Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 16, Issue 1


Vertebrate melanophores as potential model for drug discovery and development: A review

Saima Salim / Sharique Ali
Published Online: 2011-01-13 | DOI: https://doi.org/10.2478/s11658-010-0044-y


Drug discovery in skin pharmacotherapy is an enormous, continually expanding field. Researchers are developing novel and sensitive pharmaceutical products and drugs that target specific receptors to elicit concerted and appropriate responses. The pigment-bearing cells called melanophores have a significant contribution to make in this field. Melanophores, which contain the dark brown or black pigment melanin, constitute an important class of chromatophores. They are highly specialized in the bidirectional and coordinated translocation of pigment granules when given an appropriate stimulus. The pigment granules can be stimulated to undergo rapid dispersion throughout the melanophores, making the cell appear dark, or to aggregate at the center, making the cell appear light. The major signals involved in pigment transport within the melanophores are dependent on a special class of cell surface receptors called G-protein-coupled receptors (GPCRs). Many of these receptors of adrenaline, acetylcholine, histamine, serotonin, endothelin and melatonin have been found on melanophores. They are believed to have clinical relevance to skin-related ailments and therefore have become targets for high throughput screening projects. The selective screening of these receptors requires the recognition of particular ligands, agonists and antagonists and the characterization of their effects on pigment motility within the cells. The mechanism of skin pigmentation is incredibly intricate, but it would be a considerable step forward to unravel its underlying physiological mechanism. This would provide an experimental basis for new pharmacotherapies for dermatological anomalies. The discernible stimuli that can trigger a variety of intracellular signals affecting pigment granule movement primarily include neurotransmitters and hormones. This review focuses on the role of the hormone and neurotransmitter signals involved in pigment movement in terms of the pharmacology of the specific receptors.

Keywords: G-protein-coupled receptors; Melanocytes; Skin pigmentation; Neurotransmitter; Pigment cells; Melanocyte-stimulating hormone; MSH; Drug discovery

  • [1] Rawles, M.E. Origin of melanophores and their role in the color patterns in vertebrates. Physiol. Rev. 28 (1948) 383–408. Google Scholar

  • [2] Bagnara, J.T., Bareiter, H. J., Matoltsy, A.G. and Richards, K.S. Biology of the integument vertebrates. Berlin: Springer-Verlag. 2 (1986) 136–149. Google Scholar

  • [3] Slominski, A., Desmond, J.T., Shibahara, S. and Wortman, J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 84 (2004) 1155–1228. http://dx.doi.org/10.1152/physrev.00044.2003CrossrefGoogle Scholar

  • [4] Slominski, A., Wortsman, J., Plonka, P.M., Schallreuter, K.U., Paus, R. and Tobin, D.J. Hair follicle pigmentation. J. Invest. Dermatol. 124 (2005) 13–21. http://dx.doi.org/10.1111/j.0022-202X.2004.23528.xCrossrefGoogle Scholar

  • [5] Slominski, A. and Paus, R. Melanogenesis is coupled bto murine anagen: toward new concepts for the role of melanocytes and the regulation of melanogenesis in hair growth. J. Invest. Dermatol. 101 (1993) 90S–97S. http://dx.doi.org/10.1111/1523-1747.ep12362991CrossrefGoogle Scholar

  • [6] Frisch, V.K., Beitrage zur Physiologic der Pigmentsellen in der Fischhaut. Pflugers Arch. Gesante Physiol. Menschen Tiere 138 (1911) 319–387. http://dx.doi.org/10.1007/BF01680752CrossrefGoogle Scholar

  • [7] Parker, G.H. Animal colour changes and their neurohumors. Cambridge Univ. Press, Cambridge, U.K., 1948. Google Scholar

  • [8] Pye, J.D. Nervous control of chromatophores in teleost fishes. I. Electrical stimulation in mimmow, Phoxinus phoxinus. J. Exp. Biol. 41 (1964a) 525–534. Google Scholar

  • [9] Fujii, R. Cytophysiology of fish chromatophores. Int. Rev. Cytol. 143 (1993a) 191–255. http://dx.doi.org/10.1016/S0074-7696(08)61876-8CrossrefGoogle Scholar

