Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

See all formats and pricing
More options …
Volume 15, Issue 2


Molecular systematics: A synthesis of the common methods and the state of knowledge

Diego San Mauro / Ainhoa Agorreta
  • Department of Zoology, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
  • Department of Zoology and Ecology, University of Navarra, Irunlarrea s/n, 31008, Pamplona, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-03-25 | DOI: https://doi.org/10.2478/s11658-010-0010-8


The comparative and evolutionary analysis of molecular data has allowed researchers to tackle biological questions that have long remained unresolved. The evolution of DNA and amino acid sequences can now be modeled accurately enough that the information conveyed can be used to reconstruct the past. The methods to infer phylogeny (the pattern of historical relationships among lineages of organisms and/or sequences) range from the simplest, based on parsimony, to more sophisticated and highly parametric ones based on likelihood and Bayesian approaches. In general, molecular systematics provides a powerful statistical framework for hypothesis testing and the estimation of evolutionary processes, including the estimation of divergence times among taxa. The field of molecular systematics has experienced a revolution in recent years, and, although there are still methodological problems and pitfalls, it has become an essential tool for the study of evolutionary patterns and processes at different levels of biological organization. This review aims to present a brief synthesis of the approaches and methodologies that are most widely used in the field of molecular systematics today, as well as indications of future trends and state-of-the-art approaches.

Keywords: Molecular systematics; Phylogenetic inference; Molecular evolution; Phylogeny; Evolutionary analysis; Evolutionary hypothesis; Divergence time

  • [1] Page, R.D.M. and Holmes, E.C. Molecular evolution: a phylogenetic approach, Blackwell Science, Oxford, 1998. Google Scholar

  • [2] Korber, B., Muldoon, M., Theiler, J., Gao, F., Gupta, R., Lapedes, A., Hahn, B.H., Wolinsky, S. and Bhattacharya, T. Timing the Ancestor of the HIV-1 Pandemic Strains. Science 288 (2000) 1789–1796. http://dx.doi.org/10.1126/science.288.5472.1789CrossrefGoogle Scholar

  • [3] Smith, G.J.D., Vijaykrishna, D., Bahl, J., Lycett, S.J., Worobey, M., Pybus, O.G., Ma, S.K., Cheung, C.L., Raghwani, J., Bhatt, S., Peiris, J.S.M., Guan, Y. and Rambaut, A. Origins and evolutionary genomics of the 2009 swineorigin H1N1 influenza A epidemic. Nature 459 (2009) 1122–1125. http://dx.doi.org/10.1038/nature08182CrossrefGoogle Scholar

  • [4] Rokas, A. and Holland, P.W.H. Rare genomic changes as a tool for phylogenetics. Trends Ecol. Evol. 15 (2000) 454–459. http://dx.doi.org/10.1016/S0169-5347(00)01967-4CrossrefGoogle Scholar

  • [5] Hillis, D.M., Moritz, C. and Mable, B.K., Eds. Molecular systematics. Sinauer Associates, Inc., Sunderland, MA, 1996. Google Scholar

  • [6] Hillis, D.M. and Wiens, J.J. Molecules versus morphology in systematics: conflicts, artifacts, and misconceptions. in: Phylogenetic analysis of morphological data (Wiens, J.J., Ed.), Smithsonian Institution Press, Washington, DC, 2000, 1–19. Google Scholar

  • [7] Maley, L.E. and Marshall, C.R. The coming of age of molecular systematics. Science 279 (1998) 505–506. http://dx.doi.org/10.1126/science.279.5350.505CrossrefGoogle Scholar

  • [8] Stevens, J.R. and Schofield, C.J. Phylogenetics and sequence analysis — some problems for the unwary. Trends Parasitol. 19 (2003) 582–588. http://dx.doi.org/10.1016/j.pt.2003.10.004CrossrefGoogle Scholar

  • [9] Doyle, J.J. Gene trees and species trees: molecular systematics as onecharacter taxonomy. Syst. Bot. 17 (1992) 144–163. http://dx.doi.org/10.2307/2419070CrossrefGoogle Scholar

  • [10] Rokas, A., Williams, B.L., King, N. and Carroll, S.B. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425 (2003) 798–804. http://dx.doi.org/10.1038/nature02053CrossrefGoogle Scholar

  • [11] Cummings, M.P., Otto, S.P. and Wakeley, J. Sampling properties of DNA sequence data in phylogenetic analysis. Mol. Biol. Evol. 12 (1995) 814–822. Google Scholar

  • [12] Graybeal, A. Is it better to add taxa or characters to a difficult phylogenetic problem? Syst. Biol. 47 (1998) 9–17. http://dx.doi.org/10.1080/106351598260996CrossrefGoogle Scholar

  • [13] Huelsenbeck, J.P. Performance of phylogenetic methods in simulation.. Syst. Biol. 44 (1995) 17–48. Google Scholar

  • [14] Maddison, W.P. Gene trees in species trees. Syst. Biol. 46 (1997) 523–536. CrossrefGoogle Scholar

  • [15] Pääbo, S., Poinar, H., Serre, D., Jaenicke-Despres, V., Hebler, J., Rohland, N., Kuch, M., Krause, J., Vigilant, L. and Hofreiter, M. Genetic analyses from ancient DNA. Annu. Rev. Genet. 38 (2004) 645–679. http://dx.doi.org/10.1146/annurev.genet.37.110801.143214CrossrefGoogle Scholar

  • [16] Organ, C.L., Schweitzer, M.H., Zheng, W., Freimark, L.M., Cantley, L.C. and Asara, J.M. Molecular phylogenetics of mastodon and Tyrannosaurus rex. Science 320 (2008) 499. http://dx.doi.org/10.1126/science.1154284CrossrefGoogle Scholar

  • [17] Tautz, D., Arctander, P., Minelli, A., Thomas, R.H. and Vogler, A.P. A plea for DNA taxonomy. Trends Ecol. Evol. 18 (2003) 70–74. http://dx.doi.org/10.1016/S0169-5347(02)00041-1CrossrefGoogle Scholar

  • [18] Pons, J., Barraclough, T.G., Gomez-Zurita, J., Cardoso, A., Duran, D.P., Hazell, S., Kamoun, S., Sumlin, W.D. and Vogler, A.P. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55 (2006) 595–609. http://dx.doi.org/10.1080/10635150600852011CrossrefGoogle Scholar

  • [19] Hebert, P.D.N., Cywinska, A., Ball, S.L. and deWaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B 270 (2003) 313–321. http://dx.doi.org/10.1098/rspb.2002.2218CrossrefGoogle Scholar

  • [20] Swofford, D.L., Olse, G.J., Waddell, P.J. and Hillis, D.M. Phylogenetic inference. in: Molecular systematics (Hillis, D.M., Moritz, C. and Mable, B.K., Eds.), Sinnauer Associates, Sunderland, MA, 1996, 407–514. Google Scholar

