Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 16, Issue 1

Issues

Regulation of thrombospondin-1 expression through AU-rich elements in the 3′UTR of the mRNA

Asa Mcgray / Timothy Gingerich / James Petrik / Jonathan Lamarre
Published Online: 2011-01-13 | DOI: https://doi.org/10.2478/s11658-010-0037-x

Abstract

Thrombospondin-1 (TSP-1) is a matricellular protein that participates in numerous normal and pathological tissue processes and is rapidly modulated by different stimuli. The presence of 8 highly-conserved AU rich elements (AREs) within the 3′-untranslated region (3′UTR) of the TSP-1 mRNA suggests that post-transcriptional regulation is likely to represent one mechanism by which TSP-1 gene expression is regulated. We investigated the roles of these AREs, and proteins which bind to them, in the control of TSP-1 mRNA stability. The endogenous TSP-1 mRNA half-life is approximately 2.0 hours in HEK293 cells. Luciferase reporter mRNAs containing the TSP-1 3′UTR show a similar rate of decay, suggesting that the 3′UTR influences the decay rate. Site-directed mutagenesis of individual and adjacent AREs prolonged reporter mRNA halflife to between 2.2 and 4.4 hours. Mutation of all AREs increased mRNA half life to 8.8 hours, suggesting that all AREs have some effect, but that specific AREs may have key roles in stability regulation. A labeled RNA oligonucleotide derived from the most influential ARE was utilized to purify TSP-1 AREbinding proteins. The AU-binding protein AUF1 was shown to associate with this motif. These studies reveal that AREs in the 3′UTR control TSP-1 mRNA stability and that the RNA binding protein AUF1 participates in this control. These studies suggest that ARE-dependent control of TSP-1 mRNA stability may represent an important component in the control of TSP-1 gene expression.

Keywords: Thrombospondin-1; mRNA stability; Angiogenesis; AU-rich element; Post-transcriptional; Gene expression

  • [1] Margossian, S., Lawler, J. and Slayter, H. Physical characterization of platelet thrombospondin. J. Biol. Chem. 256 (1981) 7495–7500. Google Scholar

  • [2] Bonnefoy, A., Moura, R. and Hoylaerts, M.F. The evolving role of thrombospondin-1 in hemostasis and vascular biology. Cell. Mol. Life Sci. 65 (2008) 713–727. http://dx.doi.org/10.1007/s00018-007-7487-yWeb of ScienceCrossrefGoogle Scholar

  • [3] Carlson, C.B., Lawler, J. and Mosher, D.F. Structures of thrombospondins. Cell. Mol. Life Sci. 65 (2008) 672–686. http://dx.doi.org/10.1007/s00018-007-7484-1CrossrefGoogle Scholar

  • [4] Adams, J. and Lawler, J. The thrombospondins. Int. J. Biochem. Cell Biol. 6 (2004) 961–968. http://dx.doi.org/10.1016/j.biocel.2004.01.004CrossrefGoogle Scholar

  • [5] Kazerounian, S., Yee, K.O. and Lawler, J. Thrombospondins in cancer. Cell. Mol. Life Sci. 65 (2008) 700–712. http://dx.doi.org/10.1007/s00018-007-7486-zCrossrefWeb of ScienceGoogle Scholar

  • [6] Bornstein, P. Diversity of function is inherent in matricellular proteins: an appraisal of thrombospondin 1. J. Cell Biol. 3 (1995) 503–506. http://dx.doi.org/10.1083/jcb.130.3.503Google Scholar

  • [7] Bornstein, P. Thrombospondins: structure and regulation of expression. FASEB J. 14 (1992) 3290–3299. Google Scholar

  • [8] Iruela-Arispe, M.L., Liska, D.J., Sage, E.H. and Bornstein, P. Differential expression of thrombospondin 1, 2, and 3 during murine development. Dev. Dyn. 1 (1993) 40–56. CrossrefGoogle Scholar

  • [9] Petrik, J.J., Gentry, P.A., Feige, J. and LaMarre, J. Expression and localization of thrombospondin-1 and -2 and their cell-surface receptor, CD36, during rat follicular development and formation of the corpus luteum. Biol. Reprod. 5 (2002) 1522–1531. http://dx.doi.org/10.1095/biolreprod.102.007153Google Scholar