  • [10] David, M.J. and Laties, A.M. Direct innervations of teleost melanophore. Anat. Rec. 162 (2004) 501–504. Google Scholar

  • [11] Pouchet, G. Color changes in crustaceans and fishes. J. Anat. Physiol. 12 (1876) 1–90, 113–116. Google Scholar

  • [12] Brücke, E. Untersuchungen uber den Farbenwechsel des afrikanischen Chamaleons. Denschr. Akad. Wiss. Wien, math-nat. Cl. 4 (1852) 179–210. Google Scholar

  • [13] Bagnara, J.T. and Hadley, M.E. Chromatophores and color changes. Englewood Cliffs, N.J. Prentice-Hall, 1973. Google Scholar

  • [14] Gillbro, J.M, Marles, L.K., Hibberts, N.A. and Schallreuter, K.U. Autocrine catecholamine biosynthesis and the beta-adrenoceptor signal promote pigmentation in human epidermal melanocytes. J. Invest. Dermatol. 123 (2004) 346–353. http://dx.doi.org/10.1111/j.0022-202X.2004.23210.xCrossrefGoogle Scholar

  • [15] Fujii, R. and Miyashita, Y. Receptor mechanisms in fish chromatophores-V. MSH disperses melanosomes in both dermal and epidermal melanophores of a catfish (Parasilurus asotus). Comp. Biochem. Physiol. Part C: Comp. Pharmacol. 71 (1981) 1–6. http://dx.doi.org/10.1016/0306-4492(82)90002-8CrossrefGoogle Scholar

  • [16] Vaudry, H., Chartrel. N., Desrues, L., Galas, L., Kikuyama, S., Mor, A., Nicolas, P. and Tonan, M.C. Pituitary-skin connection in amphibians: reciprocal regulation of melanotrope cells and dermal melanocytes. Ann. N. Y. Acad. Sci. 885 (1999) 41–56. http://dx.doi.org/10.1111/j.1749-6632.1999.tb08664.xCrossrefGoogle Scholar

  • [17] Slominski, A., Wortsman, J., Kohn, L., Ain, K.B., Venkataraman, G.M., Pisarchik, A., Chung, J.H., Giuliani, C., Thornton, M., Slugocki, G. and Tobin, D.J. Expression of hypothalamic-pituitary-thyroid axis related genes in the human skin, J. Invest. Dermatol. 119 (2002) 1449–1455. http://dx.doi.org/10.1046/j.1523-1747.2002.19617.xCrossrefGoogle Scholar

  • [18] Slominski, A. and Wortsman, J. Neuroendocrinology of the skin. Endocrine Rev. 21 (2000) 457–487. http://dx.doi.org/10.1210/er.21.5.457CrossrefGoogle Scholar

  • [19] Matsunaga, T.O., Hruby, V.J., Lebl, M., Castrucci, A.M. and Hadley, M.E. Melanin concentrating hormone (MCH): structure-function aspects of its melanocyte stimulating hormone-like (MSH-like) activity. Peptides 10 (1989) 773–778. http://dx.doi.org/10.1016/0196-9781(89)90112-5CrossrefGoogle Scholar

  • [20] Hogben, L.T. and Winton, LXIII. Studies on the pituitary I. The melanophore stimulant in posterior lobe extracts. Proc. Roy. Soc. B. 93 (1924) 318. http://dx.doi.org/10.1098/rspb.1922.0024CrossrefGoogle Scholar

  • [21] Slominski, A., Wortsman, J., Luger, T., Paus, R. and Soloman, S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol. Rev. 80 (2000) 979–1020. Google Scholar

  • [22] Fujii, R. and Novales, R. Cellular aspects of the control of physiological color changes in fishes. Integr. Comp. Biol. 9 (1969) 453–463. http://dx.doi.org/10.1093/icb/9.2.453CrossrefGoogle Scholar

  • [23] Novales, R.R. Cellular aspects of hormonally controlled translocation within chromatophores of poikilothermic vertebrates. Soc. Integr. Comp. Biol. 23 (1983) 559–568. http://dx.doi.org/10.1093/icb/23.3.559CrossrefGoogle Scholar