  • [21] Whelan, S., Liò, P. and Goldman, N. Molecular phylogentics: state-of-theart methods for looking into the past. Trends Genet. 17 (2001) 262–272. http://dx.doi.org/10.1016/S0168-9525(01)02272-7CrossrefGoogle Scholar

  • [22] Felsenstein, J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17 (1981) 368–376. http://dx.doi.org/10.1007/BF01734359CrossrefGoogle Scholar

  • [23] Posada, D. Selecting models of evolution. in: The phylogenetic handbook (Salemi, M. and Vandamme, A.-M., Eds.), Cambridge University Press, Cambridge, 2003, 256–282. Google Scholar

  • [24] Yang, Z. Estimating the pattern of of nucleotide substitution. J. Mol. Evol. 39 (1994) 105–111. Google Scholar

  • [25] Fitch, W.M. and Margoliash, E. A method for estimating the number of invariant amino acid coding positions in a gene, using cytochrome c as a model case. Biochem. Genet. 1 (1967) 65–71. http://dx.doi.org/10.1007/BF00487738CrossrefGoogle Scholar

  • [26] Wakeley, J. Substitution rate variation among sites in hypervariable region 1 of human mitochondrial DNA. J. Mol. Evol. 37 (1993) 613–623. http://dx.doi.org/10.1007/BF00182747Google Scholar

  • [27] Reeves, J.H. Heterogeneity in the substitution process of amino acid sites of proteins coded for by mitochondrial DNA. J. Mol. Evol. 35 (1992) 17–31. http://dx.doi.org/10.1007/BF00160257CrossrefGoogle Scholar

  • [28] Hasegawa, M., Kishino, H. and Yano, T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22 (1985) 160–174. http://dx.doi.org/10.1007/BF02101694CrossrefGoogle Scholar

  • [29] Yang, Z. Maximum likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol. Biol. Evol. 10 (1993) 1396–1401. Google Scholar

  • [30] Yang, Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J. Mol. Evol. 39 (1994) 306–314. http://dx.doi.org/10.1007/BF00160154CrossrefGoogle Scholar

  • [31] Felsenstein, J. Inferring phylogenies. Sinauer Associates, Inc., Sunderland, MA, 2004. Google Scholar

  • [32] Adachi, J. and Hasegawa, M. Model of amino acid substitution in proteins encoded by mitochondrial DNA. J. Mol. Evol. 42 (1996) 459–468. http://dx.doi.org/10.1007/BF02498640CrossrefGoogle Scholar

  • [33] Jones, D.T., Taylor, W.R. and Thornton, J.M. The rapid generation of mutation data matrices from protein sequences. Comp. Appl. Biosci. 8 (1992) 275–282. Google Scholar

  • [34] Rodríguez, F., Oliver, J.F., Marín, A. and Medina, J.R. The general stochastic model of nucleotide substitution. J. Theor. Biol. 142 (1990) 485–501. http://dx.doi.org/10.1016/S0022-5193(05)80104-3CrossrefGoogle Scholar

  • [35] Ren, F., Tanaka, H. and Yang, Z. An empirical examination of the utility of codon-substitution models in phylogeny reconstruction. Syst. Biol. 54 (2005) 808–818. http://dx.doi.org/10.1080/10635150500354688CrossrefGoogle Scholar

  • [36] Tavaré, S., Adams, D.C., Fedrigo, O. and Naylor, G.J.P. A model for phylogenetic inference using structural and chemical covariates. in: Pacific Symposium on Biocomputing (Altman, R.B., Dunker, A.K., Hunter, L., Lauderdale, K. and Klein, T.E., Eds.), World Scientific, Singapore, 2001, 215–225. Google Scholar

  • [37] Galtier, N. Maximum-likelihood phylogenetic analysis under a covarion-like model. Mol. Biol. Evol. 18 (2001) 866–873. CrossrefGoogle Scholar

  • [38] Huelsenbeck, J.P. Testing a covariotide model of DNA substitution. Mol. Biol. Evol. 19 (2002) 698–707. CrossrefGoogle Scholar

  • [39] Cunningham, C.W., Zhu, H. and Hillis, D.M. Best-fit maximum-likelihood models for phylogenetic inference: empirical tests with known phylogenies. Evolution 52 (1998) 978–987. http://dx.doi.org/10.2307/2411230CrossrefGoogle Scholar

  • [40] Bruno, W.J. and Halpern, A.L. Topological bias and inconsistency of maximum likelihood using wrong models. Mol. Biol. Evol. 16 (1999) 564–566. CrossrefGoogle Scholar

  • [41] Huelsenbeck, J.P. and Hillis, D.M. Success of phylogenetic methods in the four-taxon case. Syst. Biol. 42 (1993) 247–264. CrossrefGoogle Scholar

  • [42] Holder, M. and Lewis, P.O. Phylogeny estimation: traditional and Bayesian approaches. Nat. Rev. Genet. 4 (2003) 275–284. http://dx.doi.org/10.1038/nrg1044CrossrefGoogle Scholar

  • [43] Posada, D. and Crandall, K.A. Selecting the best-fit model of nucleotide substitution. Syst. Biol. 50 (2001) 580–601. http://dx.doi.org/10.1080/106351501750435121CrossrefGoogle Scholar

  • [44] Huelsenbeck, J.P. and Crandall, K.A. Phylogeny estimation and hypothesis testing using maximum likelihood. Ann. Rev. Ecol. Syst. 28 (1997) 437–466. http://dx.doi.org/10.1146/annurev.ecolsys.28.1.437CrossrefGoogle Scholar

  • [45] Akaike, H. Information theory as an extension of the maximum likelihood principle. in: Second international symposium of information theory (Petrov, B.N. and Csaki, F., Eds.), Akademiai Kiado, Budapest, Hungary, 1973. Google Scholar

  • [46] Schwarz, G. Estimating the dimensions of a model. Ann. Stat. 6 (1978) 461–464. http://dx.doi.org/10.1214/aos/1176344136CrossrefGoogle Scholar

  • [47] Posada, D. and Buckley, T.R. Model selection and model averaging in phylogenetics: Advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53 (2004) 793–808. http://dx.doi.org/10.1080/10635150490522304CrossrefGoogle Scholar

  • [48] Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J. and Wheeler, D.L. GenBank. Nucleic Acids Res. 35 (2007) D21–D25. http://dx.doi.org/10.1093/nar/gkl986CrossrefGoogle Scholar

  • [49] Kitching, I.L., Forey, P.L., Humphries, C.J. and Williams, D.M. Cladistics. ed. 2. The theory and practice of parsimony analysis, Oxford University Press, Oxford, 1998. Google Scholar

  • [50] Smith, A.B. Rooting molecular trees: problems and strategies. Biol. J. Linn. Soc. 51 (1994) 279–292. http://dx.doi.org/10.1111/j.1095-8312.1994.tb00962.xCrossrefGoogle Scholar

