Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Editor-in-Chief: /


IMPACT FACTOR 2016: 1.260
5-year IMPACT FACTOR: 1.506

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.615
Source Normalized Impact per Paper (SNIP) 2016: 0.470

Online
ISSN
1689-1392
See all formats and pricing
More options …
Volume 16, Issue 1 (Mar 2011)

R proteins as fundamentals of plant innate immunity

Sylwester Głowacki / Violetta Macioszek / Andrzej Kononowicz
Published Online: 2011-01-13 | DOI: https://doi.org/10.2478/s11658-010-0024-2

Abstract

Plants are attacked by a wide spectrum of pathogens, being the targets of viruses, bacteria, fungi, protozoa, nematodes and insects. Over the course of their evolution, plants have developed numerous defense mechanisms including the chemical and physical barriers that are constitutive elements of plant cell responses locally and/or systemically. However, the modern approach in plant sciences focuses on the evolution and role of plant protein receptors corresponding to specific pathogen effectors. The recognition of an invader’s molecules could be in most cases a prerequisite sine qua non for plant survival. Although the predicted three-dimensional structure of plant resistance proteins (R) is based on research on their animal homologs, advanced technologies in molecular biology and bioinformatics tools enable the investigation or prediction of interaction mechanisms for specific receptors with pathogen effectors. Most of the identified R proteins belong to the NBS-LRR family. The presence of other domains (including the TIR domain) apart from NBS and LRR is fundamental for the classification of R proteins into subclasses. Recently discovered additional domains (e.g. WRKY) of R proteins allowed the examination of their localization in plant cells and the role they play in signal transduction during the plant resistance response to biotic stress factors. This review focuses on the current state of knowledge about the NBS-LRR family of plant R proteins: their structure, function and evolution, and the role they play in plant innate immunity.

Keywords: Plant innate immunity; Pathogen recognition; Plant resistance proteins

  • [1] Uematsu, S. and Akira, S. PRRs in pathogen recognition. Centr. Eur. J. Biol. 1 (2006) 299–313. Google Scholar

  • [2] Altenbach, D. and Robatzek, S. Pattern recognition receptors: from the cell surface to intracellular dynamics. Mol. Plant-Microbe In. 20 (2007) 1031–1039. CrossrefGoogle Scholar

  • [3] Iriti, M. and Faoro, F. Review of innate and specific immunity in plants and animals. Mycopathologia 164 (2007) 57–64. CrossrefGoogle Scholar

  • [4] Zipfel, C. Pattern-recognition receptors in plant innate immunity. Curr. Opin. Immunol. 20 (2008) 10–16. CrossrefGoogle Scholar

  • [5] Lukasik, E. and Takken, F. STANDing strong, resistance proteins instigators of plant defence. Curr. Opin. Plant Biol. 12 (2009) 427–436. CrossrefGoogle Scholar

  • [6] Peart, J.R., Mestre, P., Lu, R., Malcuit, I. and Baulcombe, D.C. NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus. Curr. Biol. 15 (2005) 968–973. Google Scholar

  • [7] Gabriëls, S.H.E.J, Vossen, J.H., Ekengren, S.K., van Ooijen, G., Abd-El-Haliem, A.M., van den Berg, G.C.M., Rainey, D.Y., Martin, G.B., Takken, F.L.W., de Wit, P.J.G.M. and Joosten, M.H.A.J. An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins. Plant J. 50 (2007) 14–28. CrossrefGoogle Scholar

  • [8] Faigón-Soverna, A., Harmon, F.G., Storani, L., Karayekov, E., Staneloni, R.J., Gassmann, W., Más, P., Casal, J.J., Kay, S.A. and Yanovsky, M.J. A constitutive shade-avoidance mutant implicates TIR-NBS-LRR proteins in Arabidopsis photomorphogenic development. Plant Cell 18 (2006) 2919–2928. CrossrefGoogle Scholar

  • [9] Igari, K., Endo, S., Hibara, K., Aida, M., Sakakibara, H., Kawasaki, T., Tasaka, M. Constitutive activation of a CC-NB-LRR protein alters morphogenesis through the cytokinin pathway in Arabidopsis. Plant J. 55 (2008) 14–27. CrossrefGoogle Scholar

  • [10] Jones, J.D.G. and Dangl, J. The plant immune system. Nature 444 (2006) 323–329. Google Scholar

  • [11] de Wit, P.J.G.M. How plants recognize pathogens and defend themselves. Cell. Mol. Life Sci. 64 (2007) 2726–2732. CrossrefGoogle Scholar

  • [12] Ye, Z. and Ting, J.P.-Y. NLR, the nucleotide-binding domain leucine-rich repeat containing gene family. Curr. Opin. Immunol. 20 (2008) 3–9. CrossrefGoogle Scholar

