Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter March 25, 2010

Circulating nucleic acids as a new diagnostic tool

  • Marketa Urbanova EMAIL logo , Jan Plzak , Hynek Strnad and Jan Betka

Abstract

The discovery of circulating nucleic acids in the 1940s opened up new possibilities for the non-invasive detection, monitoring and screening of various human disorders. Several tumour markers that enable early cancer detection or tumour behaviour prediction have been detected in the plasma of cancer patients. Maternal plasma analysis can be used to detect certain fetal abnormalities, with the quantification of cell-free nucleic acids used to screen for several pregnancy-associated disorders. Some other applications are in transplant monitoring and graft rejection assessment, and in certain medical emergencies such as trauma and burn severity stratification. Many studies have yielded promising results in this field, but the techniques have yet to be applied in routine clinical practice. Large-scale studies using similar technologies and a broad spectrum of patients are still needed to verify the results of the various studies.

[1] Mandel, P. and Metais, P. Les acides nucleiques du plasma sanguin chez l homme. C. R. Seances Soc. Biol. Fil. 142 (1948) 241–243. Search in Google Scholar

[2] Tan, E.M., Schur, P.H., Carr, R.I. and Kunkel, H.G. Deoxybonucleic acid (DNA) and antibodies to DNA in the serum of patients with systemic lupus erythematosus. J. Clin. Invest. 45 (1966) 1732–1740. http://dx.doi.org/10.1172/JCI10547910.1172/JCI105479Search in Google Scholar PubMed PubMed Central

[3] Ayala, W., Moore, L.V. and Hess, E.L. The purple color reaction given by diphenylamine reagent. I. with normal and rheumatic fever sera. J. Clin. Invest. 30 (1951) 781–785. http://dx.doi.org/10.1172/JCI10249210.1172/JCI102492Search in Google Scholar PubMed PubMed Central

[4] Leon, S.A., Shapiro, B., Sklaroff, D.M. and Yaros, M.J. Free DNA in the serum of cancer patients and the effect of therapy. Cancer. Res. 37 (1977) 646–650. Search in Google Scholar

[5] Sorenson, G.D., Pribish, D.M., Valone, F.H., Memoli, V.A., Bzik, D.J. and Yao, S.L. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer. Epidemiol. Biomarkers Prev. 3 (1994) 67–71. Search in Google Scholar

[6] Vasioukhin, V., Anker, P., Maurice, P., Lyautey, J., Lederrey, C. and Stroun, M. Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br. J. Haematol. 86 (1994) 774–779. http://dx.doi.org/10.1111/j.1365-2141.1994.tb04828.x10.1111/j.1365-2141.1994.tb04828.xSearch in Google Scholar PubMed

[7] Lo, Y.M. Circulating nucleic acids in plasma and serum: an overview. Ann. N. Y. Acad. Sci. 945 (2001) 1–7. Search in Google Scholar

[8] Johnson, P.J. and Lo, Y.M. Plasma nucleic acids in the diagnosis and management of malignant disease. Clin. Chem. 48 (2002) 1186–1193. Search in Google Scholar

[9] Swarup, V. and Rajeswari, M.R. Circulating (cell-free) nucleic acids-a promising, non-invasive tool for early detection of several human diseases. FEBS Lett. 581 (2007) 795–799. http://dx.doi.org/10.1016/j.febslet.2007.01.05110.1016/j.febslet.2007.01.051Search in Google Scholar PubMed

[10] Sorenson, G.D., Porter, D.M., Barth, R.J., Memoli, V.A., Rhodes, C.H. and Karagas, M. Detection of mutated K-ras2 sequences in plasma from patients with pancreatic carcinoma in comparsion with the CA 19-9 assay. J. Int. Soc. Oncodev. Biol. Med. 18 (1997) 66. Search in Google Scholar

[11] Chen, X., Bonnefoi, H., Diebold-Berger, S., Lyautey, J., Lederrey, C., Faltin-Traub, E., Stroun, M. and Anker, P. Detecting tumor-related alterations in plasma or serum DNA of patients diagnosed with breast cancer. Clin. Cancer Res. 5 (1999) 2297–2303. Search in Google Scholar

[12] Nawroz, H., Koch, W., Anker, P., Stroun, M. and Sidransky, D. Microsatellite alterations in serum DNA of head and neck cancer patients. Nat. Med. 2 (1996) 1035–1037. http://dx.doi.org/10.1038/nm0996-103510.1038/nm0996-1035Search in Google Scholar PubMed

[13] Frost, P.G. and Lachmann, P.J. The relationship of desoxyribonuclease inhibitor levels in human sera to the occurrence of antinuclear antibodies. Clin. Exp. Immunol. 3 (1968) 447–455. Search in Google Scholar

