Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

See all formats and pricing
More options …
Volume 14, Issue 3


The expression of COX-2, hTERT, MDM2, LATS2 and S100A2 in different types of non-small cell lung cancer (NSCLC)

Mojca Stražišar
  • Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vid Mlakar
  • Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Damjan Glavač
  • Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-06-27 | DOI: https://doi.org/10.2478/s11658-009-0011-7


Several studies have reported different expression levels of certain genes in NSCLC, mostly related to the stage and advancement of the tumours. We investigated 65 stage I-III NSCLC tumours: 32 adenocarcinomas (ADC), 26 squamous cell carcinomas (SCC) and 7 large cell carcinomas (LCC). Using the real-time reverse transcription polymerase chain reaction (RT-PCR), we analysed the expression of the COX-2, hTERT, MDM2, LATS2 and S100A2 genes and researched the relationships between the NSCLC types and the differences in expression levels. The differences in the expression levels of the LATS2, S100A2 and hTERT genes in different types of NSCLC are significant. hTERT and COX-2 were over-expressed and LATS2 under-expressed in all NSCLC. We also detected significant relative differences in the expression of LATS2 and MDM2, hTERT and MDM2 in different types of NSCLC. There was a significant difference in the average expression levels in S100A2 for ADC and SCC. Our study shows differences in the expression patterns within the NSCLC group, which may mimic the expression of the individual NSCLC type, and also new relationships in the expression levels for different NSCLC types.

Keywords: COX-2; hTERT; MDM2; LATS2; S100A2; RT-PCR; Expression

  • [1] Sekido, Y., Fong, K.M. and Minna, J.D. Molecular genetics of lung cancer. Annu. Rev. Med. 54 (2003) 73–87. http://dx.doi.org/10.1146/annurev.med.54.101601.152202CrossrefGoogle Scholar

  • [2] Wang, L., Soria, J.C., Kemp, B.L., Liu, D.D., Mao, L. and Khuri, F.R. hTERT expression is a prognostic factor of survival in patients with stage I non-small cell lung cancer. Clin. Cancer. Res. 8 (2002) 2883–2889. Google Scholar

  • [3] Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho, P.L., Coviello, G.M., Wright, W.E., Weinrich, S.L. and Shay, J.W. Specific association of human telomerase activity with immortal cells and cancer. Science 266 (1994) 2011–2015. http://dx.doi.org/10.1126/science.7605428CrossrefGoogle Scholar

  • [4] Hiyama, K., Hiyama, E., Ishioka, S., Yamakido, M., Inai, K., Gazdar, A.F., Piatyszek, M.A. and Shay, J.W. Telomerase activity in small-cell and nonsmall-cell lung cancers. J. Natl. Cancer. Inst. 87 (1995) 895–902. http://dx.doi.org/10.1093/jnci/87.12.895CrossrefGoogle Scholar

  • [5] Lantuéjoul, S., Salon, C., Soria, J.C. and Brambilla, E. Telomerase expression in lung preneoplasia and neoplasia. Int. J. Cancer. 120 (2007) 1835–1841. http://dx.doi.org/10.1002/ijc.22473CrossrefGoogle Scholar

  • [6] Komiya, T., Kawase, I., Nitta, T., Yasumitsu, T., Kikui, M., Fukuoka, M., Nakagawa, K. and Hirashima, T. Prognostic significance of hTERT expression in non-small cell lung cancer. Int. J. Oncol. 16 (2000) 1173–1177. Google Scholar

  • [7] Lantuejoul, S., Soria, J.C., Moro-Sibilot, D., Morat, L., Veyrenc, S., Lorimier, P., Brichon, P.Y., Sabatier, L., Brambilla, C. and Brambilla, E. Differential expression of telomerase reverse transcriptase (hTERT) in lung tumours. Br. J. Cancer 90 (2004) 1222–1229. http://dx.doi.org/10.1038/sj.bjc.6601643CrossrefGoogle Scholar

