tb00692.xCrossrefGoogle Scholar

  • [4] Kalmar, B., Burnstock, G., Vrbova, G., Urbanics, R., Csermely, P. and Greensmith, L. Upregulation of heat shock proteins rescues motoneurones from axotomy-induced cell death in neonatal rats. Exp. Neurol. 176 (2002) 87–97. http://dx.doi.org/10.1006/exnr.2002.7945CrossrefGoogle Scholar

  • [5] Vleminckx, V., Van Damme, P., Goffin, K., Delye, H., Van Den, B.L. and Robberecht, W. Upregulation of HSP27 in a transgenic model of ALS. J. Neuropathol. Exp. Neurol. 61 (2002) 968–974. Google Scholar

  • [6] Maatkamp, A., Vlug, A., Haasdijk, E., Troost, D., French, P.J. and Jaarsma, D. Decrease of Hsp25 protein expression precedes degeneration of motoneurons in ALS-SOD1 mice. Eur. J. Neurosci. 20 (2004) 14–28. http://dx.doi.org/10.1111/j.1460-9568.2004.03430.xCrossrefGoogle Scholar

  • [7] Urushitani, M., Kurisu, J., Tateno, M., Hatakeyama, S., Nakayama, K., Kato, S. and Takahashi, R. CHIP promotes proteasomal degradation of familial ALS-linked mutant SOD1 by ubiquitinating Hsp/Hsc70. J. Neurochem. 90 (2004) 231–244. http://dx.doi.org/10.1111/j.1471-4159.2004.02486.xCrossrefGoogle Scholar

  • [8] Batulan, Z., Shinder, G.A., Minotti, S., He, B.P., Doroudchi, M.M., Nalbantoglu, J., Strong, M.J. and Durham, H.D. High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. J. Neurosci. 23 (2003) 5789–5798. Google Scholar

  • [9] Evgrafov, O.V., Mersiyanova, I., Irobi, J., Van Den, B.L., Dierick, I., Leung, C.L., Schagina, O., Verpoorten, N., Van Impe, K., Fedotov, V., Dadali, E., Auer-Grumbach, M., Windpassinger, C., Wagner, K., Mitrovic, Z., Hilton-Jones, D., Talbot, K., Martin, J.J., Vasserman, N., Tverskaya, S., Polyakov, A., Liem, R.K., Gettemans, J., Robberecht, W., De Jonghe, P. and Timmerman, V. Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat. Genet. 36 (2004) 602–606. http://dx.doi.org/10.1038/ng1354CrossrefGoogle Scholar

  • [10] Breuer, A.C., Lynn, M.P., Atkinson, M.B., Chou, S.M., Wilbourn, A.J., Marks, K.E., Culver, J.E. and Fleegler, E.J. Fast axonal transport in amyotrophic lateral sclerosis: an intra-axonal organelle traffic analysis. Neurology 37 (1987) 738–748. CrossrefGoogle Scholar

  • [11] Williamson, T.L. and Cleveland, D.W. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat. Neurosci. 2 (1999) 50–56. http://dx.doi.org/10.1038/4553CrossrefGoogle Scholar

  • [12] Puls, I., Jonnakuty, C., LaMonte, B.H., Holzbaur, E.L., Tokito, M., Mann, E., Floeter, M.K., Bidus, K., Drayna, D., Oh, S.J., Brown, R.H., Jr., Ludlow, C.L. and Fischbeck, K.H. Mutant dynactin in motor neuron disease. Nat. Genet. 33 (2003) 455–456. http://dx.doi.org/10.1038/ng1123CrossrefGoogle Scholar

  • [13] Munch, C., Sedlmeier, R., Meyer, T., Homberg, V., Sperfeld, A.D., Kurt, A., Prudlo, J., Peraus, G., Hanemann, C.O., Stumm, G. and Ludolph, A.C. Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS. Neurology 63 (2004) 724–726. Google Scholar