  • [13] Hein, I., Gilroy, E.M., Armstrong, M.R., Birch, P.R. The zig-zag-zig in oomycete-plant interactions. Mol. Plant Pathol. 4 (2009) 547–562. CrossrefGoogle Scholar

  • [14] Flor, H.H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9 (1971) 275–298. CrossrefGoogle Scholar

  • [15] Tameling, W.I.L. and Baulcombe, D.C. Physical association of the NB-LRR resistance protein Rx with a Ran GTPase-activating protein is required for extreme resistance to potato virus X. Plant Cell 19 (2007) 1682–1694. CrossrefGoogle Scholar

  • [16] van der Hoorn, R.A.L. and Kamoun, S. From guard to decoy: A new model for perception of plant pathogen effectors. Plant Cell 20 (2008) 2009–2017. Google Scholar

  • [17] Mackey, D. and McFall, A.J. MAMPs and MIMPs: proposed classifications for inducers of innate immunity. Mol. Microbiol. 61 (2006) 1365–1371. CrossrefGoogle Scholar

  • [18] Bittel, P. and Robatzek, S. Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr. Opin. Plant Biol. 10 (2007) 335–341. CrossrefGoogle Scholar

  • [19] Caplan, J.L., Padmanabhan, M. and Dinesh-Kumar, S.P. Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 3 (2008) 126–135. CrossrefGoogle Scholar

  • [20] Lee, J., Rudd, J.J., Macioszek, V.K. and Scheel, D. Dynamic changes in the localization of MAPK cascade components controlling pathogenesis-related (PR) gene expression during innate immunity in parsley. J. Biol. Chem. 279 (2004) 22440–22448. CrossrefGoogle Scholar

  • [21] da Cunha, L., McFall, A.J. and Mackey, D. Innate immunity in plants: a continuum of layered defenses. Microbes Infect. 8 (2006) 1372–1381. CrossrefGoogle Scholar

  • [22] He, P., Shan, L. and Scheen, J. Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant-microbe interactions. Cell. Microbiol. 9 (2007) 1385–1396. CrossrefGoogle Scholar

  • [23] Shen, Q.-H. and Schulze-Lefert, P. Ruble in the jungle: compartmentalization, trafficking, and nuclear action of plant immune receptors. EMBO J. 26 (2007) 4293–4301. CrossrefGoogle Scholar

  • [24] Rairdan, G.J. and Moffett, P. Brothers in arms? Common and contrasting themes in pathogen perception by plant NB-LRR and animal NACHT-LRR proteins. Microbes Infect. 9 (2007) 677686. Google Scholar

  • [25] Oakley, M.G. and Hollenbeck, J.J. The design of antiparallel coiled coils. Curr. Opin. Struct. Biol. 11 (2001) 450–457. CrossrefGoogle Scholar

  • [26] Chen, G., Pan, D., Zhou, Y., Lin, S. and Ke, X. Diversity and evolutionary relationship of nucleotide binding site-encoding disease-resistance gene analogues in sweet potato (Ipomoea batatas Lam.). J. Biosci. 32 (2007) 713–721. CrossrefGoogle Scholar

  • [27] Pålsson-McDermott, E.M. and O’Neill, L.A.J. Building an immune system from nine domains. Bioch. Soc. Trans. 35 (2007) 1437–1444. CrossrefGoogle Scholar

  • [28] Meyers, B.C., Dickerman, A.W., Michelmore, R.W., Sivaramakrishnan, S., Sobral, B.W. and Young, N.D. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J. 20 (1999) 317–332. CrossrefGoogle Scholar

  • [29] Bai, J., Pennill, L.A., Ning, J., Lee, S.W., Ramalingam, J., Webb, C.A., Zhao, B., Sun, Q., Nelson, J.C., Leach, J.E. and Hulbert, S.H. Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res. 12 (2002) 1871–1884. CrossrefGoogle Scholar

  • [30] Meyers, B.C., Kozik, A., Griego, A., Kuang, H. and Michelmore, R.W. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15 (2003) 809–834. CrossrefGoogle Scholar

  • [31] Deslandes, L., Olivier, J., Peeters, N., Feng, D.X., Khounlotham, M., Boucher, C., Somssich, I., Genin, S. and Marco, Y. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc. Natl. Acad. Sci. USA 100 (2003) 8024–8029. Google Scholar

  • [32] Radwan, O., Gandhi, S., Heesacker, A., Whitaker, B., Taylor, C., Plocik, A., Kesseli, R., Kozik, A., Michelmore, R.W. and Knapp, S.J. Genetic diversity and genomic distribution of homologs encoding NBS-LRR disease resistance proteins in sunflower. Mol. Genet. Genomics 280 (2008) 111–125. CrossrefGoogle Scholar

  • [33] Kohler, A., Rinaldi, C., Duplessis, S., Baucher, M., Geelen, D., Duchaussoy, F., Meyers, B.C., Boerjan, W. and Martin, F. Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol. Biol. 66 (2008) 619–636. CrossrefGoogle Scholar