  • [8] Tazawa, R., Xu, X.-M., Wu, K.K. and Wang, L.-H. Characterization of the genomic structure, chromosomal location and promoter of human prostaglandin H synthase-2 gene. Biochem. Biophys. Res. Commun. 203 (1994) 190–199. http://dx.doi.org/10.1006/bbrc.1994.2167CrossrefGoogle Scholar

  • [9] Castelao, J.E., Bart, III R.D., DiPerna, C.A., Sievers, E.M. and Bremner, R.M. Lung cancer and cyclooxygenase-2. Ann. Thorac. Surg. 76 (2003) 1327–1335. http://dx.doi.org/10.1016/S0003-4975(03)00334-5CrossrefGoogle Scholar

  • [10] Laga, A.C., Zander, D.S. and Cagle, P.T. Prognostic significance of cyclooxygenase 2 expression in 259 cases of non-small cell lung cancer. Arch. Pathol. Lab. Med. 129 (2005) 1113–1117. Google Scholar

  • [11] Wolff, H., Saukkonen, K., Anttila, S., Karjalainen, A., Vainio, H. and Ristimaki, A. Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res. 58 (1998) 4997–5001. Google Scholar

  • [12] Hida, T., Yatabe, Y., Achiwa, H., Muramatsu, H., Kozaki, K., Nakamura, S., Ogawa, M., Mitsudomi, T., Sugiura, T. and Takahashi, T. Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res. 58 (1998) 3761–3764. Google Scholar

  • [13] Hastürk, S., Kemp, B., Kalapurakal, S.K., Kurie, J.M., Hong, W.K. and Lee, J.S. Expression of cyclooxygenase-1 and cyclooxygenase-2 in bronchial epithelium and nonsmall cell lung carcinoma. Cancer 94 (2002) 1023–1031. http://dx.doi.org/10.1002/cncr.10262CrossrefGoogle Scholar

  • [14] Ermert, L., Dierkes, C. and Ermert, M. Immunohistochemical expression of cyclooxygenase isoenzymes and downstream enzymes in human lung tumors. Clin. Cancer Res. 9 (2003) 1604–1610. Google Scholar

  • [15] Fang, H.Y., Lin, T.S., Lin, J.P., Wu, Y.C., Chow, K.C. and Wang, L.S. Cyclooxygenase-2 in human non-small cell lung cancer. Eur. J. Surg. Oncol. 29 (2003) 171–177. http://dx.doi.org/10.1053/ejso.2002.1316CrossrefGoogle Scholar

  • [16] Brabender, J., Park, J., Metzger, R., Schneider, P.M., Lord, R.V., Holscher, A.H., Danenberg, K.D. and Danenberg, P.V. Prognostic significance of cyclooxygenase 2 mRNA expression in non-small cell lung cancer. Ann. Surg. 235 (2002) 440–443. http://dx.doi.org/10.1097/00000658-200203000-00017CrossrefGoogle Scholar

  • [17] Achiwa, H., Yatabe, Y., Hida, T., Kuroishi, T., Kozaki, K., Nakamura, S., Ogawa, M., Sugiura, T., Mitsudomi, T. and Takahashi, T. Prognostic significance of elevated cyclooxygenase 2 expression in primary, resected lung adenocarcinomas. Clin. Canc. Res. 5 (1999) 1001–1005. Google Scholar

  • [18] Lu, C., Soria, J.C., Tang, X., Xu, X.C., Wang, L., Mao, L., Lotan, R., Kemp, B., Bekele, B.N., Feng, L., Hong, W.K. and Khuri, F.R. Prognostic factors in resected stage I non-small-cell lung cancer: a multivariate analysis of six molecular markers. J. Clin. Oncol. 22 (2004) 4575–4583. http://dx.doi.org/10.1200/JCO.2004.01.091CrossrefGoogle Scholar