[14] Giacona, B., Ruben, C., Iczkowski, A., Roos, B., Porter, M. and Sorenson, D. Cell-free DNA in human blood plasma: length measurements in patients with pancreatic cancer and healthy controls. Pancreas 17 (1998) 89–97. http://dx.doi.org/10.1097/00006676-199807000-0001210.1097/00006676-199807000-00012Search in Google Scholar PubMed

[15] Wieczorek, J., Rhyner, C. and Block, H. Isolation and characterization of an RNA-proteolipid complex associated with the malignant state in humans. Proc. Natl. Acad. Sci. U.S.A. 82 (1985) 3455–3459. http://dx.doi.org/10.1073/pnas.82.10.345510.1073/pnas.82.10.3455Search in Google Scholar PubMed PubMed Central

[16] Hasselmann, O., Rappl, G., Tilgen, W. and Reinhold, U. Extracellular tyrosinase mRNA within apoptotic bodies is protected from degradation in human serum. Clin. Chem. 47 (2001) 1488–1489. Search in Google Scholar

[17] Chelobanov, P., Laktionov, P., Kharkova, V., Rykova, Y. and Vlassov, V. Isolation of nucleic acid binding proteins: an approach for isolation of cell surface, nucleic acid binding proteins. Ann. N.Y. Acad. Sci. 1022 (2004) 239–243. http://dx.doi.org/10.1196/annals.1318.03710.1196/annals.1318.037Search in Google Scholar PubMed

[18] Holdenrieder, S., Holubec, L. Jr., Topolcan, O., Finek, J. and Stieber, P. Circulating nucleosomes and cytokeratin 19-fragments in patients with colorectal cancer during chemotherapy. Anticancer Res. 25 (2005) 1795–1801. Search in Google Scholar

[19] El-Hefnawy, T., Raja, S., Kelly, L., Bigbee, W.L., Kirkwood, J.M., Luketich, J.D. and Godfrey, T.E. Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin. Chem. 50 (2004) 564–573. http://dx.doi.org/10.1373/clinchem.2003.02850610.1373/clinchem.2003.028506Search in Google Scholar PubMed

[20] Wong, B.C., Chan, K.C., Chan, A.T., Leung, S.F., Chan, L.Y., Chow, K.C. and Lo, Y.M. Reduced plasma RNA integrity in nasopharyngeal carcinoma patients. Clin. Cancer. Res. 12 (2006) 2512–2516. http://dx.doi.org/10.1158/1078-0432.CCR-05-257210.1158/1078-0432.CCR-05-2572Search in Google Scholar PubMed

[21] Lee, E.J., Gusev, Y., Jiang, J., Nuovo, G.J., Lerner, M.R., Frankel, W.L., Morgan, D.L., Postier, R.G., Brackett, D.J. and Schmittgen, T.D. Expression profiling identifies microRNA signature in pancreatic cancer. Int. J. Cancer 120 (2007) 1046–1054. http://dx.doi.org/10.1002/ijc.2239410.1002/ijc.22394Search in Google Scholar PubMed PubMed Central

[22] Coppola, V., de Maria, R. and Bonci, D. MicroRNAs and prostate cancer. Endocr. Relat. Cancer 29 (2010) 1–17. http://dx.doi.org/10.1677/ERC-09-017210.1677/ERC-09-0172Search in Google Scholar PubMed

[23] Schetter, A.J., Leung, S.Y., Sohn, J.J., Zanetti, K.A., Bowman, E.D., Yanaihara, N., Yuen, S.T., Chan, T.L., Kwong, D.L., Au, G.K., Liu, C.G., Calin, G.A., Croce, C.M. and Harris, C.C. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299 (2008) 425–436. http://dx.doi.org/10.1001/jama.299.4.42510.1001/jama.299.4.425Search in Google Scholar PubMed PubMed Central

[24] Gormally, E., Vineis, P., Matullo, G., Veglia, F., Caboux, E., Le Roux, E., Peluso, M., Garte, S., Guarrera, S., Munnia, A., Airoldi, L., Autrup, H., Malaveille, C., Dunning, A., Overvad, K., Tjonneland, A., Lund, E., Clavel-Chapelon, F., Boeing, H., Trichopoulou, A., Palli, D., Krogh, V., Tumino, R., Panico, S., Bueno-de-Mesquita, H.B., Peeters, P.H., Pera, G., Martinez, C., Dorronsoro, M., Barricarte, A., Navarro, C., Quiros, J.R., Hallmans, G., Day, N.E., Key, T.J., Saracci, R., Kaaks, R., Riboli, E. and Hainaut, P. TP53 and KRAS2 mutations in plasma DNA of healthy subjects and subsequent cancer occurrence: a prospective study. Cancer Res. 66 (2006) 6871–6876. http://dx.doi.org/10.1158/0008-5472.CAN-05-455610.1158/0008-5472.CAN-05-4556Search in Google Scholar PubMed