  • [34] Miller, R.N., Bertioli, D.J., Baurens, F.C., Santos, C.M., Alves, P.C., Martins, N.F., Togawa, R.C., Souza, M.T. and Pappas, G.J. Analysis of non-TIR-NBS-LRR resistance gene analogs in Musa acuminata Colla: isolation, RFLP marker development, and physical mapping. BMC Plant Biol. 8 (2008) 15. CrossrefGoogle Scholar

  • [35] Zhou, T., Wang, Y., Chen, J.-Q., Araki, H., Jing, Z., Jiang, K., Shen, J. and Tian, D. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR-NBS-LRR genes. Mol. Genet. Genomics 271 (2004) 402–415. Google Scholar

  • [36] Porter, B., Paidi, M., Ming, R., Alam, M., Nishijima. W., Zhu, Y. Genomewide analysis of Carica papaya reveals a small NBS resistance gene family. Mol. Genet. Genomics 6 (2009) 609–626. CrossrefGoogle Scholar

  • [37] Xiao, S., Wang, W. and Yang, X. Evolution of resistance genes in plants. in Innate immunity of plants, animals and humans. (Heine, H., Ed.), Springer-Verlag, Berlin Heidelberg, 2008, 1–26. Google Scholar

  • [38] Takahashi, N., Takahashi, Y. and Putnam, F.W. Periodicity of leucine and tandem repetition of a 24-amino acid segment in the primary structure of leucine-rich α2-glycoprotein of human serum. Proc. Natl. Acad. Sci. USA 82 (1985) 1906–1910. Google Scholar

  • [39] McHale, L., Tan, X., Koehl, P. and Michelmore, R.W. Plant NBS-LRR proteins: adaptable guards. Genome Biol. 7 (2006) 212. CrossrefGoogle Scholar

  • [40] Kajava, A.W. Structural diversity of leucine-rich repeat proteins. J. Mol. Biol. 277 (1998) 519527. Google Scholar

  • [41] Bella, J., Hindle, K.L., McEwan, P.A. and Lovell, S.C. The leucine-rich repeat structure. Cell. Mol. Life Sci. 65 (2008) 2307–2333. CrossrefGoogle Scholar

  • [42] Stange, C., Matus, J.T., Domínguez, C., Perez-Acle, T. and Arce-Johnson, P. The N-homologue LRR domain adopts a folding which explains the TMV-Cg-induced HR-like response in sensitive tobacco plants. J. Mol. Graph. Model 26 (2008) 850–860. CrossrefGoogle Scholar

  • [43] Kobe, B. and Kajava, A.V. When protein folding is simplified to protein coiling: the continuum of solenoid protein structures. Trends Biochem. Sci. 25 (2000) 509–515. CrossrefGoogle Scholar

  • [44] Dodds, P.N., Lawrence, G.J. and Ellis, J.G. Six amino acid changes confined to the leucine-rich repeat β-strand/β-turn motif determine the difference between the P and P2 rust resistance specificities in flax. Plant Cell 13 (2001) 163–178. Google Scholar

  • [45] Wang, C.-I.A., Gunčar, G., Forwood, J.K., Teh, T., Catanzariti, A.-M., Lawrence, G.J., Loughlin, F.E., Mackay, J.P., Schirra, H.J., Anderson, P.A., Ellis, J.G., Dodds, P.N. and Kobe, B. Crystal structures of flax rust avirulence proteins AvrL567-A and -D reveal details of the structural basis for flax disease resistance specificity. Plant Cell 19 (2007) 2898–2912. Google Scholar

  • [46] Jin, M.S., Kim, S.E., Heo, J.Y., Lee, M.E., Kim, H.M., Paik, S.-G., Lee, H. and Lee, J.-O. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a triacylated lipopeptide. Cell 130 (2007) 1071–1082. Google Scholar

  • [47] Liu, J., Liu, X. and Dai, L., Wang, G. Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants. J. Genet. Genomics 34 (2007) 765–776. CrossrefGoogle Scholar

  • [48] Caplan, J.L., Mamillapalli, P., Burch-Smith, T.M., Czymmek, K. and Dinesh-Kumar, S.P. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132 (2008) 449–462. Google Scholar

  • [49] Rairdan, G.J. and Moffett, P. Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell 18 (2006) 2082–2093. CrossrefGoogle Scholar

  • [50] van Ooijen, G., Mayr, G., Albrecht, M., Cornelissen, B.J.C. and Takken, F.L.W. Transcomplementation, but not physical association of the CC-NB-ARC and LRR domains of tomato R protein Mi-1.2 is altered by mutations in the ARC2 subdomain. Mol. Plant 1 (2008) 401–410. Google Scholar

  • [51] van der Biezen, E.A. and Jones, J.D.G. The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr. Biol. 8 (1998) R226–R228. Google Scholar