  • [19] Gorgoulis, V.G., Zacharatos, P., Kotsinas, A., Mariatos, G., Liloglou, T., Vogiatzi, T., Foukas, P., Rassidakis, G., Garinis, G., Ioannides, T., Zoumpourlis, V., Bramis, J., Michail, P.O., Asimacopoulos, P.J., Field, J.K. and Kittas, C. Altered expression of the cell cycle regulatory molecules pRb, p53 and MDM2 exert a synergetic effect on tumor growth and chromosomal instability in non-small cell lung carcinomas (NSCLCs). Mol. Med. 3 (2000) 208–237. Google Scholar

  • [20] Eymin, B., Leduc, C., Coll, J.L., Brambilla, E. and Gazzeri, S. p14ARF induces G2 arrest and apoptosis independently of p53 leading to regression of tumours established in nude mice. Oncogene 22 (2003) 1822–1835. http://dx.doi.org/10.1038/sj.onc.1206303CrossrefGoogle Scholar

  • [21] Sun, Y. p53 and its downstream proteins as molecular targets of cancer. Mol. Carcinog. 45 (2006) 409–415. http://dx.doi.org/10.1002/mc.20231CrossrefGoogle Scholar

  • [22] Sdek, P., Ying, H., Chang, D.L.F., Qiu, W., Zheng, H., Touitou, R., Allday, M.J. and Xiao, Z.-X.J. MDM2 promotes proteasome-dependent ubiquitinindependent degradation of retinoblastoma protein. Mol. Cell 20 (2005) 699–708. http://dx.doi.org/10.1016/j.molcel.2005.10.017CrossrefGoogle Scholar

  • [23] Uchida, C., Miwa, S., Kitagawa, K., Hattori, T., Isobe, T., Otani, S., Oda, T., Sugimura, H., Kamijo, T., Ookawa, K., Yasuda, H. and Kitagawa, M. Enhanced Mdm2 activity inhibits pRB function via ubiquitin-dependent degradation. EMBO J. 24 (2005) 160–169. http://dx.doi.org/10.1038/sj.emboj.7600486CrossrefGoogle Scholar

  • [24] Giono, L.E. and Manfredi, J.J. Mdm2 is required for inhibition of Cdk2 activity by p21, thereby contributing to p53-dependent cell cycle arrest. Mol. Cell. Biol. 27 (2007) 4166–4178. http://dx.doi.org/10.1128/MCB.01967-06CrossrefGoogle Scholar

  • [25] Duan, W., Gao, L., Wu, X., Zhang, Y., Otterson, G.A. and Villalona-Calero, M.A. Differential response between the p53 ubiquitin-protein ligases Pirh2 and MdM2 following DNA damage in human cancer cells. Exp. Cell. Res. 312 (2006) 3370–3378. http://dx.doi.org/10.1016/j.yexcr.2006.07.005CrossrefGoogle Scholar

  • [26] Momand, J., Jung, D., Wilczynski, S. and Niland, J. The MDM2 gene amplification database. Nucleic Acids Res. 26 (1998) 3453–3459. http://dx.doi.org/10.1093/nar/26.15.3453CrossrefGoogle Scholar

  • [27] Wang, Y.C., Lin, R.K., Tan, Y.H., Chen, J.T., Chen, C.Y. and Wang, Y.C. Wild-type p53 overexpression and its correlation with MDM2 and p14ARF alterations: an alternative pathway to non-small-cell lung cancer. J. Clin. Oncol. 23 (2005) 154–164. http://dx.doi.org/10.1200/JCO.2005.03.139CrossrefGoogle Scholar

  • [28] Ko, J.L., Cheng, Y.W., Chang, S.L., Su, J.M., Chen, C.Y. and Lee, H. MDM2 mRNA expression is a favorable prognostic factor in non-small-cell lung cancer. Int. J. Cancer 89 (2000) 265–270. http://dx.doi.org/10.1002/1097-0215(20000520)89:3<265::AID-IJC9>3.0.CO;2-NCrossrefGoogle Scholar