  • [14] Watanabe, M., Dykes-Hoberg, M., Culotta, V.C., Price, D.L., Wong, P.C. and Rothstein, J.D. Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Neurobiol. Dis. 8 (2001) 933–941. http://dx.doi.org/10.1006/nbdi.2001.0443CrossrefGoogle Scholar

  • [15] Okado-Matsumoto, A. and Fridovich, I. Amyotrophic lateral sclerosis: a proposed mechanism. Proc. Natl. Acad. Sci. U. S. A 99 (2002) 9010–9014. Google Scholar

  • [16] Kalmar, B., Burnstock, G., Vrbova, G. and Greensmith, L. The effect of neonatal nerve injury on the expression of heat shock proteins in developing rat motoneurones. J. Neurotrauma 19 (2002) 667–679. http://dx.doi.org/10.1089/089771502753754127CrossrefGoogle Scholar

  • [17] Kieran, D., Kalmar, B., Dick, J.R., Riddoch-Contreras, J., Burnstock, G. and Greensmith, L. Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat. Med. 10 (2004) 402–405. http://dx.doi.org/10.1038/nm1021CrossrefGoogle Scholar

  • [18] Vigh, L., Literati, P.N., Horvath, I., Torok, Z., Balogh, G., Glatz, A., Kovacs, E., Boros, I., Ferdinandy, P., Farkas, B., Jaszlits, L., Jednakovits, A., Koranyi, L. and Maresca, B. Bimoclomol: a nontoxic, hydroxylamine derivative with stress protein-inducing activity and cytoprotective effects. Nat. Med. 3 (1997) 1150–1154. http://dx.doi.org/10.1038/nm1097-1150CrossrefGoogle Scholar

  • [19] Hargitai, J., Lewis, H., Boros, I., Racz, T., Fiser, A., Kurucz, I., Benjamin, I., Vigh, L. Penzes, Z., Csermely, P. and Latchman, D.S. Bimoclomol, a heat shock protein co-inducer, acts by the prolonged activation of heat shock factor-1. Biochem. Biophys. Res. Commun. 307 (2003) 689–695. http://dx.doi.org/10.1016/S0006-291X(03)01254-3CrossrefGoogle Scholar

  • [20] Cleren, C., Calingasan, N.Y., Chen, J. and Beal, M.F. Celastrol protects against. J. Neurochem. 94 (2005) 995–1004. http://dx.doi.org/10.1111/j.1471-4159.2005.03253.xCrossrefGoogle Scholar

  • [21] Kiaei, M., Kipiani, K., Petri, S., Chen, J., Calingasan, N.Y. and Beal, M.F. Celastrol blocks neuronal cell death and extends life in transgenic mouse model of amyotrophic lateral sclerosis. Neurodegener. Dis. 2 (2005) 246–254. http://dx.doi.org/10.1159/000090364CrossrefGoogle Scholar

  • [22] Westerheide, S.D., Bosman, J.D., Mbadugha, B.N., Kawahara, T.L., Matsumoto, G., Kim, S., Gu, W., Devlin, J.P., Silverman, R.B. and Morimoto, R.I. Celastrols as inducers of the heat shock response and cytoprotection. J. Biol. Chem. 279 (2004) 56053–56060. http://dx.doi.org/10.1074/jbc.M409267200CrossrefGoogle Scholar

  • [23] Patel, Y.J., Payne, S., de Belleroche, J. and Latchman, D.S. Hsp27 and Hsp70 administered in combination have a potent protective effect against FALS-associated SOD1-mutant-induced cell death in mammalian neuronal cells. Brain Res. Mol. Brain Res. 134 (2005) 256–274. http://dx.doi.org/10.1016/j.molbrainres.2004.10.028CrossrefGoogle Scholar

  • [24] Liu, J., Shinobu, L.A., Ward, C.M., Young, D. and Cleveland, D.W. Elevation of the Hsp70 chaperone does not effect toxicity in mouse models of familial amyotrophic lateral sclerosis. J. Neurochem. 93 (2005) 875–882. http://dx.doi.org/10.1111/j.1471-4159.2005.03054.xCrossrefGoogle Scholar

