Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Editor-in-Chief: /


IMPACT FACTOR 2016: 1.260
5-year IMPACT FACTOR: 1.506

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.615
Source Normalized Impact per Paper (SNIP) 2016: 0.470

Online
ISSN
1689-1392
See all formats and pricing
More options …
Volume 16, Issue 1 (Mar 2011)

Identification of molecules derived from human fibroblast feeder cells that support the proliferation of human embryonic stem cells

Sergey Anisimov / Nicolaj Christophersen / Ana Correia / Vanessa Hall / Ingrid Sandelin / Jia-Yi Li / Patrik Brundin
Published Online: 2011-01-13 | DOI: https://doi.org/10.2478/s11658-010-0039-8

Abstract

The majority of human embryonic stem cell lines depend on a feeder cell layer for continuous growth in vitro, so that they can remain in an undifferentiated state. Limited knowledge is available concerning the molecular mechanisms that underlie the capacity of feeder cells to support both the proliferation and pluripotency of these cells. Importantly, feeder cells generally lose their capacity to support human embryonic stem cell proliferation in vitro following long-term culture. In this study, we performed large-scale gene expression profiles of human foreskin fibroblasts during early, intermediate and late passages using a custom DNA microarray platform (NeuroStem 2.0 Chip). The microarray data was validated using RT-PCR and virtual SAGE analysis. Our comparative gene expression study identified a limited number of molecular targets potentially involved in the ability of human neonatal foreskin fibroblasts to serve as feeder cells for human embryonic stem cell cultures. Among these, the C-KIT, leptin and pigment epithelium-derived factor (PEDF) genes were the most interesting candidates.

Keywords: Human embryonic stem cells; Feeder cells; DNA microarray

  • [1] Evans, M.J. and Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292 (1981) 154–156. http://dx.doi.org/10.1038/292154a0CrossrefGoogle Scholar

  • [2] Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S. and Jones, J.M. Embryonic stem cell lines derived from human blastocysts. Science 282 (1998) 1145–1147. http://dx.doi.org/10.1126/science.282.5391.1145CrossrefGoogle Scholar

  • [3] Ludwig T.E., Levenstein M.E., Jones J.M., Berggren W.T., Mitchen E.R., Frane J.L., Crandall L.J., Daigh C.A., Conard K.R., Piekarczyk M.S., Llanas R.A. and Thomson J.A. Derivation of human embryonic stem cells in defined conditions. Nat. Biotechnol. 24 (2006) 185–187. http://dx.doi.org/10.1038/nbt1177CrossrefGoogle Scholar

  • [4] Richards, M., Fong, C.Y., Chan, W.K., Wong, P.C. and Bongso, A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol. 20 (2002) 933–936. http://dx.doi.org/10.1038/nbt726CrossrefGoogle Scholar

  • [5] Unger, C., Felldin, U., Nordenskjöld, A., Dilber, M.S. and Hovatta, O. Derivation of human skin fibroblast lines for feeder cells of human embryonic stem cells. Curr. Protoc. Stem Cell Biol. (2008) Chapter 1: Unit 1C.7. Google Scholar

  • [6] Panula, S. and Reijo Pera, R.A. Preparation of human foreskin fibroblasts for human embryonic stem cell culture. Cold Spring Harb. Protoc. (2008) doi:10.1101/pdb.prot5043. CrossrefGoogle Scholar

  • [7] Anisimov, S.V., Christophersen, N.S., Correia, A.S., Li J.Y. and Brundin, P. “NeuroStem Chip”: a novel highly specialized tool to study neural differentiation pathways in human stem cells. BMC Genomics 8 (2007) 46. http://dx.doi.org/10.1186/1471-2164-8-46Web of ScienceCrossrefGoogle Scholar

  • [8] Wiese, C., Rolletschek, A., Kania, G., Navarrete-Santos, A., Anisimov, S.V., Steinfarz, B., Tarasov, K.V., Brugh, S.A., Zahanich, I., Rüschenschmidt, C., Beck, H., Blyszczuk, P., Czyz, J., Heubach, J.F., Ravens, U., Horstmann, O., St-Onge, L., Braun, T., Brüstle, O., Boheler K.R. and Wobus, A.M. Signals from embryonic fibroblasts induce adult intestinal epithelial cells to form nestin-positive cells with proliferation and multilineage differentiation capacity in vitro. Stem Cells 24 (2006) 2085–2097. http://dx.doi.org/10.1634/stemcells.2006-0008CrossrefGoogle Scholar

  • [9] McElroy, S.L. and Reijo Pera, R.A. Preparation of mouse embryonic fibroblast feeder cells for human embryonic stem cell culture. Cold Spring Harb. Protoc. (2008) doi:10.1101/pdb.prot5041. CrossrefGoogle Scholar

  • [10] Chin, A.C., Fong, W.J., Goh, L.T., Philp, R., Oh, S.K. and Choo, A.B. Identification of proteins from feeder conditioned medium that support human embryonic stem cells. J. Biotechnol. 130 (2007) 320–328. http://dx.doi.org/10.1016/j.jbiotec.2007.04.013Web of ScienceCrossrefGoogle Scholar

  • [11] Montes, R., Ligero, G., Sanchez, L., Catalina, P., de la Cueva, T., Nieto, A., Melen, G.J., Rubio, R., García-Castro, J., Bueno, C., Menendez, P. Feederfree maintenance of hESCs in mesenchymal stem cell-conditioned media: distinct requirements for TGF-beta and IGF-II. Cell Res. 19 (2009) 698–709. http://dx.doi.org/10.1038/cr.2009.35CrossrefGoogle Scholar