  • [51] Phillips, A., Janies, D. and Wheeler, W. Multiple sequence alignment in phylogenetic analysis. Mol. Phylogenet. Evol. 16 (2000) 317–330. http://dx.doi.org/10.1006/mpev.2000.0785CrossrefGoogle Scholar

  • [52] Goldman, N. Effects of sequence alignment procedures on estimates of phylogeny. BioEssays 20 (1998) 287–290. http://dx.doi.org/10.1002/(SICI)1521-1878(199804)20:4<287::AID-BIES4>3.0.CO;2-NCrossrefGoogle Scholar

  • [53] Ogden, T.H. and Rosenberg, M.S. Multiple sequence alignment accuracy and phylogenetic inference. Syst. Biol. 55 (2006) 314–328. http://dx.doi.org/10.1080/10635150500541730CrossrefGoogle Scholar

  • [54] Edgar, R.C. and Batzoglou, S. Multiple sequence alignment. Curr. Opin. Struct. Biol. 16 (2006) 368–373. http://dx.doi.org/10.1016/j.sbi.2006.04.004CrossrefGoogle Scholar

  • [55] Notredame, C. Recent evolutions of multiple sequence alignment algorithms. PLoS Comput. Biol. 3 (2007) e123. http://dx.doi.org/10.1371/journal.pcbi.0030123CrossrefGoogle Scholar

  • [56] Thompson, J.D., Plewniak, F. and Poch, O. A comprehensive comparison of multiple sequence alignment programs. Nucleic Acids Res. 7 (1999) 2682–2690. http://dx.doi.org/10.1093/nar/27.13.2682CrossrefGoogle Scholar

  • [57] Feng, D.F. and Doolittle, R.F. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J. Mol. Evol. 25 (1987) 351–361. http://dx.doi.org/10.1007/BF02603120CrossrefGoogle Scholar

  • [58] Morrison, D.A. Why would phylogeneticists ignore computerized sequence alignment? Syst. Biol. 58 (2009) 150–158. http://dx.doi.org/10.1093/sysbio/syp009CrossrefGoogle Scholar

  • [59] Hickson, R.E., Simon, C. and Perrey, S.W. The performance of several multiple-sequence alignment programs in relation to secondary-structure features for an rRNA sequence. Mol. Biol. Evol. 17 (2000) 530–539. CrossrefGoogle Scholar

  • [60] Hofacker, I.L. Vienna RNA secondary structure server. Nucleic Acids Res. 31 (2003) 3429–3431. http://dx.doi.org/10.1093/nar/gkg599CrossrefGoogle Scholar

  • [61] Wong, K.M., Suchard, M.A. and Huelsenbeck, J.P. Alignment uncertainty and genomic analysis. Science 319 (2008) 473–476. http://dx.doi.org/10.1126/science.1151532CrossrefGoogle Scholar

  • [62] Löytynoja, A. and Goldman, N. Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science 320 (2008) 1632–1635. http://dx.doi.org/10.1126/science.1158395CrossrefGoogle Scholar

  • [63] Thorne, J.L., Kishino, H. and Felsenstein, J. An evolutionary model for maximum likelihood alignment of DNA sequences. J. Mol. Evol. 33 (1991) 114–124. http://dx.doi.org/10.1007/BF02193625CrossrefGoogle Scholar

  • [64] Fitch, W.M. Toward defining the course of evolution: minimal change for a specific tree topology. Syst. Zool. 20 (1971) 406–416. http://dx.doi.org/10.2307/2412116CrossrefGoogle Scholar

  • [65] Farris, J.S. The logical basis of phylogenetic systematics. in: Advances in Cladistics (Platnick, N.I. and Funk, V.A., Eds.), Columbia University Press, New York, 1983, 7–36. Google Scholar

  • [66] Hennig, W. Grundzüge einer theorie der phylogenetischen systematik, Deutsche Zentral Verlag, Berlin, 1950. Google Scholar

  • [67] Felsenstein, J. Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27 (1978) 401–410. http://dx.doi.org/10.2307/2412923CrossrefGoogle Scholar

  • [68] Huelsenbeck, J.P. Is Felsenstein zone a fly trap? Syst. Biol. 46 (1997) 69–74. CrossrefGoogle Scholar

  • [69] Goldman, N. Maximum likelihood inference of phylogenetic trees, with special reference to a Poisson process model of DNA substitution and to parsimony analysis. Syst. Zool. 39 (1990). Google Scholar

  • [70] Cavalli-Sforza, L.L. and Edwards, A.W.F. Phylogenetic analysis: Models and estimation procedures. Evolution 21 (1967) 550–570. http://dx.doi.org/10.2307/2406616CrossrefGoogle Scholar

  • [71] Fitch, W.M. and Margoliash, E. Construction of phylogenetic trees. Science 155 (1967) 279–284. http://dx.doi.org/10.1126/science.155.3760.279CrossrefGoogle Scholar

  • [72] Sneath, P.H.A. and Sokal, R.R. Numerical taxonomy, W.H. Freeman, San Francisco, 1973. Google Scholar

  • [73] Saitou, N. and Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4 (1987) 406–425. Google Scholar

  • [74] Rzhetsky, A. and Nei, M. A simple method for estimating and testing minimum-evolution trees. Mol. Biol. Evol. 9 (1992) 945–967. Google Scholar

  • [75] Nei, M. and Kumar, S. Molecular evolution and phylogenetics, Oxford University Press, Oxford, 2000. Google Scholar

  • [76] Edwards, A.W.F. Likelihood, Cambridge University Press, Cambridge, 1972. Google Scholar

  • [77] Edwards, A.W.F. and Cavalli-Sforza, L.L. Reconstruction of evolutionary trees. in: Phenetic and phylogenetic classification (Heywood, V.H. and McNeill, J., Eds.), Systematics Association Publ. No. 6, London, 1964, 67–76. Google Scholar

  • [78] Neyman, J. Molecular studies of evolution: a source of novel statistical problems. in: Statistical decision theory and related topics (Gupta, S.S. and Yackel, J., Eds.), Academic Press, New York, 1971, 1–27. Google Scholar

  • [79] Swofford, D.L. PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0, Sinauer Associates, Inc., Sunderland, MA, USA, 1998. Google Scholar

  • [80] Kosakovsky Pond, S.L., Frost, S.D.W. and Muse, S.V. HyPhy: hypothesis testing using phylogenies. Bioinformatics 21 (2005) 676–679. http://dx.doi.org/10.1093/bioinformatics/bti079CrossrefGoogle Scholar

  • [81] Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22 (2006) 2688–2690. http://dx.doi.org/10.1093/bioinformatics/btl446CrossrefGoogle Scholar

  • [82] Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24 (2007) 1586–1591. http://dx.doi.org/10.1093/molbev/msm088CrossrefGoogle Scholar

