Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 14, Issue 3

Issues

The expression of inducible nitric oxide synthase (iNOS) in the testis and epididymis of rats with a dihydrotestosterone (DHT) deficiency

Agnieszka Kolasa
  • Department of Histology and Embryology, Pomeranian Medical University, Powstanców Wlkp. 72, 70-111, Szczecin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mariola Marchlewicz
  • Department of Histology and Embryology, Pomeranian Medical University, Powstanców Wlkp. 72, 70-111, Szczecin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rafał Kurzawa
  • Department of Reproductive Medicine and Gynecology, Pomeranian Medical University, Powstanców Wlkp. 72, 70-111, Szczecin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wojciech Głąbowski
  • Department of Histology and Embryology, Pomeranian Medical University, Powstanców Wlkp. 72, 70-111, Szczecin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Grzegorz Trybek
  • Department of Histology and Embryology, Pomeranian Medical University, Powstanców Wlkp. 72, 70-111, Szczecin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lidia Wenda-Różewicka
  • Department of Histology and Embryology, Pomeranian Medical University, Powstanców Wlkp. 72, 70-111, Szczecin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Barbara Wiszniewska
  • Department of Histology and Embryology, Pomeranian Medical University, Powstanców Wlkp. 72, 70-111, Szczecin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-06-27 | DOI: https://doi.org/10.2478/s11658-009-0019-z

Abstract

In our previous studies, we showed that a finasteride-induced DHT deficiency may cause changes in the morphology of the seminiferous epithelium without any morphological alteration of the epididymis. In this study, we demonstrated the constitutive immunoexpression of inducible nitric oxide synthase (iNOS) in the testis and epididymis of Wistar rats treated with finasteride for 28 days (the duration of two cycles of the seminiferous epithelium) and 56 days (the duration of one spermatogenesis). We noted that a 56-day finasteride treatment mainly caused a decrease in the level of circulating DHT, as well as a statistically insignificant decrease in the level of T. The hormone deficiency also led to a change in the iNOS immnoexpression in the testis and epididymis of the finasteride-treated rats. In vitro, DHT did not modify NO production by the epithelial cells of the caput epididymis even when stimulated with LPS and IFNγ, but it did give rise to an increase in NO production by the epithelial cells of the cauda epididymis without the stimulation. DHT did not have a statistically significant influence on estradiol production by cultured, LPS- and IFNγ-stimulated epithelial cells from the caput and cauda epididymis. In conclusion, our data clearly indicates that a finasterideinduced DHT deficiency intensifies the constitutive expression of iNOS in most rat testicular and epididymal cells, so it can be expected that the expression of inducible nitric oxide synthase (iNOS) could be regulated by DHT. On the other hand, the profile of the circulating DHT and T levels strongly suggests that the regulation of constitutive iNOS expression is complex and needs more detailed study.

Keywords: iNOS immunoexpression; DHT-deficiency; Testis; Epididymis; Rat

  • [1] Moncada, S., Palmer, R.M. and Higgs, E.A. Nitric oxide: physiology, phatophysiology, and pharmacology. Pharmacol. Rev. 43 (1991) 109–134. Google Scholar

  • [2] Xie, Q. and Nathan, C. The high-output nitric oxide pathway: role and regulation. J. Leukoc. Biol. 56 (1994) 576–582. Google Scholar

  • [3] Knowles, R.G. and Moncada, S. Nitric oxide synthases in mammals. Biochem. J. 298 (1994) 249–258. Google Scholar

  • [4] Lowenstein, C.J., Glatt, C.S., Bredt, D.S. and Snyder, S.H. Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme. Proc. Natl. Acad. Sci. USA. 89 (1992) 6711–6715. http://dx.doi.org/10.1073/pnas.89.15.6711CrossrefGoogle Scholar

  • [5] Kroncke, K.D., Fehsel, K. and Kolb-Bachofen, V. Inducible nitric oxide synthase and its product nitric oxide, a small molecule with complex biological activities. Biol. Chem. Hoppe. Seyler. 376 (1995) 327–343. Google Scholar

  • [6] Burnett, A.L., Ricker, D.D., Chamness, S.L., Maguire, M.P., Crone, J.K., Bredt, D.S., Snyder, S.H. and Chang, T.S. Localization of nitric oxide synthase in the reproductive organs of the male rat. Biol. Reprod. 52 (1995) 1–7. http://dx.doi.org/10.1095/biolreprod52.1.1CrossrefGoogle Scholar