[25] McHale, C.M., Lan, Q., Corso, C., Li, G., Zhang, L., Vermeulen, R., Curry, J.D., Shen, M., Turakulov, R., Higuchi, R., Germer, S., Yin, S., Rothman, N. and Smith, M.T. Chromosome translocations in workers exposed to benzene. J. Natl. Cancer. Inst. Monogr. 39 (2008) 74–77. http://dx.doi.org/10.1093/jncimonographs/lgn01010.1093/jncimonographs/lgn010Search in Google Scholar PubMed

[26] Scarpato, R., Antonelli, A., Ballardin, M., Cipollini, M., Fallahi, P., Tomei, A., Traino, C. and Barale, R. Analysis of chromosome damage in circulating lymphocytes of radiological workers affected by thyroid nodules. Mutat. Res. 606 (2006) 21–26. Search in Google Scholar

[27] Taback, B., O’Day, S.J., Boasberg, P.D., Shu, S., Fournier, P., Elashoff, R., Wang, H.J. and Hoon, D.S. Circulating DNA microsatellites: molecular determinants of response to biochemotherapy in patients with metastatic melanoma. J. Natl. Cancer. Inst. 96 (2004) 152–156. Search in Google Scholar

[28] Maguire, P., Holmberg, K., Kost-Alimova, M., Imreh, S., Skoog, L. and Lindblom, A. CGH analysis of familial non-BRCA1/BRCA2 breast tumors and mutation screening of a candidate locus on chromosome 17q11.2-12. Int. J. Mol. Med. 16 (2005) 135–141. Search in Google Scholar

[29] Chan, K.C., Lai, P.B., Mok, T.S., Chan, H.L., Ding, C., Yeung, S.W. and Lo, Y.M. Quantitative analysis of circulating methylated DNA as a biomarker for hepatocellular carcinoma. Clin. Chem. 54 (2008) 1528–1536. http://dx.doi.org/10.1373/clinchem.2008.10465310.1373/clinchem.2008.104653Search in Google Scholar PubMed

[30] Pan, S.Y., Xie, E.F., Shu, Y.Q., Gao, L., Zhang, L.X., Chen, D., Chen, J.B., Zhao, W.J., Mu, Y. and Zhang, J.N. Methylation quantification of adenomatous polyposis coli (APC) gene promoter in plasma of lung cancer patients. Ai Zheng 28 (2009) 384–389. Search in Google Scholar

[31] Van der Auwera, I., Elst, H.J., Van Laere, S.J., Maes, H., Huget, P., van Dam, P., Van Marck, E.A,. Vermeulen, P.B. and Dirix, L.Y. The presence of circulating total DNA and methylated genes is associated with circulating tumour cells in blood from breast cancer patients. Br. J. Cancer 100 (2009) 1277–1286. http://dx.doi.org/10.1038/sj.bjc.660501310.1038/sj.bjc.6605013Search in Google Scholar PubMed PubMed Central

[32] Righini, C.A., de Fraipont, F., Reyt, E. and Favrot, M.C. Aberrant methylation of tumor suppressor genes in head and neck squamous cell carcinoma: is it clinically relevant? Bull. Cancer 94 (2007) 191–197. Search in Google Scholar

[33] Jubb, A.M., Quirke, P. and Oates, A.J. DNA methylation, a biomarker for colorectal cancer: implications for screening and pathological utility. Ann. N.Y. Acad. Sci. 983 (2003) 251–267. http://dx.doi.org/10.1111/j.1749-6632.2003.tb05980.x10.1111/j.1749-6632.2003.tb05980.xSearch in Google Scholar PubMed

[34] Grützmann, R., Molnar, B., Pilarsky, C., Habermann, J.K., Schlag, P.M., Saeger, H.D., Miehlke, S., Stolz, T., Model, F., Roblick, U.J., Bruch, H.P., Koch, R., Liebenberg, V., Devos, T., Song, X., Day, R.H., Sledziewski, A.Z. and Lofton-Day, C. Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS One 3 (2008) e3759. http://dx.doi.org/10.1371/journal.pone.000375910.1371/journal.pone.0003759Search in Google Scholar PubMed PubMed Central