  • [83] Yang, Z. How often do wrong models produce better phylogenies? Mol. Biol. Evol. 14 (1997) 105–108. CrossrefGoogle Scholar

  • [84] Guindon, S. and Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52 (2003) 696–704. http://dx.doi.org/10.1080/10635150390235520CrossrefGoogle Scholar

  • [85] Huelsenbeck, J.P., Ronquist, F.R., Nielsen, R. and Bollback, J.P. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294 (2001) 2310–2314. http://dx.doi.org/10.1126/science.1065889CrossrefGoogle Scholar

  • [86] Rannala, B. and Yang, Z. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J. Mol. Evol. 43 (1996) 304–311. http://dx.doi.org/10.1007/BF02338839CrossrefGoogle Scholar

  • [87] Larget, B. and Simon, D.L. Markov chain Monet Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol. Biol. Evol. 16 (1999) 750–759. CrossrefGoogle Scholar

  • [88] Gilks, W.R., Richardson, S. and Spiegelhalter, D.J., Eds. Markov Chain Monte Carlo in Practice. Chapman & Hall, London, 1996. Google Scholar

  • [89] Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 (1970) 97–109. http://dx.doi.org/10.1093/biomet/57.1.97CrossrefGoogle Scholar

  • [90] Metropolis, N., Rosenbluth, A.W., Teller, A.H. and Teller, E. Equations of state calculations by fast computing machines. J. Chem. Phys. 21 (1953) 1087–1091. http://dx.doi.org/10.1063/1.1699114CrossrefGoogle Scholar

  • [91] Nylander, J.A.A., Wilgenbusch, J.C., Warren, D.L. and Swofford, D.L. AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24 (2008) 581–583. http://dx.doi.org/10.1093/bioinformatics/btm388CrossrefGoogle Scholar

  • [92] Goldman, N., Anderson, J.P. and Rodrigo, A.G. Likelihood-based tests of topologies in phylogenetics. Syst. Biol. 49 (2000) 652–670. http://dx.doi.org/10.1080/106351500750049752CrossrefGoogle Scholar

  • [93] Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39 (1985) 783–791. http://dx.doi.org/10.2307/2408678CrossrefGoogle Scholar

  • [94] Hedges, S.B. The number of replications needed for accurate estimation of the bootstrap P value in phylogenetic studies. Mol. Biol. Evol. 9 (1992) 366–369. Google Scholar

  • [95] Zharkikh, A. and Li, W.-H. Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences. II. Four taxa without a molecular clock. J. Mol. Evol. 35 (1992) 356–366. http://dx.doi.org/10.1007/BF00161173CrossrefGoogle Scholar

  • [96] Hillis, D.M. and Bull, J.J. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biol. 42 (1993) 182–192. CrossrefGoogle Scholar

  • [97] Suzuki, Y., Glazko, G.V. and Nei, M. Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proc. Natl. Acad. Sci. USA 99 (2002) 16138–16143. http://dx.doi.org/10.1073/pnas.212646199CrossrefGoogle Scholar

  • [98] Huelsenbeck, J.P. and Rannala, B. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Syst. Biol. 53 (2004) 904–913. http://dx.doi.org/10.1080/10635150490522629CrossrefGoogle Scholar

  • [99] Erixon, P., Svennblad, B., Britton, T. and Oxelman, B. Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Syst. Biol. 52 (2003) 665–673. http://dx.doi.org/10.1080/10635150390235485CrossrefGoogle Scholar

  • [100] Alfaro, M.E., Zoller, S. and Lutzoni, F. Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Mol. Biol. Evol. 20 (2003) 255–256. http://dx.doi.org/10.1093/molbev/msg028CrossrefGoogle Scholar

  • [101] Lewis, P.O., Holder, M.T. and Holsinger, K.E. Polytomies and Bayesian phylogenetic inference. Syst. Biol. 54 (2005) 241–253. http://dx.doi.org/10.1080/10635150590924208CrossrefGoogle Scholar

  • [102] Templeton, A.R. Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of human and the apes. Evolution 37 (1983) 221–244. http://dx.doi.org/10.2307/2408332CrossrefGoogle Scholar

  • [103] Wilks, S.S. The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Statist. 9 (1938) 60–62. http://dx.doi.org/10.1214/aoms/1177732360CrossrefGoogle Scholar

  • [104] Huelsenbeck, J.P., Hillis, D.M. and Jones, R. Parametric bootstrapping in molecular phylogenetics: Applications and performance. in: Molecular Zoology: Advances, Strategies, and Protocols (Ferarris, J.D. and Palumbi, S.R., Eds.), Wiley-Liss, New York, 1996, 19–45. Google Scholar

  • [105] Goldman, N. Statistical tests of models of DNA substitution. J. Mol. Evol. 36 (1993) 182–198. http://dx.doi.org/10.1007/BF00166252CrossrefGoogle Scholar

  • [106] Efron, B. Bootstrap confidence intervals for a class of parametric problems. Biometrika 72 (1985) 45–58. http://dx.doi.org/10.1093/biomet/72.1.45CrossrefGoogle Scholar

  • [107] Kishino, H. and Hasegawa, M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J. Mol. Evol. 29 (1989) 170–179. http://dx.doi.org/10.1007/BF02100115CrossrefGoogle Scholar

  • [108] Shimodaira, H. and Hasegawa, M. Multiple comparisons of Log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 16 (1999) 1114–1116. CrossrefGoogle Scholar

  • [109] Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51 (2002) 492–508. http://dx.doi.org/10.1080/10635150290069913CrossrefGoogle Scholar

  • [110] Buckley, T.R. Model misspecification and probabilistic tests of topology: evidence from empirical data sets. Syst. Biol. 51 (2002) 509–523. http://dx.doi.org/10.1080/10635150290069922CrossrefGoogle Scholar

  • [111] Aris-Brosou, S. Least and most powerful tests to elucidate the origin of seed plants in the presence of conflicting signals under misspecified models. Syst. Biol. 52 (2003) 781–793. CrossrefGoogle Scholar

  • [112] Gissi, C., San Mauro, D., Pesole, G. and Zardoya, R. Mitochondrial phylogeny of Anura (Amphibia): A case study of congruent phylogenetic reconstruction using amino acid and nucleotide characters. Gene 366 (2006) 228–237. http://dx.doi.org/10.1016/j.gene.2005.07.034CrossrefGoogle Scholar

  • [113] San Mauro, D., Gower, D.J., Oommen, O.V., Wilkinson, M. and Zardoya, R. Phylogeny of caecilian amphibians (Gymnophiona) based on complete mitochondrial genomes and nuclear RAG1. Mol. Phylogenet. Evol. 33 (2004) 413–427. http://dx.doi.org/10.1016/j.ympev.2004.05.014CrossrefGoogle Scholar