  • [7] Ehren, I., Adolfsson, J. and Wiklund, N.P. Nitric oxide synthase activity in the human urogenital tract. Urol. Res. 22 (1994) 287–290. http://dx.doi.org/10.1007/BF00297196CrossrefGoogle Scholar

  • [8] Stephan, J.P., Guillemois, C., Jegou, B. and Bauche, F. Nitric oxide production by Sertoli cells in response to cytokines and lipopolysaccharide. Biochem. Biophys. Res. Commun. 213 (1995) 218–224. http://dx.doi.org/10.1006/bbrc.1995.2119CrossrefGoogle Scholar

  • [9] Tatsumi, N., Fujisawa, M., Kanazaki, M., Okuda, Y., Okada, H., Arakawa, S. and Kamidono, S. Nitric oxide production by cultured rat Leydig cells. Endocrinology 138 (1997) 994–998. http://dx.doi.org/10.1210/en.138.3.994CrossrefGoogle Scholar

  • [10] Weissman, B.A., Niu, E., Ge, R., Sottas, C.M., Holmes, M., Hutson, J.C. and Hardy, M.P. Paracrine modulation of androgen synthesis in rat leydig cells by nitric oxide. J. Androl. 26 (2005) 369–378. http://dx.doi.org/10.2164/jandrol.04178CrossrefGoogle Scholar

  • [11] Wiszniewska, B., Kurzawa, R., Ciechanowicz, A. and Machaliński, B. Inducible nitric oxide synthase in the epithelial epididymal cells of the rat. Reprod. Fertil. Dev. 9 (1997) 789–794. http://dx.doi.org/10.1071/R97063CrossrefGoogle Scholar

  • [12] Kurzawa, R., Barcew-Wiszniewska, B. and Skowron, J. Rat epididymal epithelial cells produce nitric oxide upon concomitant lipopolysaccharide and interferon-gamma stimulation. Folia Histochem. Cytobiol. 4 (1996) 85–86. Google Scholar

  • [13] O’Bryan, M.K., Schlatt, S., Gerdprasert, O., Phillips, D.J., de Kretser, D.M. and Hedger, M.P. Inducible nitric oxide synthase in the rat testis: evidence for potential roles in both normal function and inflammationmediated infertility. Biol. Reprod. 63 (2000) 1285–1293. http://dx.doi.org/10.1095/biolreprod63.5.1285CrossrefGoogle Scholar

  • [14] Ha, T.Y., Kim, H.S. and Shin, T. Expression of constitutive endothelial, neuronal and inducible nitric oxide synthase in the testis and epididymis of horse. J. Vet. Med. Sci. 66 (2004) 351–356. http://dx.doi.org/10.1292/jvms.66.351CrossrefGoogle Scholar

  • [15] Kim, H.C., Byun, J.S., Lee, T.K., Jeong, C.W., Ahn, M. and Shin, T. Expression of nitric oxide synthase isoform in the testes of pigs. Anat. Histol. Embryol. 36 (2007) 135–138. http://dx.doi.org/10.1111/j.1439-0264.2006.00739.xCrossrefGoogle Scholar

  • [16] Sun, L., Ren, Y.P., Jiang, W., Zhang, M.Y. and Hou, Q.Y. Expression and role of nitric oxide synthase in the testis and epididymis of Macaca fascicularis. Zhongua Nan Ke Xu 12 (2006) 876–878. Google Scholar

  • [17] Jin, Y. and Penning, T.M. Steroid 5alpha-reductases and 3alphahydroxysteroid dehydrogenases: key enzymes in androgen metabolism. Best Pract. Res. Clin. Endocrinol. Metab. 15 (2001) 79–94. http://dx.doi.org/10.1053/beem.2001.0120CrossrefGoogle Scholar

  • [18] Russell, D.W. and Wilson, J.D. Steroid 5α-reductase: two genes/two enzymes. Annu. Rev. Biochem. 63 (1994) 25–61. Google Scholar

  • [19] Viger, R.S. and Robaire, B. Steady state steroid 5 alpha-reductase messenger ribonucleic acid levels and immunocytochemical localization of the type 1 protein in the rat testis during postnatal development. Endocrinology 136 (1995) 5409–5415. http://dx.doi.org/10.1210/en.136.12.5409CrossrefGoogle Scholar