  • [29] Li, Y., Pei, J., Xia, H., Ke, H., Wang, H. and Tao, W. Lats2, a putative tumor suppressor, inhibits G1/S transition. Oncogene 22 (2003) 4398–4405. http://dx.doi.org/10.1038/sj.onc.1206603CrossrefGoogle Scholar

  • [30] McPherson, J.P., Tamblyn, L., Elia, A., Migon, E., Shehabeldin, A., Matysiak-Zablocki, E., Lemmers, B., Salmena, L., Hakem, A., Fish, J., Kassam, F., Squire, J., Bruneau, B.G., Hande, M.P. and Hakem, R. Lats2/Kpm is required for embryonic development, proliferation control and genomic integrity. EMBO J. 23 (2004) 3677–3688. http://dx.doi.org/10.1038/sj.emboj.7600371CrossrefGoogle Scholar

  • [31] Ke, H., Pei, J., Ni, Z., Xia, H., Qi, H., Woods, T., Kelekar, A. and Tao, W. Putative tumor suppressor Lats2 induces apoptosis through downregulation of Bcl-2 and Bcl-x(L). Exp. Cell. Res. 298 (2004) 329–338. http://dx.doi.org/10.1016/j.yexcr.2004.04.031CrossrefGoogle Scholar

  • [32] Aylon, Y., Michael, D., Shmueli, A., Yabuta, N., Nojima, H. and Oren, M. A positive feedback loop between the p53 and Lats2 tumor suppressors prevents tetraploidization. Genes Dev. 20 (2006) 2687–2700. http://dx.doi.org/10.1101/gad.1447006CrossrefGoogle Scholar

  • [33] Voorhoeve, P.M., le Sage, C., Schrier, M., Gillis, A.J., Stoop, H., Nagel, R., Liu, Y.P., van Duijse, J., Drost, J., Griekspoor, A., Zlotorynski, E., Yabuta, N., De Vita, G., Nojima, H., Looijenga, L.H. and Agami, R. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124 (2006) 1169–1181. http://dx.doi.org/10.1016/j.cell.2006.02.037Google Scholar

  • [34] Abe, Y., Ohsugi, M., Haraguchi, K., Fujimoto, J. and Yamamoto, T. LATS2-Ajuba complex regulates gamma-tubulin recruitment to centrosomes and spindle organization during mitosis. FEBS Lett. 580 (2006) 782–788. http://dx.doi.org/10.1016/j.febslet.2005.12.096CrossrefGoogle Scholar

  • [35] Mueller, A., Schafer, B.W., Ferrari, S., Weibel, M., Makek, M., Hochli, M. and Heizmann, C.W. The calcium-binding protein S100A2 interacts with p53 and modulates its transcriptional activity. J. Biol. Chem. 280 (2005) 29186–29193. http://dx.doi.org/10.1074/jbc.M505000200CrossrefGoogle Scholar

  • [36] Tsai, W.C., Tsai, S.T., Jin, Y.T. and Wu, L.W. Cyclooxygenase-2 is involved in S100A2-mediated tumor suppression in squamous cell carcinoma. Mol. Cancer Res. 4 (2006) 539–547. http://dx.doi.org/10.1158/1541-7786.MCR-05-0266CrossrefGoogle Scholar

  • [37] Feng, G., Xu, X., Youssef, E.M. and Lotan, R. Diminished expression of S100A2, a putative tumor suppressor, at early stage of human lung carcinogenesis. Cancer Res. 61 (2001) 7999–8004. Google Scholar

  • [38] Smith, S.L., Gugger, M., Hoban, P., Ratschiller, D., Watson, S.G., Field, J.K., Betticher, D.C. and Heighway, J. S100A2 is strongly expressed in airway basal cells, preneoplastic bronchial lesions and primary non-small cell lung carcinomas. Br. J. Cancer 91 (2004) 1515–1524. Google Scholar