  • [114] Strimmer, K. and Rambaut, A. Inferring confidence sets of possible misspecified gene trees. Proc. R. Soc. London B 269 (2001) 137–142. http://dx.doi.org/10.1098/rspb.2001.1862CrossrefGoogle Scholar

  • [115] Zuckerkandl, E. and Pauling, L. Evolutionary divergence and convergence in proteins. in: Evolving genes and proteins (Bryson, V. and Vogel, H., Eds.), Academic Press, New York, 1965, 97–166. Google Scholar

  • [116] Li, W.-H. and Graur, D. Fundamentals of Molecular Evolution, Sinauer, Sunderland, MA., 1991. Google Scholar

  • [117] Nei, M. Molecular evolutionary genetics, Columbia University Press, New York, 1987. Google Scholar

  • [118] Kimura, M. The neutral theory of molecular evolution, Cambridge University Press, Cambridge, 1983. http://dx.doi.org/10.1017/CBO9780511623486CrossrefGoogle Scholar

  • [119] Kimura, M. Evolutionary rate at the molecular level. Nature 217 (1968) 624–626. http://dx.doi.org/10.1038/217624a0CrossrefGoogle Scholar

  • [120] Benton, M.J. and Ayala, F.J. Dating the tree of life. Science 300 (2003) 1698–1700. http://dx.doi.org/10.1126/science.1077795CrossrefGoogle Scholar

  • [121] Rodríguez-Trelles, F., Tarrío, R. and Ayala, F.J. A methodological bias toward overstimation of molecular evolutionary time scales. Proc. Natl. Acad. Sci. USA 99 (2002) 8112–8115. http://dx.doi.org/10.1073/pnas.122231299CrossrefGoogle Scholar

  • [122] Bromham, L. and Penny, D. The modern molecular clock. Nat. Rev. Genet. 4 (2003) 216–224. http://dx.doi.org/10.1038/nrg1020CrossrefGoogle Scholar

  • [123] Wu, C.I. and Li, W.H. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc. Natl. Acad. Sci. USA 82 (1985) 1741–1745. http://dx.doi.org/10.1073/pnas.82.6.1741CrossrefGoogle Scholar

  • [124] Ohta, T. Near-neutrality in evolution of genes and in gene regulation. Proc. Natl. Acad. Sci. USA 99 (2002) 16134–16137. http://dx.doi.org/10.1073/pnas.252626899CrossrefGoogle Scholar

  • [125] Martin, A.P. and Palumbi, S.R. Body size, metabolic rate, generation time and the molecular clock. Proc. Natl. Acad. Sci. USA 90 (1993) 4087–4091. http://dx.doi.org/10.1073/pnas.90.9.4087CrossrefGoogle Scholar

  • [126] Ota, R. and Penny, D. Estimating changes in mutational mechanisms of evolution. J. Mol. Evol. 57 (2003) S233–S240. http://dx.doi.org/10.1007/s00239-003-0032-1CrossrefGoogle Scholar

  • [127] Welch, J.J. and Bromham, L. Molecular dating when rates vary. Trends Ecol. Evol. 20 (2005) 320–327. http://dx.doi.org/10.1016/j.tree.2005.02.007CrossrefGoogle Scholar

  • [128] Ho, S.Y.W. An examination of phylogenetic models of substitution rate variation among lineages. Biol. Lett. 5 (2009) 421–424. http://dx.doi.org/10.1098/rsbl.2008.0729CrossrefGoogle Scholar

  • [129] Douzery, E.J.P., Snell, E.A., Baptese, E., Delsuc, F. and Philippe, H. The timing of eukaryotic evolution: Does a realxed molecular clock reconcile proteins and fossils? Proc. Natl. Acad. Sci. USA 101 (2004) 15386–15391. http://dx.doi.org/10.1073/pnas.0403984101CrossrefGoogle Scholar

  • [130] Sanderson, M.J. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol. Biol. Evol. 19 (2002) 101–109. CrossrefGoogle Scholar

  • [131] Sanderson, M.J. A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol. Biol. Evol. 14 (1997) 1218–1231. CrossrefGoogle Scholar

  • [132] Kishino, H., Thorne, J.L. and Bruno, W.J. Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol. Biol. Evol. 18 (2001) 352–361. CrossrefGoogle Scholar

  • [133] Thorne, J.L., Kishino, H. and Painter, I.S. Estimating the rate of evolution of the rate of molecular evolution. Mol. Biol. Evol. 15 (1998) 1647–1657. CrossrefGoogle Scholar

  • [134] Thorne, J.L. and Kishino, H. Divergence time and evolutionary rate estimation with multilocus data. Syst. Biol. 51 (2002) 689–702. http://dx.doi.org/10.1080/10635150290102456CrossrefGoogle Scholar

  • [135] Drummond, A.J., Ho, S.Y.W., Phillips, M.J. and Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biology 4 (2006) 699–710. http://dx.doi.org/10.1371/journal.pbio.0040088CrossrefGoogle Scholar

  • [136] Drummond, A.J. and Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7 (2007) 214. http://dx.doi.org/10.1186/1471-2148-7-214CrossrefGoogle Scholar

  • [137] Sanderson, M.J. R8S: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19 (2003) 301–302. http://dx.doi.org/10.1093/bioinformatics/19.2.301CrossrefGoogle Scholar

  • [138] Lepage, T., Bryant, D., Philippe, H. and Lartillot, N. A general comparison of relaxed molecular clock models. Mol. Biol. Evol. 24 (2007) 2669–2680. http://dx.doi.org/10.1093/molbev/msm193CrossrefGoogle Scholar

  • [139] Donoghue, P.C. and Benton, M.J. Rocks and clocks: calibrating the Tree of Life using fossils and molecules. Trends Ecol. Evol. 22 (2007) 424–431. http://dx.doi.org/10.1016/j.tree.2007.05.005CrossrefGoogle Scholar

  • [140] Graur, D. and Martin, W. Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends Genet. 20 (2004) 80–86. http://dx.doi.org/10.1016/j.tig.2003.12.003CrossrefGoogle Scholar

  • [141] Hedges, S.B. and Kumar, S. Precision of molecular time estimates. Trends Genet. 20 (2004) 242–247. http://dx.doi.org/10.1016/j.tig.2004.03.004CrossrefGoogle Scholar

  • [142] Ho, S.Y.W. Calibrating molecular estimates of substitution rates and divergence times in birds. J. Avian Biol. 38 (2007) 409–414. CrossrefGoogle Scholar

  • [143] Ho, S.Y.W. and Phillips, M.J. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst. Biol. DOI:10.1093/sysbio/syp035 (2009). CrossrefGoogle Scholar

  • [144] Yang, Z. and Rannala, B. Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol. Biol. Evol. 23 (2006) 212–226. http://dx.doi.org/10.1093/molbev/msj024CrossrefGoogle Scholar

  • [145] Avise, J.C. Molecular Markers, Natural History and Evolution, Chapman & Hall, New York, 1994. Google Scholar