  • [20] Pratis, K., O’Donnell, L., Ooi, G.T., McLachlan, R.I. and Robertson, D.M. Enzyme assay for 5alpha-reductase type 2 activity in the presence of 5alpha-reductase type 1 activity in rat testis. J. Steroid. Biochem. Mol. Biol. 75 (2000) 75–82. http://dx.doi.org/10.1016/S0960-0760(00)00139-4CrossrefGoogle Scholar

  • [21] Viger, R.S. and Robaire, B. The mRNAs for the steroid 5α-reductase izoenzymes, types 1 and 2, are differentlly regulated in the rat epididymis. J. Androl. 17 (1996) 27–34. Google Scholar

  • [22] Mahony, M.C., Swanlund, D.J., Billeter, M., Roberts, K.P. and Pryor, J.L. Regional distribution of 5alpha-reductase type 1 and type 2 mRNA along the human epididymis. Fertil. Steril. 69 (1998) 1116–1121. http://dx.doi.org/10.1016/S0015-0282(98)00094-6CrossrefGoogle Scholar

  • [23] Robaire, B. and Henderson, N.A. Actions of 5alpha-reductase inhibitors on the epididymis. Mol. Cell. Endocrinol. 250 (2006) 190–195. http://dx.doi.org/10.1016/j.mce.2005.12.044CrossrefGoogle Scholar

  • [24] Metcalf, B.W., Levy, M.A. and Holt, D.A. Inhibitors of steroid 5alphareductase in benign prostatic hyperplasia, male pattern baldness and acne. Trends Pharmacol. Sci. 10 (1989) 491–495. http://dx.doi.org/10.1016/0165-6147(89)90048-5CrossrefGoogle Scholar

  • [25] George, F.W. Androgen metabolism in the prostate of the finasteridetreated, adult rat: a possible explanation for the differential action of testosterone and 5α-dihydrotestosterone during development of male urogenital tract. Endocrinology 138 (1997) 871–877. http://dx.doi.org/10.1210/en.138.3.871CrossrefGoogle Scholar

  • [26] Vaughan, E.D. Long-term experience with 5-alpha-reductase inhibitors. Rev. Urol. 5 (2003) S22–S27. Google Scholar

  • [27] Kolasa, A., Marchlewicz, M., Wenda-Różewicka, L. and Wiszniewska, B. Morphology of the testis and the epididymis in rats with dihydrotestosterone (DHT) deficiency. Rocz. Akad. Med. Bialymst. 49 (2004) 117–119. Google Scholar

  • [28] Wiszniewska, B. Steroidogenic characteristics of in vitro cultured epididymal epithelial cells of the rat. Reprod. Biol. 1 (2001) 60–66. Google Scholar

  • [29] Ding, A.H., Nathan, C.F. and Stuehr, D.J. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J. Immunol. 141 (1988) 2407–2412. Google Scholar

  • [30] Zini, A., Abitbol, J., Girardi, S.K., Schulsinger, D., Goldstein, M. and Schlegel, P.N. Germ cell apoptosis and endothelial nitric oxide synthase (eNOS) expression following ischemia-reperfusion injury to testis. Arch. Androl. 41 (1998) 57–65. http://dx.doi.org/10.3109/01485019808988547CrossrefGoogle Scholar

  • [31] Lee, N.P. and Cheng, C.Y. Regulation of Sertoli cell tight junction dynamics in the rat testis via the nitric oxide synthase/soluble guanylate cyclase/3′,5′-cyclic guanosine monophosphate/protein kinase G signaling pathway: an in vitro study. Endocrinology 144 (2003) 3114–3129. http://dx.doi.org/10.1210/en.2002-0167CrossrefGoogle Scholar

  • [32] Lue, Y., Sinha-Hikim, A.P., Wang, C., Leung, A. and Swerdloff, R.S. Functional role of inducible nitric oxide synthase in the induction of male germ cell apoptosis, regulation of sperm number and determination of testis size: evidence from null mutant mice. Endocrinology 144 (2003) 3092–3100. http://dx.doi.org/10.1210/en.2002-0142CrossrefGoogle Scholar

  • [33] Zini, A., O’Bryan, M.K., Magid, M.S. and Schlegel, P.N. Immunohistochemical localization of endothelial nitric oxide synthase in human testis, epididymis, and vas deferens suggests a possible role for nitric oxide in spermatogenesis, germ maturation, and programmed cell death. Biol. Reprod. 55 (1996) 935–941. http://dx.doi.org/10.1095/biolreprod55.5.935CrossrefGoogle Scholar