  • [10] Agah, A., Kyriakides, T.R., Lawler, J. and Bornstein, P. The lack of thrombospondin-1 (TSP1) dictates the course of wound healing in double-TSP1/TSP2-null mice. Am. J. Pathol. 3 (2002) 831–839. CrossrefGoogle Scholar

  • [11] Majack, R., Mildbrandt, J. and Dixit, V. Induction of thrombospondin messenger RNA levels occurs as an immediate primary response to plateletderived growth factor. J. Biol. Chem. 18 (1987) 8821–8825. Google Scholar

  • [12] Janz, A., Sevignani, C., Kenyon, K., Ngo, C.V. and Thomas-Tikhonenko, A. Activation of the myc oncoprotein leads to increased turnover of thrombospondin-1 mRNA. Nucleic Acids Res. 11 (2000) 2268–2275. http://dx.doi.org/10.1093/nar/28.11.2268CrossrefGoogle Scholar

  • [13] Kang, J., Kim, S. and Hong, K. Induction of TSP1 gene expression by heat shock is mediated via an increase in mRNA stability. FEBS Lett. 2 (2006) 510–516. http://dx.doi.org/10.1016/j.febslet.2005.12.065CrossrefGoogle Scholar

  • [14] Okamoto, M., Ono, M., Uchiumi, T., Ueno, H., Kohno, K., Sugimachi, K. and Kuwano, M. Up-regulation of thrombospondin-1 gene by epidermal growth factor and transforming growth factor β in human cancer cells — transcriptional activation and messenger RNA stabilization. Biochim. Biophys. Acta 1574 (2002) 24–34. CrossrefGoogle Scholar

  • [15] Bhattacharyya, S., Marinic, T.E., Krukovets, I., Hoppe, G. and Stenina, O.I. Cell type-specific post-transcriptional regulation of production of the potent antiangiogenic and proatherogenic protein thrombospondin-1 by high glucose. J. Biol. Chem. 9 (2008) 5699–5707. Web of ScienceGoogle Scholar

  • [16] Garneau, N.L., Wilusz, J., Wilusz, C.J. The highways and byways of mRNA decay. Nat. Rev. Mol. Cell Biol. 8 (2007) 113–126. http://dx.doi.org/10.1038/nrm2104Web of ScienceCrossrefGoogle Scholar

  • [17] Blackshear, P.J. Tristetraprolin and other CCCH tandem zinc-finger proteins in the regulation of mRNA turnover. Biochem. Soc. Trans. Pt 6 (2002) 945–952. CrossrefGoogle Scholar

  • [18] Gingerich, T.J., Feige, J.J. and LaMarre, J. AU-rich elements and the control of gene expression through regulated mRNA stability. Anim. Health Res. Rev. 1 (2004) 49–63. Google Scholar

  • [19] Shyu, A.B., Wilkinson, M.F. and van Hoof, A. Messenger RNA regulation: to translate or to degrade. EMBO J. 3 (2008) 471–481. http://dx.doi.org/10.1038/sj.emboj.7601977Web of ScienceCrossrefGoogle Scholar

  • [20] Caput, D., Beutler, B., Hartog, K., Thayer, R., Brown-Shimer, S. and Cerami, A. Identification of a common nucleotide sequence in the 3′-untranslated region of mrna molecules specifying inflammatory mediators. Proc. Natl. Acad. Sci. 83 (1986) 1670–1674. http://dx.doi.org/10.1073/pnas.83.6.1670CrossrefGoogle Scholar

  • [21] Shaw, G. and Kamen, R. A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 5 (1986) 659–667. http://dx.doi.org/10.1016/0092-8674(86)90341-7CrossrefGoogle Scholar

  • [22] Myer, V.E., Fan, X.C. and Steitz, J.A. Identification of HuR as a protein implicated in AUUUA-mediated mRNA decay. EMBO J. 8 (1997) 2130–2139. http://dx.doi.org/10.1093/emboj/16.8.2130CrossrefGoogle Scholar

  • [23] Gouble, A., Grazide, S., Meggetto, F., Mercier, P., Delsol, G. and Morello, D. A new player in oncogenesis: AUF1/hnRNPD overexpression leads to tumorigenesis in transgenic mice. Cancer Res. 62 (2002) 1489–1495. Google Scholar