  • [146] Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S., Higuchi, R., Horn, G.T., Mullis, K.B. and Erlich, H.A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239 (1988) 487–491. http://dx.doi.org/10.1126/science.2448875CrossrefGoogle Scholar

  • [147] Cummings, M.P. and Meyer, A. Magic bullets and golden rules: data sampling in molecular phylogenetics. Zoology 108 (2005) 329–336. http://dx.doi.org/10.1016/j.zool.2005.09.006CrossrefGoogle Scholar

  • [148] Rokas, A. and Carroll, S.B. More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Mol. Biol. Evol. 22 (2005) 1337–1344. http://dx.doi.org/10.1093/molbev/msi121CrossrefGoogle Scholar

  • [149] Wiens, J.J. Missing data, incomplete taxa, and phylogenetic accuracy. Syst. Biol. 52 (2003) 528–538. http://dx.doi.org/10.1080/10635150390218330CrossrefGoogle Scholar

  • [150] Wiens, J.J. Missing data and the design of phylogenetic analyses. J. Biomed. Inform. 39 (2006) 34–42. http://dx.doi.org/10.1016/j.jbi.2005.04.001CrossrefGoogle Scholar

  • [151] Hillis, D.M. Taxonomic sampling, phylogenetic accuracy, and investigatior bias. Syst. Biol. 47 (1998) 3–8. http://dx.doi.org/10.1080/106351598260987CrossrefGoogle Scholar

  • [152] Poe, S. and Swofford, D.L. Taxon sampling revisited. Nature 398 (1999) 299–300. http://dx.doi.org/10.1038/18592CrossrefGoogle Scholar

  • [153] Pollock, D.D. and Bruno, W.J. Assessing an unknown evolutionary process: effect of increasing site-specific knowledge through taxon addition. Mol. Biol. Evol. 17 (2000) 1854–1858. CrossrefGoogle Scholar

  • [154] Pollock, D.D., Zwickl, D.J., McGuire, J.A. and Hillis, D.M. Increased taxon sampling is advantageous for phylogenetic inference. Syst. Biol. 51 (2002) 664–671. http://dx.doi.org/10.1080/10635150290102357CrossrefGoogle Scholar

  • [155] Rannala, B., Huelsenbeck, J.P., Yang, Z. and Nielsen, R. Taxon sampling and the accuracy of large phylogenies. Syst. Biol. 47 (1998) 702–710. http://dx.doi.org/10.1080/106351598260680CrossrefGoogle Scholar

  • [156] Zwickl, D.J. and Hillis, D.M. Increased taxon sampling greatly reduces phylogenetic error. Syst. Biol. 51 (2002) 588–598. http://dx.doi.org/10.1080/10635150290102339CrossrefGoogle Scholar

  • [157] Kim, J. Large-scale phylogenies and measuring the performance of phylogenetic estimators. Syst. Biol. 47 (1998) 43–60. http://dx.doi.org/10.1080/106351598261021CrossrefGoogle Scholar

  • [158] Rosenberg, M.S. and Kumar, S. Incomplete taxon sampling is not a problem for phylogenetic inference. Proc. Natl. Acad. Sci. USA 98 (2001) 10751–10756. http://dx.doi.org/10.1073/pnas.191248498CrossrefGoogle Scholar

  • [159] Palumbi, S.R., Martin, A., Romano, S., Owen MacMillan, W., Stice, L. and Grabowski, G. The simple fool’s guide to PCR, Department of Zoology, University of Hawaii, Honolulu, 1991. Google Scholar

  • [160] Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S.V., Pääbo, S., Villablanca, F.X. and Wilson, A.C. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA 86 (1989) 6196–6200. http://dx.doi.org/10.1073/pnas.86.16.6196CrossrefGoogle Scholar

  • [161] Ballard, J.W.O. and Rand, D.M. The population biology of mitochondrial DNA and its phylogenetics implications. Annu. Rev. Ecol. Evol. Syst. 36 (2005) 621–642. http://dx.doi.org/10.1146/annurev.ecolsys.36.091704.175513CrossrefGoogle Scholar

  • [162] Russo, C.A.M., Takezaki, N. and Nei, M. Efficiencies of different genes and different tree-building methods in recovering a known vertebrate phylogeny. Mol. Biol. Evol. 13 (1996) 525–536. CrossrefGoogle Scholar

  • [163] Zardoya, R. and Meyer, A. Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates. Mol. Biol. Evol. 13 (1996) 933–942. CrossrefGoogle Scholar

  • [164] Delsuc, F., Brinkmann, H. and Philippe, H. Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6 (2005) 361–375. http://dx.doi.org/10.1038/nrg1603CrossrefGoogle Scholar

  • [165] Philippe, H., Delsuc, F., Brinkmann, H. and Lartillot, N. Phylogenomics. Annu. Rev. Ecol. Evol. Syst. 36 (2005) 541–562. http://dx.doi.org/10.1146/annurev.ecolsys.35.112202.130205CrossrefGoogle Scholar

  • [166] Springer, M.S., DeBry, R.W., Douady, C.J., Amrine, H.M., Madsen, O., deJong, W.W. and Stanhope, M.J. Mitochondrial versus nuclear gene sequences in deep-level mammalian phylogeny reconstruction. Mol. Biol. Evol. 18 (2001) 132–143. CrossrefGoogle Scholar

  • [167] Groth, J.G. and Barrowclough, G.F. Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Mol. Phylogenet. Evol. 12 (1999) 115–123. http://dx.doi.org/10.1006/mpev.1998.0603Google Scholar

  • [168] Liolios, K., Tavernarakis, N., Hugenholtz, P. and Kyrpides, N.C. The Genomes On Line Database (GOLD) v.2: a monitor of genome projects worldwide. Nucl. Acids. Res. 34 (2006) D332–D334. http://dx.doi.org/10.1093/nar/gkj145CrossrefGoogle Scholar

  • [169] AToL initiative. (Assembling the Tree of Life). http://atol.sdsc.edu/. Google Scholar

  • [170] Boore, J.L. The use of genome-level characters for phylogenetic reconstruction. Trends Ecol. Evol. 21 (2006) 439–446. http://dx.doi.org/10.1016/j.tree.2006.05.009CrossrefGoogle Scholar

  • [171] Rannala, B. and Yang, Z. Phylogenetic inference using whole genomes. Annu. Rev. Genomics Hum. Genet. 9 (2008) 217–231. http://dx.doi.org/10.1146/annurev.genom.9.081307.164407CrossrefGoogle Scholar

  • [172] Sanderson, M.J., Boss, D., Chen, D., Cranston, K.A. and Wehe, A. The PhyLoTA Browser: processing GenBank for molecular phylogenetics research. Syst. Biol. 57 (2008) 335–346. http://dx.doi.org/10.1080/10635150802158688CrossrefGoogle Scholar