  • [24] Fuiji, R. and Oshima, N. Factors influencing motile activities of fish melanophores. Adv. Comp. Env. Physiol. 20 (1994) 1–52. Google Scholar

  • [25] Fujii, R. The regulation of mobile activity in fish chromatophores. Pigment Cell Res. 13 (2000) 300–319. http://dx.doi.org/10.1034/j.1600-0749.2000.130502.xCrossrefGoogle Scholar

  • [26] Fujii, R. Chromatophores and pigments in fish physiology. (Hoar, W.H. and Randall, D.J. Eds) Vol. III. Academic Press, N.Y. 1969, 307–353. Google Scholar

  • [27] Slominski, A., Paus, R. and Schadendorf, D. Melanocytes as “sensory” and regulatory cells in the epidermis. J. Theor. Biol. 164 (1993) 103–120. http://dx.doi.org/10.1006/jtbi.1993.1142CrossrefGoogle Scholar

  • [28] Slominski, A. Neuroendocrine activity of the melanocyte. Exp. Dermatol. 18 (2009) 760–763. http://dx.doi.org/10.1111/j.1600-0625.2009.00892.xCrossrefGoogle Scholar

  • [29] Slominski, A., Wortsman, J., Paus, R., Elias, P.M., Tobin, D. and Feingold, K. Skin as an endocrine organ: implications for its function. Drug Dis. Today: Dis. Mech. 5 (2008) e137–e144. http://dx.doi.org/10.1016/j.ddmec.2008.04.004CrossrefGoogle Scholar

  • [30] Spaeth, R.A. and Barbour, H.G. Responses of fish melanophores to sympathetic and parasympathetic stimulates and depressants. J. Pharmacol. Exp. Ther. 9 (1917) 356–357. Google Scholar

  • [31] Fujii, R. and Miyashita, Y. Receptor mechanism in fish chromatophores I. Alpha nature of adrenoceptors mediating mechanism aggregation in guppy melanophores. Comp. Biochem. 5IC (1975) 171–178. http://dx.doi.org/10.1016/0306-4492(75)90058-1CrossrefGoogle Scholar

  • [32] Breder, C.M. Jr. and Rasquin, P. Further notes on pigmentary behavior of Chaetodipterus in reference to background and water transparency. Zoologica 40 (1955) 85–90. Google Scholar

  • [33] Enami, M. Melanophore concentrating hormone (MCH) of possible hypothalamic origin in the catfish, Parasilurus. Science 121 (1955) 36–37. http://dx.doi.org/10.1126/science.121.3132.36CrossrefGoogle Scholar

  • [34] Rasquin, P. Studies on the control of pigment cells and light reactions in recent teleost fishes. Bull. Am. Mus. Nat. Hist. 115 (1958) 1–68. Google Scholar

  • [35] Watanabe, M., Kobayashi, and Iwata, K.S. The action of adrenaline on melanophores of Oryzias, with special reference to its pigment dispersion action. Biol. J. Okayama Uni. 8 (1962b) 95–102. Google Scholar

  • [36] Umrath, K. Uber den physiologischen und den morphologischen Farbwechsel des Bitterlings, Rhodeus amarus. Z. Vgl. Physiol. 40 (1957) 321–328. http://dx.doi.org/10.1007/BF00340573CrossrefGoogle Scholar

  • [37] Fujii, R. Demonstration of the adrenergic nature of transmission at the junction between melanophore-concentrating nerve and melanophore in bony fish. J. Fac. Sci. Univ. Tokyo, Sect. IV, 9 (1961) 171–196. Google Scholar

  • [38] Fange, R. Pharmacology of poikilothermic vertebrates. Pharmacol. Rev. 14 (1962) 281–316. Google Scholar

  • [39] Scheline, R.R. Adrenergic mechanisms in fish: Chromatophore pigment concentration in the cuckoo wrasse, Labrus ossifagus L. Comp. Biochem. Physiol. 16 (1963) 215–27. Google Scholar