  • [52] Tameling, W.I.L., Vossen, J.H., Albrecht, M., Lengauer, T., Berden, J.A., Haring, M.A., Cornelissen, B.J.C. and Takken, F.L.W. Mutations in the NBARC domain of I-2 that impair ATP hydrolysis cause autoactivation. Plant Physiol. 140 (2006) 1233–1245. CrossrefGoogle Scholar

  • [53] Proell, M., Riedl, S.J., Fritz, J.R., Rojas, A.M. and Schwarzenbacher, R. The Nod-like receptor (NLR) family: A tale of similarities and differences. PLoS ONE 3 (2008) e2119. Google Scholar

  • [54] Riedl, S.J., Li, W., Chao, Y. and Schwarzenbacher, R., Shi, Y. Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature 434 (2005) 926–933. Google Scholar

  • [55] Takken, F.L.W., Albrecht, M. and Tameling, W.I.L. Resistance proteins: molecular switches of plant defence. Curr. Opin. Plant. Biol. 9 (2006) 383–390. CrossrefGoogle Scholar

  • [56] Howles, P., Lawrence, G., Finnegan, J., McFadden, H., Ayliffe, M., Dodds, P. and Ellis, J. Autoactive alleles of the flax L6rust resistance gene induce nonrace-specific rust resistance associated with the hypersensitive response. Mol. Plant-Microbe In. 18 (2005) 570582. Google Scholar

  • [57] Moffett, P., Farnham, G., Peart, J. and Baulcombe, D.C. Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. EMBO J. 21 (2002) 4511–4519. CrossrefGoogle Scholar

  • [58] Rairdan, G.J., Collier, S.M., Sacco, M.A., Baldwin, T.T., Boettrich, T. and Moffett, P. The coiled coil and nucleotide binding domains of the potato Rx disease resistance protein function in pathogen recognition and signaling. Plant Cell 20 (2008) 739–751. CrossrefGoogle Scholar

  • [59] Tameling, W.I.L. and Takken, F.L.W. Resistance proteins: Scouts of the plant innate immune system. Eur. J. Plant Pathol. 121 (2008) 243–255. CrossrefGoogle Scholar

  • [60] Janssens, S. and Beyaert, R. Role of Toll-like receptors in pathogen recognition. Clin. Microbiol. Rev. 16 (2003) 637–646. CrossrefGoogle Scholar

  • [61] Li, C., Zienkiewicz, J. and Hawiger, J. Interactive sites in the MyD88 Toll/interleukin (IL) 1 receptor domain responsible for coupling to the IL1beta signaling pathway. J. Biol. Chem. 28 (2005) 26152–26159. CrossrefGoogle Scholar

  • [62] Gautam, J.K., Ashish, Comeau, L.D., Krueger, J.K. and Smith, M.F. Structural and functional evidence for the role of the TLR2 DD loop in TLR1/TLR2 heterodimerization and signaling. J. Biol. Chem. 40 (2006) 30132–30142. Google Scholar

  • [63] Burch-Smith, T.M., Schiff, M., Caplan, J.L., Tsao, J., Czymmek, K. and Dinesh-Kumar, S.P. A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS Biol. 5 (2007) e68. CrossrefGoogle Scholar

  • [64] Mestre, P. and Baulcombe, D.C. Elicitor-mediated oligomerization of the tobacco N disease resistance protein. Plant Cell 18 (2006) 491–501. CrossrefGoogle Scholar

  • [65] Lupas, A. Coiled coils: new structures and new functions. Trends Biochem. Sci. 21 (1996) 375–382. CrossrefGoogle Scholar

  • [66] Ade, J., DeYoung, B.J., Golstein, C. and Innes, R.W. Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. Proc. Natl. Acad. Sci. USA 104 (2007) 2531–2536. CrossrefGoogle Scholar

  • [67] Ulker, B. and Somssich, I.E. WRKY transcription factors: from DNA binding towards biological function. Curr. Opin. Plant Biol. 7 (2004) 491–498. CrossrefGoogle Scholar

  • [68] Eulgem, T. and Somssich, I.E. Networks of WRKY transcription factors in defense signaling. Curr. Opin. Plant Biol. 10 (2007) 366–371. CrossrefGoogle Scholar

  • [69] Liu, J., Coaker, G. Nuclear trafficking during plant innate immunity. Mol. Plant 1 (2008) 411–422. CrossrefGoogle Scholar

  • [70] Deslandes, L., Olivier, J., Theulieres, F., Hirsch, J., Feng, D.X., Bittner-Eddy, P.D., Beynon, J. and Marco, Y. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc. Natl. Acad. Sci. USA 99 (2002) 2404–2409. CrossrefGoogle Scholar

