Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Editor-in-Chief: /

IMPACT FACTOR 2016: 1.260
5-year IMPACT FACTOR: 1.506

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.615
Source Normalized Impact per Paper (SNIP) 2016: 0.470

See all formats and pricing
More options …
Volume 14, Issue 4 (Dec 2009)

The transcriptional regulation of Podocin (NPHS2) by Lmx1b and a promoter single nucleotide polymorphism

Sigrid Harendza / Rolf Stahl / André Schneider
Published Online: 2009-09-10 | DOI: https://doi.org/10.2478/s11658-009-0026-0


Podocin (NPHS2) is a component of the glomerular slit membrane with major regulatory functions in the renal permeability of proteins. A loss of podocin and a decrease in its resynthesis can influence the outcome of renal diseases with nephrotic syndrome, such as minimal change glomerulonephritis, focal segmental glomerulosclerosis (FSGS) and membranous nephropathy. The transcriptional regulation of podocin may play a major role in these processes. We defined the transcriptional regulation of the human podocin gene and the influence of single nucleotide polymorphisms (SNPs) within its promoter region in the podocytes using reporter gene constructs and gel shift analysis. In addition, we took genomic DNA from healthy Caucasian blood donors and from biopsies of kidneys with defined renal diseases and screened it for podocin promoter SNPs. Our data shows that the transcription of podocin is mainly regulated by the transcription factor Lmx1b, which binds to a FLAT-F element and displays enhancer function. With the SNP variant −116T, there was a significant reduction in luciferase activity, and nuclear protein binding was observed, while the SNP −670C/T did not display functionality. The allelic distribution of −116C/T in patients with kidney diseases leading to nephrotic syndrome was not significantly different from that in the control group. Our data indicates that among other factors, podocin is specifically regulated by the transcription factor Lmx1b and by the functional polymorphism -116C/T. However, there is no association between −116C/T and susceptibility to minimal change glomerulonephritis, focal segmental glomerulosclerosis or membranous nephropathy.

Keywords: Lmx1b; Nephrotic syndrome; NPHS2 gene; Podocin promoter; Proteinuria; SNP; Transcription

  • [1] Mundel, P. and Shankland, S.J. Podocyte biology and response to injury. J. Am. Soc. Nephrol. 13 (2002) 3005–3015. http://dx.doi.org/10.1097/01.ASN.0000039661.06947.FDCrossrefGoogle Scholar

  • [2] Roselli, S., Gribouval, O., Boute, N., Sich, M., Benessy, F., Attie, T., Gubler, M.C. and Antignac, C. Podocin localizes in the kidney to the slit diaphragm area. Am J. Pathol. 160 (2002) 131–139. CrossrefGoogle Scholar

  • [3] Boute, N., Gribouval, O., Roselli, S., Benessy, F., Lee, H., Fuchshuber, A., Dahan, K., Gubler, M.C., Niaudet, P. and Antignac, C. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat. Genet. 24 (2000) 349–354. http://dx.doi.org/10.1038/74166CrossrefGoogle Scholar

  • [4] Caridi, G., Bertelli, R., Di Duca, M., Dagnino, M., Emma, F., Onetti Muda, A., Scolari, F., Miglietti, N., Mazzucco, G., Murer, L., Carrea, A., Massella, L., Rizzoni, G., Perfumo, F. and Ghiggeri, G.M. Broadening the spectrum of diseases related to podocin mutations. J. Am. Soc. Nephrol. 14 (2003) 1278–1286. http://dx.doi.org/10.1097/01.ASN.0000060578.79050.E0CrossrefGoogle Scholar

  • [5] Caridi, G., Bertelli, R., Scolari, F., Sanna-Cherchi, S., Di Duca, M. and Ghiggeri, G.M. Podocin mutations in sporadic focal-segmental glomerulosclerosis occurring in adulthood. Kidney Int. 64 (2003) 365. http://dx.doi.org/10.1046/j.1523-1755.2003.00084.xCrossrefGoogle Scholar