  • [25] Gifondorwa, D.J., Robinson, M.B., Hayes, C.D., Taylor, A.R., Prevette, D.M., Oppenheim, R.W., Caress, J. and Milligan, C.E. Exogenous delivery of heat shock protein 70 increases lifespan in a mouse model of amyotrophic lateral sclerosis. J. Neurosci. 27 (2007) 13173–13180. http://dx.doi.org/10.1523/JNEUROSCI.4057-07.2007CrossrefWeb of ScienceGoogle Scholar

  • [26] Camu, W. and Henderson, C.E. Rapid purification of embryonic rat motoneurons: an in vitro model for studying MND/ALS pathogenesis. J. Neurol. Sci. 124 Suppl (1994) 73–74. Google Scholar

  • [27] Greig, A., Donevan, S.D., Mujtaba, T.J., Parks, T.N. and Rao, M.S. Characterization of the AMPA-activated receptors present on motoneurons. J. Neurochem. 74 (2000) 179–191. http://dx.doi.org/10.1046/j.1471-4159.2000.0740179.xCrossrefGoogle Scholar

  • [28] Wang, J., Gines, S., MacDonald, M. E. and Gusella, J.F. Reversal of a full-length mutant huntingtin neuronal cell phenotype by chemical inhibitors of polyglutamine-mediated aggregation. BMC Neurosci. 6 (2005) 1. http://dx.doi.org/10.1186/1471-2202-6-1CrossrefGoogle Scholar

  • [29] Guzhova, I.V., Darieva, Z.A., Melo, A.R. and Margulis, B.A. Major stress protein Hsp70 interacts with NF-kB regulatory complex in human T-lymphoma cells. Cell Stress Chaperones 2 (1997) 132–139. http://dx.doi.org/10.1379/1466-1268(1997)002<0132:MSPHIW>2.3.CO;2CrossrefGoogle Scholar

  • [30] Krohn, A.J., Preis, E. and Prehn, J.H. Staurosporine-induced apoptosis of cultured rat hippocampal neurons involves caspase-1-like proteases as upstream initiators and increased production of superoxide as a main downstream effector. J. Neurosci. 18 (1998) 8186–8197. Google Scholar

  • [31] Gil, J., Almeida, S., Oliveira, C.R. and Rego, A.C. Cytosolic and mitochondrial ROS in staurosporine-induced retinal cell apoptosis. Free Radic. Biol. Med. 35 (2003) 1500–1514. http://dx.doi.org/10.1016/j.freeradbiomed.2003.08.022CrossrefGoogle Scholar

  • [32] Wang, J.Y., Shum, A.Y., Ho, Y.J. and Wang, J.Y. Oxidative neurotoxicity in rat cerebral cortex neurons: synergistic effects of H2O2 and NO on apoptosis involving activation of p38 mitogen-activated protein kinase and caspase-3. J. Neurosci. Res. 72 (2003) 508–519. http://dx.doi.org/10.1002/jnr.10597CrossrefGoogle Scholar

  • [33] Sathasivam, S., Grierson, A.J. and Shaw, P.J. Characterization of the caspase cascade in a cell culture model of SOD1-related familial amyotrophic lateral sclerosis: expression, activation and therapeutic effects of inhibition. Neuropathol. Appl. Neurobiol. 31 (2005) 467–485. http://dx.doi.org/10.1111/j.1365-2990.2005.00658.xCrossrefGoogle Scholar

  • [34] Bendotti, C., Bao, C.M., Cheroni, C., Grignaschi, G., Lo, C.D., Peviani, M., Tortarolo, M., Veglianese, P. and Zennaro, E. Inter- and intracellular signaling in amyotrophic lateral sclerosis: role of p38 mitogen-activated protein kinase. Neurodegener. Dis. 2 (2005) 128–134. http://dx.doi.org/10.1159/000089617CrossrefGoogle Scholar