  • [40] Ali, S.A. Physiology and pharmacology of melanophores of a teleost fish, Channa punctatus. Ph. D Thesis, Bhopal University, Bhopal, 1983. Google Scholar

  • [41] Martensson, L.G.E, Warmlander, S. and Hildebrand, C. Nor-adrenaline induced pigment aggregation response of melanophores in normal, denervated and reinnervated cichlid skin. Neurosci. Lett. 275 (1999) 113–116. http://dx.doi.org/10.1016/S0304-3940(99)00742-9CrossrefGoogle Scholar

  • [42] Aspengren, S., Skold, S.K., Quiroga, G., Martensson, L. and Wallin, M. Noradrenaline and melatonin-mediated regulation of pigment aggregation in fish melanophores. Pigment Cell Res. 16 (2003) 59–64. http://dx.doi.org/10.1034/j.1600-0749.2003.00003.xCrossrefGoogle Scholar

  • [43] Reed, B. and Finnen, B. Adrenergic innervations of melanophores in teleost fish in pigmentation: Its genesis and biologic control (Riley, V. Ed). Appleton, N.Y publisher, 1972, 285–294. Google Scholar

  • [44] Holmgren, S. and Nilsson, S. Neuropharmacology of adrenergic neurons in teleost fish. Comp. Biochem. Physiol. C. 72 (1982) 289–302. http://dx.doi.org/10.1016/0306-4492(82)90096-XCrossrefGoogle Scholar

  • [45] Judy, L., Morris, I. and Gibbins, L. Autonomic Innervation of the Skin 1997. Google Scholar

  • [46] Ahlquist, R.P. A study of adrenotropic receptors. Am. J. Physiol. 153 (1948) 586–600. Google Scholar

  • [47] Langer, S.Z. Presynaptic regulation of catecholamine release. Biochem. Pharmacol. 23 (1974) 1793–1800. http://dx.doi.org/10.1016/0006-2952(74)90187-7CrossrefGoogle Scholar

  • [48] Lands, A.M., Luduena, F.P. and Buggo, H.J. Differentiation of receptors responsive to isoproterenol. Life Sci. 6 (1967) 2241. http://dx.doi.org/10.1016/0024-3205(67)90031-8CrossrefGoogle Scholar

  • [49] Iga, T. Action of catecholamines on the melanophores in the teleost fish Oryzias latipes. Zoolog. Mag. 77 (1968) 19–26. Google Scholar

  • [50] Burton, D. Spinal pigmentomotor tract of the minnow (Phoxinus phoxinus L.) Nature 201 (1964) 1149. http://dx.doi.org/10.1038/2011149a0Google Scholar

  • [51] Andersson, R.G.G., Karlsson, J.O. and Grundstrom, M.N. Adrenergic nerves and the alpha 2 adrenoceptor system regulating melanosome aggregation within fish melanophores. Acta Physiol. Scand. 121 (1984) 173–179. http://dx.doi.org/10.1111/j.1748-1716.1984.tb07444.xCrossrefGoogle Scholar

  • [52] Morishita, F. Responses of the melanophores of medaka, Oryzias latipes, to adrenergic drugs: Evidence for involvement of alpha 2 adrenergic receptors mediating melanosome aggregation. Comp. Biochem. Physiol. Part C: Comp. Pharm. 88 (1987) 69–74. http://dx.doi.org/10.1016/0742-8413(87)90048-XCrossrefGoogle Scholar

  • [53] Iga, T., Takabatake I. and Watanabe, S. Nervous regulation of motile iridophores of a freshwater goby, Odontobutis obscura. Comp. Biochem. Physiol. 88 (1987) 319–324. http://dx.doi.org/10.1016/0742-8413(87)90128-9CrossrefGoogle Scholar

  • [54] Fuji, R. and Miyashita, Y. Responses of guppy melanophores to 5-hydroxy tryptamin. J. Pre-Med. 14 (1973) 34–44. Google Scholar

  • [55] Abbott, F.S. The effects of certain and biogenic substances on the melanophores of Fundulus heteroclitus. L. Can. J. Zool. 46 (1968) 1149–1161. http://dx.doi.org/10.1139/z68-165CrossrefGoogle Scholar