  • [39] Wang, H., Zhang, Z., Li, R., Ang, K.K., Zhang, H., Caraway, N.P., Katz, R.L. and Jiang, F. Overexpression of S100A2 protein as a prognostic marker for patients with stage I non small cell lung cancer. Int. J. Cancer 116 (2005) 285–290. http://dx.doi.org/10.1002/ijc.21035CrossrefGoogle Scholar

  • [40] Diederichs, S., Bulk, E., Steffen, B., Ji, P., Tickenbrock, L., Lang, K., Zänker, K.S., Metzger, R., Schneider, P.M., Gerke, V., Tomas, M., Berdel, W.E., Serve, H. and Müller-Tidow, C. S100 family members and trypsinogens are predictors of distant metastasis and survival in early-stage non-small cell lung cancer. Cancer Res. 64 (2004) 5564–5569. http://dx.doi.org/10.1158/0008-5472.CAN-04-2004CrossrefGoogle Scholar

  • [41] Nishimura, G., Yanoma, S., Mizuno, H., Kawakami, K. and Tsukuda, M. A selective cyclooxygenase-2 inhibitor suppresses tumor growth in nude mouse xenografted with human head and neck squamous carcinoma cells. Jpn. J. Cancer Res. 90 (1999) 1152–1162. Google Scholar

  • [42] Lönnroth, C., Andersson, M. and Lundholm, K. Indomethacin and telomerase activity in tumor growth retardation. Int. J. Oncol. 18 (2001) 929–937. Google Scholar

  • [43] Deng, W.G., Kawashima, H., Wu, G., Jayachandran, G., Xu, K., Minna, J.D., Roth, J.A. and Ji, L. Synergistic tumor suppression by coexpression of FUS1 and p53 is associated with down-regulation of murine double minute-2 and activation of the apoptotic protease-activating factor 1-dependent apoptotic pathway in human non-small cell lung cancer cells. Cancer Res. 67 (2007) 709–717. http://dx.doi.org/10.1158/0008-5472.CAN-06-3463CrossrefGoogle Scholar

  • [44] Ashcroft, M. and Vousden, K.H. Regulation of p53 stability. Oncogene 18 (1999) 7637–7643. http://dx.doi.org/10.1038/sj.onc.1203012CrossrefGoogle Scholar

  • [45] Takahashi, Y., Miyoshi, Y., Takahata, C., Irahara, N., Taguchi, T., Tamaki, Y. and Noguchi, S. Down-regulation of LATS1 and LATS2 mRNA expression by promoter hypermethylation and its association with biologically aggressive phenotype in human breast cancers. Clin. Cancer Res. 15 (2005) 1380–1385. http://dx.doi.org/10.1158/1078-0432.CCR-04-1773CrossrefGoogle Scholar

  • [46] Takahashi, Y., Miyoshi, Y., Morimoto, K., Taguchi, T., Tamaki, Y. and Noguchi, S. Low LATS2 mRNA level can predict favorable response to epirubicin plus cyclophosphamide, but not to docetaxel, in breast cancers. J. Cancer Res. Clin. Oncol. 133 (2007) 501–509. http://dx.doi.org/10.1007/s00432-007-0194-0CrossrefGoogle Scholar

  • [47] Duale, N., Lindeman, B., Komada, M., Olsen, A.K., Andreassen, A., Soderlund, E.J. and Brunborg, G. Molecular portrait of cisplatin induced response in human testis cancer cell lines based on gene expression profiles. Mol. Cancer 6 (2007) 53. http://dx.doi.org/10.1186/1476-4598-6-53CrossrefGoogle Scholar

  • [48] Jiang, Z., Li, X., Hu, J., Zhou, W., Jiang, Y., Li, G. and Lu, D. Promoter hypermethylation-mediated down-regulation of LATS1 and LATS2 in human astrocytoma. Neurosci. Res. 56 (2006) 450–458. http://dx.doi.org/10.1016/j.neures.2006.09.006CrossrefGoogle Scholar