[35] Kawakami, K., Brabender, J., Lord, R.V., Groshen, S., Greenwald, B.D., Krasna, M.J., Yin, J., Fleisher, A.S., Abraham, J.M., Beer, D.G., Sidransky, D., Huss, H.T., Demeester, T.R., Eads, C., Laird, P.W., Ilson, D.H., Kelsen, D.P., Harpole, D., Moore, M.B., Danenberg, K.D., Danenberg, P.V. and Meltzer, S.J. Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J. Natl. Cancer Inst. 92 (2000) 1805–1811. http://dx.doi.org/10.1093/jnci/92.22.180510.1093/jnci/92.22.1805Search in Google Scholar PubMed

[36] Melnikov, A., Scholtens, D., Godwin, A. and Levenson, V. Differential methylation profile of ovarian cancer in tissues and plasma. J. Mol. Diagn. 11 (2009) 60–65. http://dx.doi.org/10.2353/jmoldx.2009.08007210.2353/jmoldx.2009.080072Search in Google Scholar PubMed PubMed Central

[37] Wieczorek, A.J., Sitaramam, V., Machleidt, W., Rhyner, K., Perruchoud, A.P. and Block, L.H. Diagnostic and prognostic value of RNA-proteolipid in sera of patients with malignant disorders following therapy: first clinical evaluation of a novel tumor marker. Cancer Res. 47 (1987) 6407–6412. Search in Google Scholar

[38] Wong, S.C., Lo, S.F., Cheung, M.T., Ng, K.O., Tse, C.W., Lai, B.S., Lee, K.C. and Lo, Y.M. Quantification of plasma beta-catenin mRNA in colorectal cancer and adenoma patients. Clin. Cancer Res. 10 (2004) 1613–1617. http://dx.doi.org/10.1158/1078-0432.CCR-1168-310.1158/1078-0432.CCR-1168-3Search in Google Scholar

[39] Chu, D.C., Chuang, C.K., Liou, Y.F., Tzou, R.D., Lee, H.C. and Sun, C.F. The use of real-time quantitative PCR to detect circulating prostate-specific membrane antigen mRNA in patients with prostate carcinoma. Ann. N. Y. Acad. Sci. 1022 (2004) 157–162. http://dx.doi.org/10.1196/annals.1318.02610.1196/annals.1318.026Search in Google Scholar PubMed

[40] Chen, X.Q., Bonnefoi, H., Pelte, M.F., Lyautey, J., Lederrey, C., Movarekhi, S., Schaeffer, P., Mulcahy, H.E., Meyer, P., Stroun, M. and Anker, P. Telomerase RNA as a detection marker in the serum of breast cancer patients. Clin. Cancer Res. 6 (2000) 3823–3826. Search in Google Scholar

[41] Sueoka, E., Sueoka, N., Iwanaga, K., Sato, A., Suga, K., Hayashi, S., Nagasawa, K. and Nakachi, K. Detection of plasma hnRNP B1 mRNA, a new cancer biomarker, in lung cancer patients by quantitative real-time polymerase chain reaction. Lung Cancer 48 (2005) 77–83. http://dx.doi.org/10.1016/j.lungcan.2004.10.00710.1016/j.lungcan.2004.10.007Search in Google Scholar PubMed

[42] Silva, J.M., Rodriguez, R., Garcia, J.M., Munoz, C., Silva, J., Dominguez, G., Provencio, M., Espana, P. and Bonilla, F. Detection of epithelial tumour RNA in the plasma of colon cancer patients is associated with advanced stages and circulating tumour cells. Gut 50 (2002) 530–534. http://dx.doi.org/10.1136/gut.50.4.53010.1136/gut.50.4.530Search in Google Scholar PubMed PubMed Central

[43] Johnstone, R.M. Revisiting the road to the discovery of exosomes. Blood Cells Mol. Dis. 34 (2005) 214–219. http://dx.doi.org/10.1016/j.bcmd.2005.03.00210.1016/j.bcmd.2005.03.002Search in Google Scholar PubMed

[44] Papadopoulou, E., Davilas, E., Sotiriou, V., Koliopanos, A., Aggelakis, F., Dardoufas, K., Agnanti, N.J., Karydas, I. and Nasioulas, G. Cell-free DNA and RNA in plasma as a new molecular marker for prostate cancer. Oncol. Res. 14 (2004) 439–445. Search in Google Scholar

[45] Hasselmann, D.O., Rappl, G., Rossler, M., Ugurel, S., Tilgen, W. and Reinhold, U. Detection of tumor-associated circulating mRNA in serum, plasma and blood cells from patients with disseminated malignant melanoma. Oncol. Rep. 8 (2001) 115–118. Search in Google Scholar