  • [34] Gerdprasert, O., O’Bryan, M.K., Muir, J.A., Caldwell, A.M., Schlatt, S., de Krester, D.M. and Hedger, M.P. The response of testicular leucocytes to lipopolysaccharide-induced inflammation: further evidence heterogeneity of the testicular macrophage population. Cell. Tissue Res. 308 (2002) 277–285. http://dx.doi.org/10.1007/s00441-002-0547-6CrossrefGoogle Scholar

  • [35] Welsh, C., Watson, M.E., Poth, M., Hong, T. and Frrancis, G.L. Evidence to suggest nitric oxide is an interstitial regulator of Leydig Cell steroidogenesis. Metabolism 44 (1995) 234–238. http://dx.doi.org/10.1016/0026-0495(95)90271-6CrossrefGoogle Scholar

  • [36] Wiszniewska, B. Primary culture of the rat epididymal epithelial cells as a source of oestrogen. Andrologia 34 (2002) 180–187. http://dx.doi.org/10.1046/j.1439-0272.2002.00495.xCrossrefGoogle Scholar

  • [37] Chamness, S.L., Ricker, D.D., Crone, J.K., Dembeck, C.L., Maguire, M.P., Burnett, A.L. and Chang, T.S. The effect of androgen on nitric oxide synthase in the male reproductive tract of the rat. Fertil. Steril. 63 (1995) 1101–1107. Google Scholar

  • [38] Carreau S. The testicular aromatase: from gene to physiological role. Reprod. Biol. 2 (2002) 5–12. Google Scholar

  • [39] Lambard, S., Galeraud-Denis, I., Saunders, P.T. and Carreau, S. Human immature germ cells and ejaculated spermatozoa contain aromatase and oestrogen receptors. J. Mol. Endocrinol. 32 (2004) 279–289. http://dx.doi.org/10.1677/jme.0.0320279CrossrefGoogle Scholar

  • [40] Carpino, A., Romeo, F. and Rago, V. Aromatase immunolocalization in human ductuli efferentes and proximal ductus epididymis. J. Anat. 204 (2004) 217–220. http://dx.doi.org/10.1111/j.0021-8782.2004.00272.xCrossrefGoogle Scholar

  • [41] Shayu, D. and Rao, A.J. Expression of functional aromatase in the epididymis: role of androgens and LH in modulation of expression and activity. Mol. Cell. Endocrinol. 249 (2006) 40–50. Google Scholar

  • [42] Snyder, G.D., Holmes, R.W., Bates, J.N. and Van Voorhis, B.J. Nitric oxide inhibits aromatase activity: mechanism of action. J. Steroid. Biochem. Mol. Biol. 58 (1996) 63–69. http://dx.doi.org/10.1016/0960-0760(96)00008-8CrossrefGoogle Scholar

About the article

Published Online: 2009-06-27

Published in Print: 2009-09-01


Citation Information: Cellular and Molecular Biology Letters, Volume 14, Issue 3, Pages 511–527, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-009-0019-z.

Export Citation

© 2009 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Mahtab Farrokhi, Mehdi Zekriyapanah Gashti, Mahmood Hoormand, Azam Bakhtiarian, and Rohalah Habibi
Advances in Medical Sciences, 2019, Volume 64, Number 1, Page 117
[2]
Nathália L M Lara and Luiz R França
Reproduction, 2017, Volume 154, Number 1, Page 13
[4]
Shikha Chouhan, Satyndra Kumar Yadav, Jay Prakash, Susan Westfall, Amrita Ghosh, Neeraj Kumar Agarwal, and Surya Pratap Singh
Environmental Toxicology and Pharmacology, 2015, Volume 39, Number 1, Page 405
[5]
Nehad F. Mazen and Heba M. Elnegris
The Egyptian Journal of Histology, 2013, Volume 36, Number 1, Page 164
[6]
Joanna Gromadzka-Ostrowska, Katarzyna Dziendzikowska, Anna Lankoff, Małgorzata Dobrzyńska, Christine Instanes, Gunnar Brunborg, Aneta Gajowik, Joanna Radzikowska, Maria Wojewódzka, and Marcin Kruszewski
Toxicology Letters, 2012, Volume 214, Number 3, Page 251
[7]
Małgorzata Mokrzycka, Agnieszka Kolasa, Anita Kosierkiewicz, and Barbara Wiszniewska
Folia Histochemica et Cytobiologica, 2010, Volume 48, Number 2

Comments (0)

Please log in or register to comment.
Log in