  • [71] Noutoshi, Y., Ito, T., Seki, M., Nakashita, H., Yoshida, S., Marco, Y., Shirasu, K. and Shinozaki, K. A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death. Plant J. 43 (2005) 873–888. Google Scholar

  • [72] Akita, M. and Valkonen, J. A novel gene family in moss (Physcomitrella patens) shows sequence homology and a phylogenetic relationship with the TIR-NBS class of plant disease resistance genes. J. Mol. Evol. 55 (2000) 595–605. Google Scholar

  • [73] Liu, J.-J. and Ekramoddoullah, A.K.M. Isolation, genetic variation and expression of TIRNBS-LRR resistance gene analogs from western white pine (Pinus monticola Dougl. ex. D. Don.). Mol. Genet. Genomics 270 (2003) 432–441. Google Scholar

  • [74] Jermstad, K.D., Sheppard, L.A., Kinloch, B.B., Delfino-Mix, A., Ersoz, E.S., Krutovsky, K.V. and Neale, D.B. Isolation of a full-length CC-NBS-LRR resistance gene analog candidate from sugar pine showing low nucleotide diversity. Tree Genet. Genomes 2 (2006) 76–85. CrossrefGoogle Scholar

  • [75] Pan, Q., Wendel, J. and Fluhr, R. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J. Mol. Evol. 50 (2000) 203–213. Google Scholar

  • [76] Tian, Y., Fan, L., Thurau, T., Jung, C. and Cai, D. The absence of TIR-type resistance gene analogues in the sugar beet (Beta vulgaris L.) genome. J. Mol. Evol. 58 (2004) 40–53. CrossrefGoogle Scholar

  • [77] Bomblies, K., Lempe, J., Epple, P., Warthmann, N., Lanz, C., Dangl, J.L. and Weigel, D. Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLoS Biol. 5 (2007) e236. CrossrefGoogle Scholar

  • [78] Jiang, H., Wang, C., Ping, L., Tian, D. and Yang, S. Pattern of LRR nucleotide variation in plant resistance genes. Plant Sci. 173 (2007) 253–261. CrossrefGoogle Scholar

  • [79] van der Hoorn, R.A.L., De Wit, P.J.G.M. and Joosten, M.H.A.J. Balancing selection favors guarding resistance proteins. Trends Plant Sci. 7 (2002) 67–71. Google Scholar

  • [80] Meyers, B.C., Kaushik, S., Nandety, R.S. Evolving disease resistance genes. Curr. Opin. Plant Biol. 8 (2005) 129–134 CrossrefGoogle Scholar

  • [81] Rose, L.E., Bittner-Eddy, P.D., Langley, C.H., Holub, E.B., Michelmore, R.W., Beynon, J.L. The maintenance of extreme amino acid diversity at the disease resistance gene, RPP13, in Arabidopsis thaliana. Genetics 166 (2004) 1517–1527. Google Scholar

  • [82] Swetha Priya, R. and Subramanian, R.B. Isolation and molecular analysis of R gene in resistant Zingiber officinale (ginger) varieties against Fusarium oxysporum f.sp. zingiberi. Bioresource Technol. 99 (2008) 4540–4543. CrossrefGoogle Scholar

  • [83] van der Biezen, E.A., Freddie, C.T., Kahn, K., Parker, J.E. and Jones, J.D.G. Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NBLRR genes and confers downy mildew resistance through multiple signalling components. Plant J. 29 (2002) 439–451. Google Scholar

  • [84] Rentel, M.C., Leonelli, L., Dahlbeck, D., Zhao, B. and Staskawicz, B.J. Recognition of the Hyaloperonospora parasitica effector ATR13 triggers resistance against oomycete, bacterial, and viral pathogens. Proc. Natl. Acad. Sci. USA 105 (2008) 1091–1096. Google Scholar

  • [85] Mucyn, T.S., Clemente, A., Andriotis, V.M., Balmuth, A.L., Oldroyd, G.E., Staskawicz, B.J. and Rathjen, J.P. The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. Plant Cell 18 (2006) 2792–2806. CrossrefGoogle Scholar

  • [86] Xing, W., Zou, Y., Liu, Q., Liu, J., Luo, X., Huang, Q., Chen, S., Zhu, L., Bi, R., Hao, Q., Wu, J.-W., Zhou, J.-M. and Chai, J. The structural basis for activation of plant immunity by bacterial effector protein AvrPto. Nature 449 (2007) 243–248. Google Scholar

  • [87] Aarts, N., Metz, M., Holub, E., Staskawicz, B.J., Daniels, M.J. and Parker, J.E. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc. Natl. Acad. Sci. USA 95 (1998) 1030610311. Google Scholar

  • [88] Falk, A., Feys, B.J., Frost, L.N., Jones, J.D.G., Daniels, M.J. and Parker, J.E. EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc. Natl. Acad. Sci. USA 96 (1999) 3292–3297. Google Scholar