  • [173] Beaumont, M.A. and Rannala, B. The Bayesian revolution in genetics. Nat. Rev. Genet. 5 (2004) 251–261. http://dx.doi.org/10.1038/nrg1318CrossrefGoogle Scholar

  • [174] Cyberinfrastructure for Phylogenetic Research (CIPRES). Available at http://www.phylo.org/. Google Scholar

  • [175] Goldman, N. Phylogenetic information and experimental design in molecular systematics. Proc. R. Soc. Lond. B 265 (1998) 1779–1786. http://dx.doi.org/10.1098/rspb.1998.0502CrossrefGoogle Scholar

  • [176] Geuten, K., Massingham, T., Darius, P., Smets, E. and Goldman, N. Experimental design criteria in phylogenetics: where to add taxa. Syst. Biol. 56 (2007) 609–622. http://dx.doi.org/10.1080/10635150701499563CrossrefGoogle Scholar

  • [177] San Mauro, D., Gower, D.J., Massingham, T., Wilkinson, M., Zardoya, R. and Cotton, J.A. Experimental design in caecilian systematics: phylogenetic information of mitochondrial genomes and nuclear rag1. Syst. Biol. 58 (2009) 425–438. http://dx.doi.org/10.1093/sysbio/syp043CrossrefGoogle Scholar

  • [178] Cotton, J.A. and Page, R.D.M. Tangled trees from molecular markers: reconciling conflict between phylogenies to build molecular supertrees. in: Phylogenetic supertrees: combining information to reveal the Tree of Life (Bininda-Emonds, O.R.P., Ed.), Kluwer Academic, Dordrecht, the Netherlands, 2004, 107–125. Google Scholar

  • [179] Maddison, W.P. and Knowles, L.L. Inferring phylogeny despite incomplete lineage sorting. Syst. Biol. 55 (2006) 21–30. http://dx.doi.org/10.1080/10635150500354928CrossrefGoogle Scholar

  • [180] de Queiroz, A. and Gatesy, J. The supermatrix approach to systematics. Trends Ecol. Evol. 22 (2007) 34–41. http://dx.doi.org/10.1016/j.tree.2006.10.002CrossrefGoogle Scholar

  • [181] Kearney, M. Fragmentary taxa, missing data, and ambiguity: mistaken assumptions and conclusions. Syst. Biol. 51 (2002) 369–381. http://dx.doi.org/10.1080/10635150252899824CrossrefGoogle Scholar

  • [182] Campbell, V. and Lapointe, F.-J. The use and validity of composite taxa in phylogenetic analysis. Syst. Biol. 58 (2009) 560–572. http://dx.doi.org/10.1093/sysbio/syp056CrossrefGoogle Scholar

  • [183] Hartmann, S. and Vision, T.J. Using ESTs for phylogenomics: can one accurately infer a phylogenetic tree from a gappy alignment? BMC Evol. Biol. 8 (2008) 95. http://dx.doi.org/10.1186/1471-2148-8-95CrossrefGoogle Scholar

  • [184] Wheeler, W.C. Search-based optimization. Cladistics 19 (2003) 348–355. http://dx.doi.org/10.1111/j.1096-0031.2003.tb00378.xCrossrefGoogle Scholar

  • [185] Wheeler, W.C. Homology and the optimization of DNA sequence data. Cladistics 17 (2001) S3–S11. http://dx.doi.org/10.1111/j.1096-0031.2001.tb00100.xCrossrefGoogle Scholar

  • [186] Simmons, M.P. Independence of alignment and tree search. Mol. Phylogenet. Evol. 31 (2004) 874–879. http://dx.doi.org/10.1016/j.ympev.2003.10.008CrossrefGoogle Scholar

  • [187] Bininda-Emonds, O.R.P. The evolution of supertrees. Trends Ecol. Evol. 19 (2004) 315–322. http://dx.doi.org/10.1016/j.tree.2004.03.015CrossrefGoogle Scholar

  • [188] Sanderson, M.J., Purvis, A. and Henze, C. Phylogenetic supertrees: assembling the trees of life. Trends Ecol. Evol. 13 (1998) 105–109. http://dx.doi.org/10.1016/S0169-5347(97)01242-1CrossrefGoogle Scholar

  • [189] Gatesy, J., Matthee, C., DeSalle, R. and Hayashi, C. Resolution of a supertree/supermatrix paradox. Syst. Biol. 51 (2002) 652–664. http://dx.doi.org/10.1080/10635150290102311CrossrefGoogle Scholar

  • [190] Wilkinson, M., Cotton, J.A., Creevey, C., Eulenstein, O., Harris, S.R., Lapointe, F.-J., Levasseur, C., McInerney, J.O., Pisani, D. and Thorley, J.L. The shape of supertrees to come: tree shape related properties of fourteen supertree methods. Syst. Biol. 54 (2005) 419–431. http://dx.doi.org/10.1080/10635150590949832CrossrefGoogle Scholar

  • [191] Roshan, U., Moret, B.M.E., Williams, T.L. and Warnow, T. Performance of supertree methods on various data set decompositions. in: Phylogenetic supertrees: Combining information to reveal the Tree of Life (Bininda-Emonds, O.R.P., Ed.), Kluwer Academic, Dordrecht, The Netherlands, 2004, 301–328. Google Scholar

  • [192] Wilkinson, M. and Cotton, J.A. Supertree methods for building the Tree of Life: Divide-and-conquer approaches to large phylogenetic problems. in: Reconstructing the Tree of Life. Taxonomy and systematics of species rich taxa (Hodkinson, T.R. and Parnell, J.A.N., Eds.), The Systematics Association and CRC Press, London, 2007, 61–75. Google Scholar

  • [193] Ren, F., Tanaka, H. and Yang, Z. A likelihood look at the supermatrix-supertree controversy. Gene 441 (2009) 119–125. http://dx.doi.org/10.1016/j.gene.2008.04.002CrossrefGoogle Scholar

  • [194] Smith, S.A., Beaulieu, J.M. and Donoghue, M.J. Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches. BMC Evol. Biol. 9 (2009) 37. http://dx.doi.org/10.1186/1471-2148-9-37CrossrefGoogle Scholar

  • [195] http://evolution.gs.washington.edu/phylip/software.html. Google Scholar

  • [196] Thompson, J.D., Higgins, D.G. and Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22 (1994) 4673–4680. http://dx.doi.org/10.1093/nar/22.22.4673CrossrefGoogle Scholar

  • [197] Katoh, K., Kuma, K., Toh, H. and Miyata, T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33 (2005) 511–518. http://dx.doi.org/10.1093/nar/gki198CrossrefGoogle Scholar

  • [198] Katoh, K., Misawa, K., Kuma, K. and Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30 (2002) 3059–3066. http://dx.doi.org/10.1093/nar/gkf436CrossrefGoogle Scholar