[46] Miura, N., Shiota, G., Nakagawa, T., Maeda, Y., Sano, A., Marumoto, A., Kishimoto, Y., Murawaki, Y. and Hasegawa, J. Sensitive detection of human telomerase reverse transcriptase mRNA in the serum of patients with hepatocellular carcinoma. Oncology 64 (2003) 430–434. http://dx.doi.org/10.1159/00007030310.1159/000070303Search in Google Scholar PubMed

[47] O’Driscoll, L. Extracellular nucleic acids and their potential as diagnostic, prognostic and predictive biomarkers. Anticancer Res. 27 (2007) 1257–1265. Search in Google Scholar

[48] Fleischhacker, M., Beinert, T., Ermitsch, M., Seferi, D., Possinger, K., Engelmann, C. and Jandrig, B. Detection of amplifiable messenger RNA in the serum of patients with lung cancer. Ann. N.Y. Acad. Sci. 945 (2001) 179–188. Search in Google Scholar

[49] Li, Y., Elashoff, D., Oh, M., Sinha, U., St John, M.A., Zhou, X., Abemayor, E. and Wong, D.T. Serum circulating human mRNA profiling and its utility for oral cancer detection. J. Clin. Oncol. 24 (2006) 1754–1760. http://dx.doi.org/10.1200/JCO.2005.03.759810.1200/JCO.2005.03.7598Search in Google Scholar PubMed

[50] O’Driscoll, L., Kenny, E., Mehta, J.P., Doolan, P., Joyce, H., Gammell, P., Hill, A., O’Daly, B., O’Gorman, D. and Clynes, M. Feasibility and relevance of global expression profiling of gene transcripts in serum from breast cancer patients using whole genome microarrays and quantitative RT-PCR. Cancer Genomics Proteomics 5 (2008) 94–104. Search in Google Scholar

[51] Galamb, O., Sipos, F., Spisak, S., Galamb, B., Krenacs, T., Valcz, G., Tulassay, Z. and Molnar, B. Potential biomarkers of colorectal adenomadysplasia-carcinoma progression: mRNA expression profiling and in situ protein detection on TMAs reveal 15 sequentially upregulated and 2 downregulated genes. Cell Oncol. 31 (2009) 19–29. Search in Google Scholar

[52] Fleischhacker, M. and Schmidt, B. Circulating nucleic acids (CNAs) and cancer—a survey. Biochim. Biophys. Acta 1775 (2007) 181–232. Search in Google Scholar

[53] Croce, C. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 10 (2009) 704–714. http://dx.doi.org/10.1038/nrg263410.1038/nrg2634Search in Google Scholar PubMed PubMed Central

[54] Yanaihara, N., Caplen, N., Bowman, E., Seike, M., Kumamoto, K., Yi, M., Stephens, R.M., Okamoto, A., Yokota, J., Tanaka, T., Calin, G.A., Liu, C.G., Croce, C.M. and Harris, C.C. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9 (2006) 189–198. http://dx.doi.org/10.1016/j.ccr.2006.01.02510.1016/j.ccr.2006.01.025Search in Google Scholar PubMed

[55] Liu, X., Chen, Z., Yu, J., Xia, J. and Zhou, X. MicroRNA profiling and head and neck cancer. Comp. Funct. Genomics (2009) DOI: 10.1155/2009/837514. 10.1155/2009/837514Search in Google Scholar

[56] Simpson, R.J., Lim, J.W., Moritz, R.L. and Mathivanan, S. Exosomes: proteomic insights and diagnostic potential. Expert Rev. Proteomics 6 (2009) 267–283. http://dx.doi.org/10.1586/epr.09.1710.1586/epr.09.17Search in Google Scholar

[57] Logozzi, M., De Milito, A., Lugini, L., Borghi, M., Calabrò, L., Spada, M., Perdicchio, M., Marino, M.L., Federici, C., Iessi, E., Brambilla, D., Venturi, G., Lozupone, F., Santinami, M., Huber, V., Maio, M., Rivoltini, L. and Fais, S. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One 4 (2009) e5219. http://dx.doi.org/10.1371/journal.pone.000521910.1371/journal.pone.0005219Search in Google Scholar

[58] Nilsson, J., Skog, J., Nordstrand, A., Baranov, V., Mincheva-Nilsson, L., Breakefield, X.O. and Widmark, A. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br. J. Cancer 100 (2009) 1603–1607. http://dx.doi.org/10.1038/sj.bjc.660505810.1038/sj.bjc.6605058Search in Google Scholar