  • [89] Hu, G., de Hart, A.K.A., Li, Y., Ustach, C., Handley, V., Navarre, R., Hwang, C.-F., Aegerter, B.J., Williamson, V.M. and Baker, B. EDS1 in tomato is required for resistance mediated by TIR-class R genes and the receptor-like R gene Ve. Plant J. 42 (2005) 376–391. Google Scholar

  • [90] Wiermer, M., Feys, B.J. and Parker, J.E. Plant immunity: the EDS1 regulatory node. Curr. Opin. Plant Biol. 8 (2005) 383–389. CrossrefGoogle Scholar

  • [91] Bartsch, M., Gobbato, E., Bednarek, P., Debey, S., Schultze, J.L., Bautor, J. and Parker, J.E. Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NUDT7. Plant Cell 18 (2006) 1038–1051. CrossrefGoogle Scholar

  • [92] El Oirdi, M. and Bouarab, K. Plant signalling components EDS1 and SGT1 enhance disease caused by the necrotrophic pathogen Botrytis cinerea. New Phytol. 175 (2007) 131–139. Google Scholar

  • [93] Tör, M., Gordon, P., Cuzick, A., Eulgem, T., Sinapidou, E., Mert-Türk, F., Can, C., Dangl, J.L. and Holub, E.B. Arabidopsis SGT1b is required for defense signaling conferred by several downy mildew resistance genes. Plant Cell 14 (2002) 993–1003. CrossrefGoogle Scholar

  • [94] Shen, Q.-H., Zhou, F., Bieri, S., Haizel, T., Shirasu, K. and Schulze-Lefert, P. Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell 15 (2003) 732–744. Google Scholar

  • [95] Schulze-Lefert, P. Plant immunity: the origami of receptor activation. Curr. Biol. 14 (2004) R22–R24. Google Scholar

  • [96] Botër, M., Amigues, B., Peart, J., Breuer, C., Kadota, Y., Casais, C., Moore, G., Kleanthous, C., Ochsenbein, F., Shirasu, K. and Guerois, R. Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell 19 (2007) 3791–3804. CrossrefGoogle Scholar

  • [97] Hubert, D., He, Y., McNulty, B., Tornero, P., Dangl, J. Specific Arabidopsis HSP90.2 alleles recapitulate RAR1 cochaperone function in plant NB-LRR disease resistance protein regulation. Proc. Natl. Acad. Sci. 24 (2009) 9556–9563. Google Scholar

  • [98] Noël, L.D., Cagna, G., Stuttmann, J., Wirthmüller, L., Betsuyaku, S., Witte, C.P., Bhat, R., Pochon, N., Colby, T. and Parker, J.E. Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. Plant Cell 19 (2007) 4061–4076. CrossrefGoogle Scholar

  • [99] Kadota, Y., Amigues, B., Ducassou, L., Madaoui, H., Ochsenbein, F., Guerois, R., Shirasu, K. Structural and functional analysis of SGT1-HSP90 core complex required for innate immunity in plants. EMBO Rep. 12 (2008) 1209–1215. Google Scholar

  • [100] Kadota, Y., Shirasu, K., Guerois, R. NLR sensors meet at the SGT1-HSP90 crossroad. Trends Biochem. Sci. (2010) doi:10.1016/j.tibs.2009.12.005 CrossrefGoogle Scholar

  • [101] Johnson, C., Mhatre, A. and Arias, J. NPR1 preferentially binds to the DNA-inactive form of Arabidopsis TGA2. Biochim. Biophys. Acta 1779 (2008) 583–589. Google Scholar

  • [102] Kuang, H., Woo, S.-S., Meyers, B.C., Nevo, E. and Michelmore, R.W. Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell 16 (2004) 2870–2894. CrossrefGoogle Scholar

  • [103] Day, B., Dahlbeck, D., Huang, J., Chisholm, S.T., Li, D. and Staskawicz, B.J. Molecular basis for the RIN4 negative regulation of RPS2 disease resistance. Plant Cell 17 (2005) 1292–1305. CrossrefGoogle Scholar

  • [104] Day, B., Dahlbeck, D. and Staskawicz, B.J. NDR1 interaction with RIN4 mediates the differential activation of multiple disease resistance pathways in Arabidopsis. Plant Cell 18 (2006) 2782–2791. Google Scholar

  • [105] Journot-Catalino, N., Somssich, I.E., Roby, D. and Kroj, T. The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18 (2006) 3289–3302. CrossrefGoogle Scholar

  • [106] Oh, S.K., Baek, K.H., Park, J.M., Yi, S.Y., Yu, S.H., Kamoun, S. and Choi, D. Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense. New Phytol. 177 (2008) 977–989. CrossrefGoogle Scholar

  • [107] Lai, Z., Vinod, K., Zheng, Z., Fan, B. and Chen, Z. Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biol. 8 (2008) e68. Google Scholar