  • [24] Pullmann, R., Jr, Kim, H.H., Abdelmohsen, K., Lal, A., Martindale, J.L., Yang, X. and Gorospe, M. Analysis of turnover and translation regulatory RNA-binding protein expression through binding to cognate mRNAs. Mol. Cell. Biol. 18 (2007) 6265–6278. http://dx.doi.org/10.1128/MCB.00500-07CrossrefGoogle Scholar

  • [25] Chen, C. and Shyu, A. Selective degradation of early-response-gene mRNAs: functional analyses of sequence features of the AU-rich elements. Mol. Cell. Biol. 12 (1994) 8471–8482. Google Scholar

  • [26] Shingu, T. and Bornstein, P. Characterization of the mouse thrombospondin 2 gene. Genomics 1 (1993) 78–84. http://dx.doi.org/10.1006/geno.1993.1143Google Scholar

  • [27] Zubiaga, A., Belasco, J. and Greenberg, M. The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol. Cell. Biol. 4 (1995) 2219–2230. Google Scholar

  • [28] Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., Furth, E.E., Lee, W.M., Enders, G.H., Mendell, J.T. and Thomas-Tikhonenko, A. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat. Genet. 9 (2006) 1060–1065. http://dx.doi.org/10.1038/ng1855CrossrefGoogle Scholar

  • [29] Wagner, B.J., DeMaria, C.T., Sun, Y., Wilson, G.M. and Brewer, G. Structure and genomic organization of the human AUF1 gene: alternative pre-mrna splicing generates four protein isoforms. Genomics 2 (1998) 195–202. http://dx.doi.org/10.1006/geno.1997.5142CrossrefGoogle Scholar

  • [30] Sarkar, B., Xi, Q., He, C. and Schneider, R.J. Selective degradation of AUrich mRNAs promoted by the p37 AUF1 protein isoform. Mol. Cell. Biol. 18 (2003) 6685–6693. http://dx.doi.org/10.1128/MCB.23.18.6685-6693.2003CrossrefGoogle Scholar

  • [31] Al-Souhibani, N., Al-Ahmadi, W., Hesketh, J.E., Blackshear, P.J. and Khabar, K.S. The RNA-binding zinc-finger protein tristetraprolin regulates AU-rich mRNAs involved in breast cancer-related processes. Oncogene (2010) E-pub ahead of print: doi:10.1038/onc.2010.168. Web of ScienceCrossrefGoogle Scholar

  • [32] Cherradi, N., Lejczak, C., Desroches-Castan, A. and Feige, J.J. Antagonistic functions of tetradecanoyl phorbol acetate-inducible-sequence 11b and HuR in the hormonal regulation of vascular endothelial growth factor messenger ribonucleic acid stability by adrenocorticotropin. Mol. Endocrinol. 4 (2006) 916–930. CrossrefGoogle Scholar

About the article

Published Online: 2011-01-13

Published in Print: 2011-03-01


Citation Information: Cellular and Molecular Biology Letters, Volume 16, Issue 1, Pages 55–68, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-010-0037-x.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Yan Wu, Hongwei Xiao, Jinsong Pi, Hao Zhang, Ailuan Pan, Yuejin Pu, Zhenhua Liang, Jie Shen, and Jinping Du
Journal of Cellular Physiology, 2020
[2]
Sebastiaan van Zalen, Alyssa A. Lombardi, Grace R. Jeschke, Elizabeth O. Hexner, and J. Eric Russell
Mechanisms of Development, 2015, Volume 136, Page 40
[4]
C Bersani, L-D Xu, A Vilborg, W-O Lui, and K G Wiman
Oncogene, 2014, Volume 33, Number 35, Page 4407
[5]
Afzal M. Dogar, Giuseppe Semplicio, Boris Guennewig, and Jonathan Hall
Nucleic Acid Therapeutics, 2014, Volume 24, Number 2, Page 149
[7]
Raquel Bienes-Martínez, Angel Ordóñez, Mónica Feijoo-Cuaresma, María Corral-Escariz, Gloria Mateo, Olga Stenina, Benilde Jiménez, and María J. Calzada
Scientific Reports, 2012, Volume 2, Number 1
[8]
Xiaowei Sylvia Chen and Chris M. Brown
Nucleic Acids Research, 2012, Volume 40, Number 18, Page 8862
[9]
Jack Henkin and Olga V Volpert
Expert Opinion on Therapeutic Targets, 2011, Volume 15, Number 12, Page 1369

Comments (0)

Please log in or register to comment.
Log in