  • [199] Notredame, C., Higgins, D.G. and Heringa, J. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302 (2000) 205–217. http://dx.doi.org/10.1006/jmbi.2000.4042CrossrefGoogle Scholar

  • [200] Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17 (2000) 540–552. CrossrefGoogle Scholar

  • [201] Posada, D. and Crandall, K.A. MODELTEST: testing the model of DNA substitution. Bioinformatics 14 (1998) 817–818. http://dx.doi.org/10.1093/bioinformatics/14.9.817CrossrefGoogle Scholar

  • [202] Posada, D. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25 (2008) 1253–1256. http://dx.doi.org/10.1093/molbev/msn083CrossrefGoogle Scholar

  • [203] Abascal, F., Zardoya, R. and Posada, D. ProtTest: Selection of best-fit models of protein evolution. Bioinformatics 21 (2005) 2104–2105. http://dx.doi.org/10.1093/bioinformatics/bti263CrossrefGoogle Scholar

  • [204] Felsenstein, J. PHYLIP — Phylogeny inference package (Version 3.2.). Cladistics 5 (1989) 164–166. Google Scholar

  • [205] Tamura, K., Dudley, J., Nei, M. and Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24 (2007) 1596–1599. http://dx.doi.org/10.1093/molbev/msm092Google Scholar

  • [206] Zwickl, D.J. (2006) Garli. Available from the author at http://www.bio.utexas.edu/faculty/antisense/garli/Garli.html. Google Scholar

  • [207] Ronquist, F. and Huelsenbeck, J.P. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19 (2003) 1572–1574. http://dx.doi.org/10.1093/bioinformatics/btg180CrossrefGoogle Scholar

  • [208] Huelsenbeck, J.P. and Ronquist, F.R. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17 (2001) 754–755 http://dx.doi.org/10.1093/bioinformatics/17.8.754CrossrefGoogle Scholar

  • [209] Shimodaira, H. and Hasegawa, M. CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17 (2001) 1246–1247. http://dx.doi.org/10.1093/bioinformatics/17.12.1246CrossrefGoogle Scholar

  • [210] Maddison, W.P. and Maddison, D.R. MacClade: analysis of phylogeny and character evolution, Sinauer Associates Inc., Sunderland, Massachusetts, USA, 1992. Google Scholar

  • [211] Maddison, W.P. and Maddison, D.R. (2009) Mesquite: a modular system for evolutionary analysis. Available from the authors at http://mesquiteproject.org. Google Scholar

  • [212] Yang, Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13 (1997) 555–556. Google Scholar

  • [213] Foster, P.G. (2009) P4. Available from the author at http://www.bmnh.org/~pf/p4.html. Google Scholar

  • [214] Thorne, J.L. and Kishino, H. (2003) Multidivtime. Available from the authors at http://statgen.ncsu.edu/thorne/multidivtime.html. Google Scholar

  • [215] Page, R.D.M. TREEVIEW: An application to display phylogenetic trees on personal computers. Comp. Appl. Biosci. 12 (1996) 357–358. Google Scholar

  • [216] Rambaut, A. (2006) FigTree. Available from the author at http://tree.bio.ed.ac.uk/software/figtree/. Google Scholar

About the article

Published Online: 2010-03-25

Published in Print: 2010-06-01

Citation Information: Cellular and Molecular Biology Letters, Volume 15, Issue 2, Pages 311–341, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-010-0010-8.

Export Citation

© 2010 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Héctor Lorente-Martínez, Ainhoa Agorreta, María Torres-Sánchez, and Diego San Mauro
Organisms Diversity & Evolution, 2018
Julia Lambret-Frotté, Fernando Araújo Perini, and Claudia Augusta de Moraes Russo
Evolutionary Bioinformatics, 2012, Volume 8, Page EBO.S9656
Reyna I. Martinez-De Luna, Ray Y. Ku, Alexandria M. Aruck, Francesca Santiago, Andrea S. Viczian, Diego San Mauro, and Michael E. Zuber
Developmental Biology, 2017, Volume 426, Number 2, Page 219
David J. Gower, Ishan Agarwal, K. Praveen Karanth, Aniruddha Datta-Roy, Varad B. Giri, Mark Wilkinson, and Diego San Mauro
Journal of Biogeography, 2016, Volume 43, Number 6, Page 1091
Aimee Lee S. Houde, Shawn R. Garner, and Bryan D. Neff
Restoration Ecology, 2015, Volume 23, Number 6, Page 746
Angelika K. Switala, Catherine L. Sole, and Clarke H. Scholtz
Invertebrate Systematics, 2014, Volume 28, Number 3, Page 326
Diego San Mauro, David J. Gower, Hendrik Müller, Simon P. Loader, Rafael Zardoya, Ronald A. Nussbaum, and Mark Wilkinson
Molecular Phylogenetics and Evolution, 2014, Volume 73, Page 177
M.K.A. McNamara, T.L. Miller, and T.H. Cribb
International Journal for Parasitology, 2014, Volume 44, Number 1, Page 37
Ainhoa Agorreta, Diego San Mauro, Ulrich Schliewen, James L. Van Tassell, Marcelo Kovačić, Rafael Zardoya, and Lukas Rüber
Molecular Phylogenetics and Evolution, 2013, Volume 69, Number 3, Page 619
Jianxia Jiang, Jingjing Jiang, Yafei Yang, and Jiashu Cao
Cellular and Molecular Biology Letters, 2013, Volume 18, Number 3
Ainhoa Agorreta, Omar Domínguez-Domínguez, Ruth G. Reina, Rafael Miranda, Eldredge Bermingham, and Ignacio Doadrio
Molecular Phylogenetics and Evolution, 2013, Volume 66, Number 1, Page 80
Katerina Korenblat, Zeev Volkovich, and Alexander Bolshoy
Computational Biology and Chemistry, 2012, Volume 40, Page 20
Ainhoa Agorreta and Lukas Rüber
Systematics and Biodiversity, 2012, Volume 10, Number 3, Page 375
D. San Mauro, D. J. Gower, J. A. Cotton, R. Zardoya, M. Wilkinson, and T. Massingham
Systematic Biology, 2012, Volume 61, Number 4, Page 661
Patrick S Fitze, Virginia Gonzalez-Jimena, Luis M San-Jose, Diego San Mauro, Pedro Aragón, Teresa Suarez, and Rafael Zardoya
BMC Evolutionary Biology, 2011, Volume 11, Number 1, Page 347
Leticia Bidegaray-Batista and Miquel A Arnedo
BMC Evolutionary Biology, 2011, Volume 11, Number 1, Page 317
Ming Yang and Gerald J. Wyckoff
Genetica, 2011, Volume 139, Number 5, Page 639
Diego San Mauro
Molecular Phylogenetics and Evolution, 2010, Volume 56, Number 2, Page 554

Comments (0)

Please log in or register to comment.
Log in