  • [108] Bhattacharjee, S., Zamora, A., Azhar, M., Sacco, M., Lambert, L., Moffett, P. Virus resistance induced by NB-LRR proteins involves Argonaute4-dependent translational control. Plant J. 6 (2009) 940–951. Google Scholar

About the article

Published Online: 2011-01-13

Published in Print: 2011-03-01


Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-010-0024-2.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Rahul Singh Jasrotia, Mir Asif Iquebal, Pramod Kumar Yadav, Neeraj Kumar, Sarika Jaiswal, U. B. Angadi, Anil Rai, and Dinesh Kumar
Physiology and Molecular Biology of Plants, 2017
[2]
Li Q. Liang, Cong Y. Wang, Lie X. Zeng, Wen J. Wang, Jin Q. Feng, Bing Chen, Jing Su, Shen Chen, Fu D. Shang, Xiao Y. Zhu, Fei Lin, and Z.-K. Li
Plant Breeding, 2017
[3]
Neha Kumari, Sumit Kumar Chaturvedi, Rehan Khan, Alpana Sharma, Rizwan Hasan Khan, and Savita Yadav
International Journal of Biological Macromolecules, 2017, Volume 104, Page 1194
[4]
Saket Chandra, Andaleeb Z. Kazmi, Zainab Ahmed, Gargi Roychowdhury, Veena Kumari, Manish Kumar, and Kunal Mukhopadhyay
Plant Cell Reports, 2017, Volume 36, Number 7, Page 1097
[5]
Bin He, Xiang Tao, Yinghong Gu, Changhe Wei, Xiaojie Cheng, Suqin Xiao, Zaiquan Cheng, Yizheng Zhang, and Shin-Han Shiu
PLOS ONE, 2015, Volume 10, Number 12, Page e0144518
[6]
Neha Kumari, Rajesh Kumar, Vandana Mishra, and Savita Yadav
The Protein Journal, 2016, Volume 35, Number 5, Page 379
[7]
Kuria Paul, Ateka Elijah, Miano Douglas, Onguso Justus, and J Taylor Nigel
African Journal of Biotechnology, 2016, Volume 15, Number 29, Page 1575
[8]
Erik A. Visser, Jill L. Wegrzyn, Emma T. Steenkmap, Alexander A. Myburg, and Sanushka Naidoo
BMC Genomics, 2015, Volume 16, Number 1
[9]
Vivien Sarazin, Jérome Duclercq, Benjamin Mendou, Laurent Aubanelle, Veyres Nicolas, Mitsuko Aono, Serge Pilard, François Guerineau, Brigitte Sangwan-Norreel, and Rajbir S. Sangwan
Plant Science, 2015, Volume 239, Page 216
[10]
Marilena Christopoulou, Leah K. McHale, Alex Kozik, Sebastian Reyes-Chin Wo, Tadeusz Wroblewski, and Richard W. Michelmore
Molecular Plant-Microbe Interactions, 2015, Volume 28, Number 7, Page 751
[11]
Irina Solovyeva, Angelika Schmuker, Liliana M. Cano, Mireille van Damme, Sebastian Ploch, Sophien Kamoun, and Marco Thines
Mycological Progress, 2015, Volume 14, Number 7
[12]
Bin-Bin Jiao, Jian-Jun Wang, Xu-Dong Zhu, Long-Jun Zeng, Qun Li, and Zu-Hua He
Molecular Plant, 2012, Volume 5, Number 1, Page 205
[13]
Nagarathinam Selvaraj, Ashwin Ramadass, Ramesh Sundar Amalraj, Malathi Palaniyandi, and Viswanathan Rasappa
Applied Biochemistry and Biotechnology, 2014, Volume 174, Number 8, Page 2839
[14]
Dhia Bouktila, Yosra Khalfallah, Yosra Habachi-Houimli, Maha Mezghani-Khemakhem, Mohamed Makni, and Hanem Makni
Molecular Genetics and Genomics, 2015, Volume 290, Number 1, Page 257
[15]
Marcello Iriti and Elena Maria Varoni
Environmental Science and Pollution Research, 2015, Volume 22, Number 4, Page 2935
[16]
Katja Graumann, Emmanuel Vanrobays, Sylvie Tutois, Aline V. Probst, David E. Evans, and Christophe Tatout
Journal of Experimental Botany, 2014, Volume 65, Number 22, Page 6499
[17]
Ruijuan Li, Aaron M. Rashotte, Narendra K. Singh, David B. Weaver, Kathy S. Lawrence, and Robert D. Locy
Plant Cell Reports, 2015, Volume 34, Number 1, Page 5
[18]
Qian Zhang, Shanzhi Lin, Huiquan Zheng, Yuanzhen Lin, Xinmin An, and Zhiyi Zhang
Journal of Plant Biochemistry and Biotechnology, 2015, Volume 24, Number 3, Page 283