[59] Shao, Y., Zhang, Y., Li, H., Gao, Y., Feng, X., Wu, L., Cui, J., Cheng, G., Hu, B., Hu, F., Ernberg, I. and Zeng, X. Comparison of Epstein-Barr virus DNA level in plasma, peripheral blood cell and tumor tissue in nasopharyngeal carcinoma. Anticancer Res. 24 (2004) 4059–4066. Search in Google Scholar

[60] Ayadi, W., Karray-Hakim, H., Feki, L., Khabir, A., Boudawara, T., Ghorbel, A., Daoud, J., Frikha, M. and Hammami, A. IgA antibodies against the Epstein-Barr nuclear antigen1 as a valuable biomarker for the diagnosis of nasopharyngeal carcinoma in Tunisian patients. J. Med. Virol. 81 (2009) 1412–1421. http://dx.doi.org/10.1002/jmv.2153210.1002/jmv.21532Search in Google Scholar

[61] Yang, J., Liu, W., Tsang, C., Yip, M., Tam, F., Wong, C., Ng, Y. and Ngan, Y. Quantification of human papillomavirus DNA in the plasma of patients with cervical cancer. Int. J. Gynecol. Cancer 14 (2004) 903–910. http://dx.doi.org/10.1111/j.1048-891X.2004.014528.x10.1111/j.1048-891X.2004.014528.xSearch in Google Scholar

[62] Capone, B., Pai, I., Koch, M., Gillison, L., Danish, N., Westra, H., Daniel, R., Shah, V. and Sidransky, D. Detection and quantitation of human papillomavirus (HPV) DNA in the sera of patients with HPV-associated head and neck squamous cell carcinoma. Clin. Cancer Res. 6 (2000) 4171–4175. Search in Google Scholar

[63] Lo, Y.M., Corbetta, N., Chamberlain, P.F., Rai, V., Sargent, I.L., Redman, C.W. and Wainscoat, J.S. Presence of fetal DNA in maternal plasma and serum. Lancet 350 (1997) 485–487. http://dx.doi.org/10.1016/S0140-6736(97)02174-010.1016/S0140-6736(97)02174-0Search in Google Scholar

[64] Costa, J.M., Benachi, A. and Gautier, E. New strategy for prenatal diagnosis of X-linked disorders. N. Engl. J. Med. 346 (2002) 1502. http://dx.doi.org/10.1056/NEJM20020509346191810.1056/NEJM200205093461918Search in Google Scholar

[65] Chiu, R.W., Lau, T.K., Cheung, P.T., Gong, Z.Q., Leung, T.N. and Lo, Y.M. Noninvasive prenatal exclusion of congenital adrenal hyperplasia by maternal plasma analysis: a feasibility study. Clin. Chem. 48 (2002) 778–780. Search in Google Scholar

[66] Leung, T.N., Zhang, J., Lau, T.K., Chan, L.Y. and Lo, Y.M. Increased maternal plasma fetal DNA concentrations in women who eventually develop preeklampsia. Clin. Chem. 47 (2002) 137–139. Search in Google Scholar

[67] Lau, T.K., Lo, K.W., Chan, L.Y., Leung, T.Y. and Lo, Y.M. Cell-free fetal deoxyribonucleic acid in maternal circulation as a marker of fetal-maternal hemorrhage in patients undergoing external cephalic version near term. Am. J. Obstet. Gynecol. 183 (2000) 712–716. http://dx.doi.org/10.1067/mob.2000.10658210.1067/mob.2000.106582Search in Google Scholar

[68] Saito, H., Sekizawa, A., Morimoto, T., Suzuki, M. and Yanaihara, T. Prenatal DNA diagnosis of a single-gene disorder from maternal plasma. Lancet 356 (2000) 1170. http://dx.doi.org/10.1016/S0140-6736(00)02767-710.1016/S0140-6736(00)02767-7Search in Google Scholar

[69] Amicucci, P., Gennarelli, M., Novelli, G., and Dallapiccola, B. Prenatal diagnosis of myotonic dystrophy using fetal DNA obtained from maternal plasma. Clin. Chem. 46 (2000) 301–302. Search in Google Scholar

[70] González-González, C., Trujillo, J., Rodríguez de Alba, M., García-Hoyos, M., Lorda-Sánchez, I., Díaz-Recasens, J., Ayuso, C. and Ramos, C. Huntington disease-unaffected fetus diagnosed from maternal plasma using QF-PCR. Prenat. Diagn. 23 (2003) 232–234. http://dx.doi.org/10.1002/pd.57010.1002/pd.570Search in Google Scholar