  • [6] Ruf, R.G., Lichtenberger, A., Karle, S.M., Haas, J.P., Anacleto, F.E., Schultheiss, M., Zalewski, I., Imm, A., Ruf, E.M., Mucha, B., Bagga, A., Neuhaus, R., Fuchshuber, A., Bakkaloglu, A. and Hildebrandt, F. Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. J. Am. Soc. Nephrol. 15 (2004) 722–732. http://dx.doi.org/10.1097/01.ASN.0000113552.59155.72CrossrefGoogle Scholar

  • [7] Guan, N., Ding, J., Zhang, J. and Yang, J. Expression of nephrin, podocin, alpha-actinin, and WT1 in children with nephrotic syndrome. Pediatr. Nephrol. 18 (2003) 1122–1127. http://dx.doi.org/10.1007/s00467-003-1240-zCrossrefGoogle Scholar

  • [8] Koop, K., Eikmans, M., Baelde, H.J., Kawachi, H., De Heer, E., Paul, L.X. and Bruijn, J.A. Expression of podocyte-associated molecules in acquired human kidney diseases. J. Am. Soc. Nephrol. 14 (2003) 2063–2071. http://dx.doi.org/10.1097/01.ASN.0000078803.53165.C9CrossrefGoogle Scholar

  • [9] Schmid, H., Henger, A., Cohen, C.D., Frach, K., Gröne, H.J., Schlöndorff, D. and Kretzler, M. Gene expression profiles of pococyte-associated molecules as diagnostic markers in acquired proteinuric diseases. J. Am. Soc. Nephrol. 14 (2003) 2958–2966. http://dx.doi.org/10.1097/01.ASN.0000090745.85482.06CrossrefGoogle Scholar

  • [10] Huber, T.B., Simons, M., Hartleben, B., Sernetz, L., Schmidts, M., Gundlach, E., Saleem, M.A., Walz, G. and Benzing, T. Molecular basis of the functional podocin-nephrin complex: mutations in the NPHS2 gene disrupt nephrin targeting to lipid raft microdomains. Hum. Mol. Genet. 12 (2003) 3397–3405. http://dx.doi.org/10.1093/hmg/ddg360CrossrefGoogle Scholar

  • [11] Nishibori, Y., Liu, L., Hosoyamada, M., Endou, H., Hudo, A., Takenaka, H., Higashihara, E., Bessho, F., Takahashi, S., Kershaw, D., Ruotsalainen, V., Tryggvason, K., Khoshnoodi, J. and Yan, K. Disease-causing missense mutations in NPHS2 gene alter normal nephrin trafficking to the plasma membrane. Kidney Int. 66 (2004) 1755–1765. http://dx.doi.org/10.1111/j.1523-1755.2004.00898.xCrossrefGoogle Scholar

  • [12] Oleggini, R., Bertelli, R., Di Donato, A., Di Duca, M., Caridi, G., Sanna-Cherchi, S., Scolari, F., Murer, L., Perfumo, F. and Ghiggeri G.M. Rare functional variants of podocin (NPHS2) promoter in patients with nephrotic syndrome. Gene Expr. 13 (2006) 59–66. http://dx.doi.org/10.3727/000000006783991926CrossrefGoogle Scholar

  • [13] Di Duca, M., Oleggini, R., Sanna-Cherchi, S., Pasquali, L., Di Donato, A., Parodi, S., Bertelli, R., Caridi, G., Frasca, G., Cerullo, G., Amoroso, A., Schena, F.P., Scolari, F., Ghiggeri, G.M. and European IgA Nephropathy Consortium. Cis and trans regulatory elements in NPHS2 promoter: implications in poteinuria and progression of renal diseases. Kidney Int. 70 (2006) 1332–1341. http://dx.doi.org/10.1038/sj.ki.5001767CrossrefGoogle Scholar

  • [14] Miner, J.H., Morello, R., Andrews, K.L., Li, C., Antignac, C., Shaw, A.S. and Lee, B. Transcriptional induction of slit diaphragm genes by Lmx1b is required in podocytes differentiation. J. Clin. Invest. 109 (2001) 1065–1072. Google Scholar

  • [15] Rohr, C., Prestel, J., Heidet, L., Hosser, H., Kriz, W., Johnson, R.L., Antignac, C. and Witzgall, R. The LIM-homeodomain transcription factor Lmx1b plays a crucial role in podocytes. J. Clin. Invest. 109 (2002) 1073–1082. CrossrefGoogle Scholar