  • [12] Ramirez-Castillejo, C., Sanchez-Sanchez, F., Andreu-Agullo, C., Ferron, S.R., Aroca-Aguilar, J.D., Sanchez, P., Mira, H., Escribano, J. and Farinas, I. Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat. Neurosci. 9 (2006) 331–339. http://dx.doi.org/10.1038/nn1657CrossrefGoogle Scholar

  • [13] Coljee, V.W., Rotenberg, M.O., Tresini, M., Francis, M.K., Cristofalo, V.J. and Sell, C. Regulation of EPC-1/PEDF in normal human fibroblasts is posttranscriptional. J. Cell. Biochem. 79 (2000) 442–452. http://dx.doi.org/10.1002/1097-4644(20001201)79:3<442::AID-JCB90>3.0.CO;2-ZCrossrefGoogle Scholar

  • [14] Kojima, T., Nakahama, K., Yamamoto, K., Uematsu, H. and Morita, I. Ageand cell cycle-dependent changes in EPC-1/PEDF promoter activity in human diploid fibroblast-like (HDF) cells. Mol. Cell. Biochem. 293 (2006) 63–69. http://dx.doi.org/10.1007/s11010-006-2680-0CrossrefGoogle Scholar

  • [15] Pignolo, R.J., Rotenberg, M.O. and Cristofalo, V.J. Analysis of EPC-1 growth state-dependent expression, specificity, and conservation of related sequences. J. Cell. Physiol. 162 (1995) 110–118. http://dx.doi.org/10.1002/jcp.1041620113Google Scholar

  • [16] Gonzalez, R., Jennings, L.L., Knuth, M., Orth, A.P., Klock, H.E., Ou, W., Feuerhelm, J., Hull, M.V., Koesema, E., Wang, Y., Zhang, J., Wu, C., Cho, C.Y., Su, A.I., Batalov, S., Chen, H., Johnson, K., Laffitte, B., Nguyen, D.G., Snyder, E.Y., Schultz, P.G., Harris, J.L., Lesley, S.A. Screening the mammalian extracellular proteome for regulators of embryonic human stem cell pluripotency. Proc. Natl. Acad. Sci. USA 107 (2010) 3552–3557. http://dx.doi.org/10.1073/pnas.0914019107CrossrefGoogle Scholar

  • [17] Attoub, S., Rivat, C., Rodrigues, S., Van Bocxlaer, S., Bedin, M., Bruyneel, E., Louvet, C., Kornprobst, M., Andre, T., Mareel, M., Mester, J. and Gespach, C. The c-kit tyrosine kinase inhibitor STI571 for colorectal cancer therapy. Cancer Res. 62 (2002) 4879–4883. Google Scholar

  • [18] Ronnstrand, L. Signal transduction via the stem cell factor receptor/c-Kit. Cell. Mol. Life Sci. 61 (2004) 2535–2548. http://dx.doi.org/10.1007/s00018-004-4189-6CrossrefGoogle Scholar

About the article

Published Online: 2011-01-13

Published in Print: 2011-03-01


Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-010-0039-8.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Emma Rörby, Matilda Billing, Maria Dahl, Sarah Warsi, Silja Andradottir, Kenichi Miharada, Kavitha Siva, Jan-Ingvar Jönsson, Ulrika Blank, Göran Karlsson, and Stefan Karlsson
Scientific Reports, 2017, Volume 7, Number 1
[2]
Danúbia Silva Dos Santos, Vanessa Carvalho Coelho De Oliveira, Karina Dutra Asensi, Leandro Vairo, Adriana Bastos Carvalho, Antonio Carlos Campos De Carvalho, and Regina Coeli Dos Santos Goldenberg
Cell Medicine, 2014, Volume 7, Number 1, Page 25
[3]
Yaxian Zhou, Michael Zimber, Huihua Yuan, Gail K. Naughton, Ryan Fernan, and Wan-Ju Li
Stem Cell Reviews and Reports, 2016, Volume 12, Number 5, Page 560
[4]
Usman Sagheer, Jingjing Gong, and Chuhan Chung
Journal of Developmental Biology, 2015, Volume 3, Number 4, Page 112
[5]
Kamthorn Pruksananonda, Ruttachuk Rungsiwiwut, Pranee Numchaisrika, Vichuda Ahnonkitpanit, Nipan Isarasena, and Pramuan Virutamasen
BioResearch Open Access, 2012, Volume 1, Number 4, Page 166
[6]
Susanne Proksch, Thorsten Steinberg, Susanne Stampf, Ulrich Schwarz, Elmar Hellwig, and Pascal Tomakidi
Tissue Engineering Part A, 2012, Volume 18, Number 23-24, Page 2601
[7]
Bin Qiao, Vinod Gopalan, Zhifeng Chen, Robert Anthony Smith, Qian Tao, and Alfred King-yin Lam
Biology of the Cell, 2012, Volume 104, Number 8, Page 476
[8]
Mina Elahy, Swati Baindur-Hudson, and Crispin R. Dass
Journal of Biomedicine and Biotechnology, 2012, Volume 2012, Page 1
[9]
D. E. Feldman, C. Chen, V. Punj, H. Tsukamoto, and K. Machida
Proceedings of the National Academy of Sciences, 2012, Volume 109, Number 3, Page 829

Comments (0)

Please log in or register to comment.
Log in