[71] Chiu, W., Lau, K., Cheung, T., Gong, Q., Leung, N. and Lo, M. Noninvasive prenatal exclusion of congenital adrenal hyperplasia by maternal plasma analysis: a feasibility study. Clin. Chem. 48 (2002) 778–780. Search in Google Scholar

[72] González-González, C., García-Hoyos, M., Trujillo, J., Rodríguez de Alba, M., Lorda-Sánchez, I., Díaz-Recasens, J., Gallardo, E., Ayuso, C. and Ramos, C. Prenatal detection of a cystic fibrosis mutation in fetal DNA from maternal plasma. Prenat. Diagn. 22 (2002) 946–948. http://dx.doi.org/10.1002/pd.43910.1002/pd.439Search in Google Scholar

[73] Chiu, W., Lau, K., Leung, N., Chow, C., Chui, H. and Lo, M. Prenatal exclusion of beta thalassaemia major by examination of maternal plasma. Lancet 360 (2002) 998–1000. http://dx.doi.org/10.1016/S0140-6736(02)11086-510.1016/S0140-6736(02)11086-5Search in Google Scholar

[74] Tong, Y.K. and Lo, Y.M. Diagnostic developments involving cell-free (circulating) nucleic acids. Clin. Chim. Acta 363 (2006) 187–196. http://dx.doi.org/10.1016/j.cccn.2005.05.04810.1016/j.cccn.2005.05.048Search in Google Scholar PubMed

[75] Tsui, N.B. and Dennis, Lo, Y.M. Placental RNA in maternal plasma: toward noninvasive fetal gene expression profiling. Ann. N. Y. Acad. Sci. 1075 (2006) 96–102. http://dx.doi.org/10.1196/annals.1368.01210.1196/annals.1368.012Search in Google Scholar PubMed

[76] Vlassov, V.V., Laktionov, P.P. and Rykova, E.Y. Extracellular nucleic acids. Bioessays 29 (2007) 654–667. http://dx.doi.org/10.1002/bies.2060410.1002/bies.20604Search in Google Scholar PubMed

[77] Rainer, T.H., Wong, L.K., Lam, W., Yuen, E., Lam, N.Y., Metreweli, C. and Lo, Y.M. Prognostic use of circulating plasma nucleic acid concentrations in patients with acute stroke. Clin. Chem. 49 (2003) 562–569. http://dx.doi.org/10.1373/49.4.56210.1373/49.4.562Search in Google Scholar PubMed

[78] Rainer, T.H., Lam, N.Y., Tsui, N.B., Ng, E.K., Chiu, R.W., Joynt, G.M. and Lo, Y.M. Effects of filtration on glyceraldehyde-3-phosphate dehydrogenase mRNA in the plasma of trauma patients and healthy individuals. Clin. Chem. 50 (2004) 206–208. http://dx.doi.org/10.1373/clinchem.2003.02253310.1373/clinchem.2003.022533Search in Google Scholar PubMed

[79] Fox, A., Gal, S., Fisher, N., Smythe, J., Wainscoat, J., Tyler, M.P., Watt, S.M. and Harris, A.L. Quantification of circulating cell-free plasma DNA and endothelial gene RNA in patients with burns and relation to acute thermal injury. Burns 34 (2008) 809–816. http://dx.doi.org/10.1016/j.burns.2007.10.00310.1016/j.burns.2007.10.003Search in Google Scholar PubMed

[80] Hamaoui, K., Butt, A., Powrie, J. and Swaminathan, R. Concentration of circulating rhodopsin mRNA in diabetic retinopathy. Clin. Chem. 50 (2004) 2152–2155. http://dx.doi.org/10.1373/clinchem.2004.03716810.1373/clinchem.2004.037168Search in Google Scholar PubMed

[81] Swaminathan, R. and Butt, N. Circulating nucleic acids in plasma and serum: recent developments. Ann. N. Y. Acad. Sci. 1075 (2006) 1–9. http://dx.doi.org/10.1196/annals.1368.00110.1196/annals.1368.001Search in Google Scholar

[82] Vasavda, N., Ulug, P., Kondaveeti, S., Ramasamy, K., Sugai, T., Cheung, G., Rees, C., Awogbade, M., Bannister, S., Cunningham, J., Menzel, S. and Thein, L. Circulating DNA: a potential marker of sickle cell crisis. Br. J. Haematol. 139 (2007) 331–336. http://dx.doi.org/10.1111/j.1365-2141.2007.06775.x10.1111/j.1365-2141.2007.06775.xSearch in Google Scholar