  • [35] Veglianese, P., Lo, C.D., Bao, C.M., Magnoni, R., Pennacchini, D., Pozzi, B., Gowing, G., Julien, J.P., Tortarolo, M. and Bendotti, C. Activation of the p38MAPK cascade is associated with upregulation of TNF alpha receptors in the spinal motor neurons of mouse models of familial ALS. Mol. Cell Neurosci. 31 (2006) 218–231. http://dx.doi.org/10.1016/j.mcn.2005.09.009CrossrefGoogle Scholar

  • [36] Strey, C.W., Spellman, D., Stieber, A., Gonatas, J.O., Wang, X., Lambris, J.D. and Gonatas, N.K. Dysregulation of stathmin, a microtubule-destabilizing protein, and up-regulation of Hsp25, Hsp27, and the antioxidant peroxiredoxin 6 in a mouse model of familial amyotrophic lateral sclerosis. Am. J. Pathol. 165 (2004) 1701–1718. Google Scholar

  • [37] Krishnan, J., Lemmens, R., Robberecht, W. and Van Den, B.L. Role of heat shock response and Hsp27 in mutant SOD1-dependent cell death. Exp. Neurol. 200 (2006) 301–310. http://dx.doi.org/10.1016/j.expneurol.2006.02.135CrossrefGoogle Scholar

  • [38] Jin, H.Z., Hwang, B.Y., Kim, H.S., Lee, J.H., Kim, Y.H. and Lee, J.J. Antiinflammatory constituents of Celastrus orbiculatus inhibit the NF-kappaB activation and NO production. J. Nat. Prod. 65 (2002) 89–91. http://dx.doi.org/10.1021/np010428rCrossrefGoogle Scholar

  • [39] Chow, A.M. and Brown, I.R. Induction of heat shock proteins in differentiated human and rodent neurons by celastrol. Cell Stress Chaperones 12 (2007) 237–244. http://dx.doi.org/10.1379/CSC-269.1Web of ScienceCrossrefGoogle Scholar

  • [40] Zhang, Y.Q. and Sarge, K.D., Celastrol inhibits polyglutamine aggregation and toxicity though induction of the heat shock response. J. Mol. Med. 85 (2007) 1421–1428. http://dx.doi.org/10.1007/s00109-007-0251-9Web of ScienceCrossrefGoogle Scholar

  • [41] Nagase, M., Oto, J., Sugiyama, S., Yube, K., Takaishi, Y. and Sakato, N. Apoptosis induction in HL-60 cells and inhibition of topoisomerase II by triterpene celastrol. Biosci. Biotechnol. Biochem. 67 (2003)1883–1887. http://dx.doi.org/10.1271/bbb.67.1883CrossrefGoogle Scholar

  • [42] Yang, H., Chen, D., Cui, Q.C., Yuan, X. and Dou, Q.P. Celastrol, a triterpene extracted from the Chinese “Thunder of God Vine,” is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res. 66 (2006) 4758–4765. http://dx.doi.org/10.1158/0008-5472.CAN-05-4529CrossrefGoogle Scholar

  • [43] Yang, H., Murthy, S., Sarkar, F.H., Sheng, S., Reddy, G.P. and Dou, Q.P. Calpain-mediated androgen receptor breakdown in apoptotic prostate cancer cells. J. Cell Physiol. (2008) in press. Web of ScienceGoogle Scholar

  • [44] Lee, J.H., Koo, T.H., Yoon, H., Jung, H.S., Jin, H.Z., Lee, K., Hong, Y.S. and Lee, J.J. Inhibition of NF-kappa B activation through targeting I kappa B kinase by celastrol, a quinone methide triterpenoid. Biochem. Pharmacol. 72 (2006) 1311–1321. http://dx.doi.org/10.1016/j.bcp.2006.08.014CrossrefGoogle Scholar

  • [45] Trott, A., West, J.D., Klaic, L., Westerheide, S.D., Silverman, R.B., Morimoto, R.I. and Morano, K.A. Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule. Mol. Biol. Cell 19 (2008) 1104–1112. http://dx.doi.org/10.1091/mbc.E07-10-1004Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2009-03-13

Published in Print: 2009-06-01


Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-009-0002-8.