[20]
Daniela Marone, Maria Russo, Giovanni Laidò, Anna De Leonardis, and Anna Mastrangelo
International Journal of Molecular Sciences, 2013, Volume 14, Number 4, Page 7302
[21]
Rongzhi Zhang, Florent Murat, Caroline Pont, Thierry Langin, and Jerome Salse
BMC Genomics, 2014, Volume 15, Number 1, Page 187
[22]
David B Neale, Jill L Wegrzyn, Kristian A Stevens, Aleksey V Zimin, Daniela Puiu, Marc W Crepeau, Charis Cardeno, Maxim Koriabine, Ann E Holtz-Morris, John D Liechty, Pedro J Martínez-García, Hans A Vasquez-Gross, Brian Y Lin, Jacob J Zieve, William M Dougherty, Sara Fuentes-Soriano, Le-Shin Wu, Don Gilbert, Guillaume Marçais, Michael Roberts, Carson Holt, Mark Yandell, John M Davis, Katherine E Smith, Jeffrey FD Dean, W Lorenz, Ross W Whetten, Ronald Sederoff, Nicholas Wheeler, Patrick E McGuire, Doreen Main, Carol A Loopstra, Keithanne Mockaitis, Pieter J deJong, James A Yorke, Steven L Salzberg, and Charles H Langley
Genome Biology, 2014, Volume 15, Number 3, Page R59
[23]
Dhia Bouktila, Yosra Habachi-Houimli, Yosra Khalfallah, Maha Mezghani-Khemakhem, Mohamed Makni, and Hanem Makni
Molecular Genetics and Genomics, 2014, Volume 289, Number 4, Page 599
[24]
K. V. Boris and E. Z. Kochieva
Biology Bulletin Reviews, 2013, Volume 3, Number 6, Page 431
[25]
Hudson Fernando N. Moura, Ilka M. Vasconcelos, Carlos Eduardo A. Souza, Fredy D.A. Silva, Frederico B.M.B. Moreno, Marina D.P. Lobo, Ana C.O. Monteiro-Moreira, Arlindo A. Moura, José H. Costa, and José Tadeu A. Oliveira
Plant Science, 2014, Volume 217-218, Page 158
[26]
Stéphanie Pflieger, Manon M. S. Richard, Sophie Blanchet, Chouaib Meziadi, and Valérie Geffroy
Functional Plant Biology, 2013, Volume 40, Number 12, Page 1234
[27]
Jianxia Jiang, Jingjing Jiang, Yafei Yang, and Jiashu Cao
Cellular and Molecular Biology Letters, 2013, Volume 18, Number 3
[28]
Chiara Biselli, Simona Urso, Gianni Tacconi, Burkhard Steuernagel, Daniela Schulte, Alberto Gianinetti, Paolo Bagnaresi, Nils Stein, Luigi Cattivelli, and Giampiero Valè
Theoretical and Applied Genetics, 2013, Volume 126, Number 6, Page 1575
[29]
Yi-Ping Ho, Choon Meng Tan, Meng-Ying Li, Hong Lin, Wen-Ling Deng, and Jun-Yi Yang
Molecular Plant-Microbe Interactions, 2013, Volume 26, Number 4, Page 419
[30]
T. Nakamura, Y. Yagi, and K. Kobayashi
Plant and Cell Physiology, 2012, Volume 53, Number 7, Page 1171
[31]
I. A. Tarchevsky, V. G. Yakovleva, and A. M. Egorova
Russian Journal of Plant Physiology, 2012, Volume 59, Number 4, Page 491
[32]
Shenglong Tan and Song Wu
Comparative and Functional Genomics, 2012, Volume 2012, Page 1
[33]
Feng Wang, Xilin Hou, Jun Tang, Zhen Wang, Shuming Wang, Fangling Jiang, and Ying Li
Molecular Biology Reports, 2012, Volume 39, Number 4, Page 4553
[34]
K. V. Boris, N. N. Ryzhova, and E. Z. Kochieva
Molecular Biology, 2012, Volume 46, Number 1, Page 107
[35]
Anna M. Mastrangelo, Daniela Marone, Giovanni Laidò, Anna M. De Leonardis, and Pasquale De Vita
Plant Science, 2012, Volume 185-186, Page 40
[36]
Eva Czarnecka, F. Lance Verner, and William B. Gurley
Plant Molecular Biology, 2012, Volume 78, Number 1-2, Page 59
[37]
Chao Huang, Francesca Verrillo, Giovanni Renzone, Simona Arena, Mariapina Rocco, Andrea Scaloni, and Mauro Marra
Journal of Proteomics, 2011, Volume 74, Number 10, Page 1934
[38]
Xuewei Chen and Pamela C. Ronald
Trends in Plant Science, 2011, Volume 16, Number 8, Page 451

Comments (0)

Please log in or register to comment.
Log in