[83] Gadi, V.K., Nelson, J.L., Boespflug, N.D., Guthrie, K.A. and Kuhr, C.S. Soluble donor DNA concentrations in recipient serum correlate with pancreas-kidney rejection. Clin. Chem. 52 (2006) 379–382. http://dx.doi.org/10.1373/clinchem.2005.05897410.1373/clinchem.2005.058974Search in Google Scholar

[84] Chomczynski, P. and Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162 (1987) 156–159. http://dx.doi.org/10.1016/0003-2697(87)90021-210.1016/0003-2697(87)90021-2Search in Google Scholar

[85] Chan, A.T., Lo, Y.M., Zee, B., Chan, L.Y., Ma, B.B., Leung, S.F., Mo, F., Lai, M., Ho, S., Huang, D.P. and Johnson, P.J. Plasma Epstein-Barr virus DNA and residual disease after radiotherapy for undifferentiated nasopharyngeal carcinoma. J. Natl. Cancer Inst. 94 (2002) 1614–1619. Search in Google Scholar

[86] Zhong, X.Y., Holzgreve, W. and Hahn, S. Risk free simultaneous prenatal identification of fetal Rhesus D status and sex by multiplex real-time PCR using cell free fetal DNA in maternal plasma. Swiss Med. Wkly. 131 (2001) 70–74. Search in Google Scholar

[87] Mueller, D.W., Rehli, M. and Bosserhoff, A.K. miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J. Invest. Dermatol. 129 (2009) 1740–1751. http://dx.doi.org/10.1038/jid.2008.45210.1038/jid.2008.452Search in Google Scholar PubMed

[88] Collado, M., Garcia, V., Garcia, J.M., Alonso, I., Lombardia, L., Diaz-Uriarte, R., Fernandez, L.A., Zaballos, A., Bonilla, F. and Serrano, M. Genomic profiling of circulating plasma RNA for the analysis of cancer. Clin. Chem. 53 (2007) 1860–1863. http://dx.doi.org/10.1373/clinchem.2007.08920110.1373/clinchem.2007.089201Search in Google Scholar PubMed

[89] Zimmermann, B.G., Grill, S., Holzgreve, W., Zhoní, X.Y., Jackson, L.G. and Hahn, S. Digital PCR: a powerful new tool for noninvasive prenatal diagnosis? Prenat. Diagn. 28 (2008) 1087–1093. Search in Google Scholar

[90] Lo, Y.M., Lun, F.M., Chan, K.C., Taji, N.B., Chiny, K.C., Lau, T.K., Lejny, T.Y., Zee, B.C., Cantor, C.R. and Chiu, R.W. Digital PCR for the molecular detection of fetal chromosomal aneuploidy. Proc. Natl. Acad. Sci. U.S.A. 104 (2007) 13116–13121. http://dx.doi.org/10.1073/pnas.070576510410.1073/pnas.0705765104Search in Google Scholar PubMed PubMed Central

[91] Tong, Y.K., Ding, C., Chiu, R.W., Gerovassili, A., Chim, S.S., Lejny, T.Y., Lejny, T.N., Lau, T.K., Nicolaides, K.H. and Lo, Y.M. Noninvasive prenatal detection of fetal trisomy 18 by epigenetic allelic ratio analysis in maternal plasma: Theoretical and empirical considerations. Clin. Chem. 52 (2006) 2194–2202. http://dx.doi.org/10.1373/clinchem.2006.07685110.1373/clinchem.2006.076851Search in Google Scholar PubMed

[92] Diehl, F., Li, M., He, Y., Kinzler, K.W., Vogelstein, B. and Dressman, D. BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions. Nat. Methods 3 (2006) 551–559. http://dx.doi.org/10.1038/nmeth89810.1038/nmeth898Search in Google Scholar PubMed

[93] Spurgeon, S.L., Jones, R.C. and Ramakrishnan, R. High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS One 3 (2008) e1662. http://dx.doi.org/10.1371/journal.pone.000166210.1371/journal.pone.0001662Search in Google Scholar PubMed PubMed Central

[94] Fan, H. and Quake S. Detection of aneuploidy with digital polymerase chain reaction. Anal. Chem. 79 (2007) 7576–7579. http://dx.doi.org/10.1021/ac070939410.1021/ac0709394Search in Google Scholar PubMed

[95] Fan, H.C., Blumenfeld, Y.J., Chitkara, U., Hudgins, L. and Quake, S.R. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc. Natl. Acad. Sci. U.S.A. 105 (2008) 16266–16271. http://dx.doi.org/10.1073/pnas.080831910510.1073/pnas.0808319105Search in Google Scholar PubMed PubMed Central

Published Online: 2010-3-25
Published in Print: 2010-6-1

© 2010 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-010-0004-6/html
Scroll to top button