  • [49] Jiménez-Velasco, A., Román-Gómez, J., Agirre, X., Barrios, M., Navarro, G., Vázquez, I., Prósper, F., Torres, A. and Heiniger, A. Downregulation of the large tumor suppressor 2 (LATS2/KPM) gene is associated with poor prognosis in acute lymphoblastic leukemia. Leukemia 19 (2005) 2347–2350. http://dx.doi.org/10.1038/sj.leu.2403974CrossrefGoogle Scholar

  • [50] Matsubara, D., Niki, T., Ishikawa, S., Goto, A., Ohara, E., Yokomizo, T., Heizmann, C.W., Aburatani, H., Moriyama, S., Moriyama, H., Nishimura, Y., Funata, N. and Fukayama, M. Differential expression of S100A2 and S100A4 in lung adenocarcinomas: clinicopathological significance, relationship to p53 and identification of their target genes. Cancer Sci. 96 (2005) 844–857. http://dx.doi.org/10.1111/j.1349-7006.2005.00121.xCrossrefGoogle Scholar

  • [51] Soria, J.C., Xu, X., Liu, D.D., Lee, J.J., Kurie, J., Morice, R.C., Khuri, F., Mao, L., Hong, W.K. and Lotan, R. Retinoic acid receptor beta and telomerase catalytic subunit expression in bronchial epithelium of heavy smokers. J. Natl. Cancer Inst. 95 (2003) 165–168. http://dx.doi.org/10.1093/jnci/95.2.165CrossrefGoogle Scholar

  • [52] Chen, H.H., Yu, C.H., Wang, J.T., Liu, B.Y., Wang, Y.P., Sun, A., Tsai, T.C. and Chiang, CP. Expression of human telomerase reverse transcriptase (hTERT) protein is significantly associated with the progression, recurrence and prognosis of oral squamous cell carcinoma in Taiwan. Oral Oncol. 43 (2007) 122–129. http://dx.doi.org/10.1016/j.oraloncology.2006.01.011CrossrefGoogle Scholar

  • [53] Yim, H.W., Slebos, R.J., Randell, S.H., Umbach, D.M., Parsons, A.M., Rivera, M.P., Detterbeck, F.C. and Taylor, J.A. Smoking is associated with increased telomerase activity in short-term cultures of human bronchial epithelial cells. Cancer Lett. 246 (2007) 24–33. http://dx.doi.org/10.1016/j.canlet.2006.01.023CrossrefGoogle Scholar

  • [54] Mittelstrass, K., Sauter, W., Rosenberger, A., Illig, T., Timofeeva, M., Klopp, N., Dienemann, H., Meese, E., Sybrecht, G., Woelke, G., Cebulla, M., Degen, M., Morr, H., Drings, P., Groeschel, A., Kreymborg, K.G., Haeussinger, K., Hoeffken, G., Schmidt, C., Jilge, B., Schmidt, W., Ko, Y.D., Taeuscher, D., Chang-Claude, J., Wichmann, H.E., Bickeboeller, H. and Risch, A. Early onset lung cancer, cigarette smoking and the SNP309 of the murine double minute-2 (MDM2) gene. BMC Cancer 23 (2008) 113. http://dx.doi.org/10.1186/1471-2407-8-113CrossrefGoogle Scholar

About the article

Published Online: 2009-06-27

Published in Print: 2009-09-01

Citation Information: Cellular and Molecular Biology Letters, Volume 14, Issue 3, Pages 442–456, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-009-0011-7.