Export Citation

© 2009 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
[2]
Bernadett Kalmar and Linda Greensmith
Frontiers in Molecular Neuroscience, 2017, Volume 10
[3]
Noga Gershoni-Emek, Arnon Mazza, Michael Chein, Tal Gradus-Pery, Xin Xiang, Ka Wan Li, Roded Sharan, and Eran Perlson
Molecular & Cellular Proteomics, 2016, Volume 15, Number 2, Page 506
[4]
M. Ahmed, P. M. Machado, A. Miller, C. Spicer, L. Herbelin, J. He, J. Noel, Y. Wang, A. L. McVey, M. Pasnoor, P. Gallagher, J. Statland, C.-H. Lu, B. Kalmar, S. Brady, H. Sethi, G. Samandouras, M. Parton, J. L. Holton, A. Weston, L. Collinson, J. P. Taylor, G. Schiavo, M. G. Hanna, R. J. Barohn, M. M. Dimachkie, and L. Greensmith
Science Translational Medicine, 2016, Volume 8, Number 331, Page 331ra41
[5]
Alex M Jaeger, Charles W Pemble, Lea Sistonen, and Dennis J Thiele
Nature Structural & Molecular Biology, 2016, Volume 23, Number 2, Page 147
[6]
Neil R.W. Martin, Samantha L. Passey, Darren J. Player, Vivek Mudera, Keith Baar, Linda Greensmith, and Mark P. Lewis
Tissue Engineering Part A, 2015, Volume 21, Number 19-20, Page 2595
[7]
Daniel A. Smith, Carmen R. Carland, Yiming Guo, and Sanford I. Bernstein
The Anatomical Record, 2014, Volume 297, Number 9, Page 1637
[8]
Yoshiki Koriyama, Kayo Sugitani, Kazuhiro Ogai, and Satoru Kato
Journal of Neurochemistry, 2014, Volume 130, Number 5, Page 707
[9]
Peng Lu, Chhinder P. Sodhi, and David J. Hackam
Pathophysiology, 2014, Volume 21, Number 1, Page 81
[10]
Bernadett Kalmar, Ching-Hua Lu, and Linda Greensmith
Pharmacology & Therapeutics, 2014, Volume 141, Number 1, Page 40
[11]
Rajiah Aldrin Denny, Lori Krim Gavrin, and Eddine Saiah
Bioorganic & Medicinal Chemistry Letters, 2013, Volume 23, Number 7, Page 1935
[12]
Sebastien Boridy, Ghareb M Soliman, and Dusica Maysinger
Nanomedicine, 2012, Volume 7, Number 8, Page 1149
[13]
Sarah Knippenberg, Nadine Thau, Kerstin Schwabe, Reinhard Dengler, Axel Schambach, Ralf Hass, and Susanne Petri
Neurodegenerative Diseases, 2012, Volume 9, Number 3, Page 107
[14]
Daniel W. Neef, Alex M. Jaeger, and Dennis J. Thiele
Nature Reviews Drug Discovery, 2011, Volume 10, Number 12, Page 930
[15]
Shantel E. Walcott and John J. Heikkila
Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2010, Volume 156, Number 2, Page 285
[16]
Giuseppina Turturici, Gabriella Sconzo, and Fabiana Geraci
Biochemistry Research International, 2011, Volume 2011, Page 1
[17]
Simone Fulda, Adrienne M. Gorman, Osamu Hori, and Afshin Samali
International Journal of Cell Biology, 2010, Volume 2010, Page 1
[18]
E. M. Eremenko, O. I. Antimonova, O. G. Shekalova, S. G. Polonik, B. A. Margulis, and I. V. Guzhova
Cell and Tissue Biology, 2010, Volume 4, Number 3, Page 251

Comments (0)

Please log in or register to comment.
Log in