  • [16] Dreyer, S.D., Zhou, G., Baldini, A., Winterpracht, A., Zabel, B., Cole, W., Johnson, R.L. and Lee, B. Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat. Genet. 19 (1998) 47–50. http://dx.doi.org/10.1038/ng0598-47CrossrefGoogle Scholar

  • [17] Boussif, O., Lezoualc’h, F., Zanta, M.A., Mergny, M.D., Scherman, D., Demeneix, B. and Behr, J.P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA 92 (1995) 7297–7301. http://dx.doi.org/10.1073/pnas.92.16.7297CrossrefGoogle Scholar

  • [18] Brasier, A.R., Tate, J.E. and Habener, J.F. Optimized use of the firefly luciferase assay as a reporter gene in mammalian cell lines. Biotechniques 7 (1989) 1116–1122. Google Scholar

  • [19] Rosenthal N. Identification of regulatory elements of cloned genes with functional assays. Methods Enzymol. 152 (1987) 704–720. http://dx.doi.org/10.1016/0076-6879(87)52075-4CrossrefGoogle Scholar

  • [20] Dignam, J.D., Lebovitz, R.M. and Roeder, R.G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 111 (1983) 475–489. Google Scholar

  • [21] German, M.S., Moss, L.G., Wang, J.and Rutter W.J. The insulin and islet amyloid polypeptide genes contain similar cell-specific promoter elements that bind identical β-cell nuclear complexes. Mol. Cell. Biol. 12 (1992) 1777–1788. Google Scholar

  • [22] German, M.S., Wang, J., Chadwick, R.B. and Rutter W.J. Synergistic activation of the insulin gene by a LIM-homeo domain protein and a basic helix-loop-helix protein: building a functional insulin minienhancer complex. Genes & Dev. 6 (1992) 2165–2176. http://dx.doi.org/10.1101/gad.6.11.2165CrossrefGoogle Scholar

  • [23] Roselli, S., Heidet, L., Sich, M., Henger, A., Kretzler, M., Gubler, M.C. and Antignac, C. Early glomerular filtration defect and severe renal disease in podocin-deficient mice. Mol. Cell. Biol. 24 (2004) 550–560. http://dx.doi.org/10.1128/MCB.24.2.550-560.2004CrossrefGoogle Scholar

  • [24] Chen, H., Lun, Y., Ovchinnikov, D., Kokuo, H., Oberg, K.C., Pepicelli, C.V., Gan, L., Lee, B. and Jonson, R.L. Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. Nat. Genet. 19 (1998) 51–55. http://dx.doi.org/10.1038/ng0598-51CrossrefGoogle Scholar

  • [25] Dunston, J.A., Hamlington, J.D., Zaveri, J., Sweeney, E., Sibbring, J., Tran, C., Malbroux, M., O’Neill, J.P., Mountford, R. and McIntosh, I. The human LMX1B gene: transcription unit, promoter, and pathogenic mutations. Genomics 84 (2004) 565–576. http://dx.doi.org/10.1016/j.ygeno.2004.06.002CrossrefGoogle Scholar

About the article

Published Online: 2009-09-10

Published in Print: 2009-12-01

Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-009-0026-0.

Export Citation

© 2009 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Christina Gallo-Ebert, Melissa Donigan, Hsing-Yin Liu, Florencia Pascual, Melissa Manners, Devanshi Pandya, Robert Swanson, Denise Gallagher, WeiWei Chen, George M. Carman, and Joseph T. Nickels
Journal of Biological Chemistry, 2013, Volume 288, Number 49, Page 35466
Hayato Sasaki, Nobuya Sasaki, Tomohiro Nishino, Ken-ichi Nagasaki, Hiroshi Kitamura, Daisuke Torigoe, Takashi Agui, and Christos Chatziantoniou
PLoS ONE, 2014, Volume 9, Number 6, Page e99602
K. V. Lemley
Nephrology Dialysis Transplantation, 2014, Volume 29, Number 1, Page 9
Aihua Zhang and Songming Huang
International Journal of Nephrology, 2012, Volume 2012, Page 1
Kyung-Won Hong, Ji-Eun Lim, and Bermseok Oh
Journal of Human Genetics, 2011, Volume 56, Number 3, Page 205

Comments (0)

Please log in or register to comment.
Log in