Export Citation

© 2009 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Janine Warren, Yuxuan Xiao, and John Lamar
Cancers, 2018, Volume 10, Number 4, Page 115
Weiying Li, Wentao Yue, Hui Wang, Baitang Lai, Xuehui Yang, Chunyan Zhang, Yue Wang, and Meng Gu
Oncology Letters, 2016, Volume 12, Number 5, Page 3836
Xiao-Xiao Lu, Lan-Yu Cao, Xi Chen, Jian Xiao, Yong Zou, and Qiong Chen
BioMed Research International, 2016, Volume 2016, Page 1
Junling Shi
Medical Science Monitor, 2015, Volume 21, Page 612
Susan Y. Luo, Ko-Yung Sit, Alan D.L. Sihoe, Wai-Sing Suen, Wing-Kuk Au, Ximing Tang, Edmond S.K. Ma, Wai-Kong Chan, Ignacio I. Wistuba, John D. Minna, George S.W. Tsao, and David C.L. Lam
Lung Cancer, 2014, Volume 85, Number 2, Page 282
Wei Nie, Yuansheng Zang, Jiquan Chen, and Qingyu Xiu
Tumor Biology, 2014, Volume 35, Number 6, Page 5569
Vegard Eldholm, Aage Haugen, and Shanbeh Zienolddiny
International Journal of Cancer, 2014, Volume 134, Number 10, Page 2305
Takahiro Nakajima, Ricardo Zamel, Takashi Anayama, Hideki Kimura, Ichiro Yoshino, Shaf Keshavjee, and Kazuhiro Yasufuku
The Annals of Thoracic Surgery, 2012, Volume 94, Number 6, Page 2097
Maria N. Timofeeva, Rayjean J. Hung, Thorunn Rafnar, David C. Christiani, John K. Field, Heike Bickeböller, Angela Risch, James D. McKay, Yufei Wang, Juncheng Dai, Valerie Gaborieau, John McLaughlin, Darren Brenner, Steven A. Narod, Neil E. Caporaso, Demetrius Albanes, Michael Thun, Timothy Eisen, H.-Erich Wichmann, Albert Rosenberger, Younghun Han, Wei Chen, Dakai Zhu, Margaret Spitz, Xifeng Wu, Mala Pande, Yang Zhao, David Zaridze, Neonilia Szeszenia-Dabrowska, Jolanta Lissowska, Peter Rudnai, Eleonora Fabianova, Dana Mates, Vladimir Bencko, Lenka Foretova, Vladimir Janout, Hans E. Krokan, Maiken Elvestad Gabrielsen, Frank Skorpen, Lars Vatten, Inger Njølstad, Chu Chen, Gary Goodman, Mark Lathrop, Simone Benhamou, Tõnu Vooder, Kristjan Välk, Mari Nelis, Andres Metspalu, Olaide Raji, Ying Chen, John Gosney, Triantafillos Liloglou, Thomas Muley, Hendrik Dienemann, Gudmar Thorleifsson, Hongbing Shen, Kari Stefansson, Paul Brennan, Christopher I. Amos, Richard Houlston, and Maria Teresa Landi
Human Molecular Genetics, 2012, Volume 21, Number 22, Page 4980
Li Liu, Chen Wu, Ying Wang, Rong Zhong, Shengyu Duan, Sheng Wei, Songyi Lin, Xinyu Zhang, Wen Tan, Dianke Yu, Shaofa Nie, Xiaoping Miao, and Dongxin Lin
Journal of Thoracic Oncology, 2011, Volume 6, Number 11, Page 1793
V. Shane Pankratz, Zhifu Sun, Jeremiah Aakre, Yan Li, Cassandra Johnson, Yolanda I. Garces, Marie C. Aubry, Julian R. Molina, Dennis A. Wigle, and Ping Yang
Journal of Thoracic Oncology, 2011, Volume 6, Number 9, Page 1488
Susann Wolf, Cathleen Haase-Kohn, and Jens Pietzsch
Amino Acids, 2011, Volume 41, Number 4, Page 849
Xiangying Zhu, Nan Yang, Jianguo Cai, Guimei Yang, Shenghua Liang, and Daming Ren
Cellular and Molecular Biology Letters, 2010, Volume 15, Number 1

Comments (0)

Please log in or register to comment.
Log in