  • [56] Acharya, L.S.K. and Ovais, M. α1 and β2 adrenoceptors mediated aggregatory responses in vitro in Oreochromis mossambica (Peters) melanophores. Ind. J. Exp. Biol. 45 (2007) 984–991. Google Scholar

  • [57] Amiri, M.H. Post synaptic alpha 2 adrenoceptors mediate melanophores aggregation in melanophores of white spotted rabbitfish (Siganis canaliculatus). Pak J. Biol. Sci. 12 (2009) 1–10. http://dx.doi.org/10.3923/pjbs.2009.1.10CrossrefGoogle Scholar

  • [58] Burton, D. and Vokey, J.E. alpha 1 and alpha 2 adrenoceptor mediation in melanosome aggregation in cryptic patterning of Pleuronectes americanus. Comp. Biochem. Physiol. Part A: Mol. Physiol. 125 (2000) 359–365. http://dx.doi.org/10.1016/S1095-6433(00)00166-5CrossrefGoogle Scholar

  • [59] Fujii, R. and Miyashita Y. Beta adrenoceptors, cyclic-AMP and melanosomes dispersion in guppy melanophores. Pigment Cell 3 (Riley, V. Ed.), 1975, 336–344. Google Scholar

  • [60] Fujii, R., Oshima, N. and Miyashita, Y. Receptor mechanisms in fish chromatophores — VIII. Mediated by beta adrenoceptors, catecholamines always act to disperse pigment in siluroid melanophores. Comp. Biochem. Physiol. C. 81 (1985) 1–6. Google Scholar

  • [61] Komatsu, K. and Yamada, K. Autoradiographic visualization of beta adrenergic receptors in fish melanophores. J. Exp. Zoolog. 223 (1995) 185–188. http://dx.doi.org/10.1002/jez.1402230211CrossrefGoogle Scholar

  • [62] Katayama, H., Morishita, F., Matsushima, O. and Fujimoto, M. Beta-adrenergic receptor subtypes in melanophotres of marine gobies Tridentiger trigonocephalus and Chasmichthys gulosus. Pigment Cell Res. 12 (1999) 206–217. http://dx.doi.org/10.1111/j.1600-0749.1999.tb00515.xCrossrefGoogle Scholar

  • [63] Morishita, F., Katayama, H. and Yamada, K. Subtypes of beta adrenergic receptors mediating pigment dispersion in chromatophores of medaka, Oryzias latipes. Comp. Biochem. Physiol. C 81 (1985) 279–285. http://dx.doi.org/10.1016/0742-8413(85)90006-4CrossrefGoogle Scholar

  • [64] Kasukawa, H. and Fujii, R. Receptor mechanism in fish chromatophores — VII. Muscarinic cholinoceptors and alpha adrenoceptors both mediating pigment aggregation, strangely co exist in Corydoras melanophores. Comp. Biochem. Physiol. C. 80 (1985) 211–215. http://dx.doi.org/10.1016/0742-8413(85)90044-1CrossrefGoogle Scholar

  • [65] Wright, M.R. and Lerner, A.B. On the movement of pigment granules in frog melanocytes. Endocrinology 66 (1960) 599–609. http://dx.doi.org/10.1210/endo-66-4-599CrossrefGoogle Scholar

  • [66] Burgers, A.C. J., Boschman, Th. A. C. and Van de Kamer, J.C. Excitement darkening and the effects of adrenaline on the melanophores of Xenopus laevis. Acta Endocrinol. 4 (1953) 72–82. Google Scholar

  • [67] Goldman, J.M. and Hadley, M. E. The beta adrenergic receptor and cyclic 3′,5′adenosine monophosphate: Possible roles in the regulation of melanophores responses of spadefoot toad Scaphiopus couchi. Gen. Comp. Endocrinol. 13 (1969) 151–163. http://dx.doi.org/10.1016/0016-6480(69)90232-9Google Scholar

  • [68] Lerner, A.B., Shizume, K. and Bunting, I. The mechanism of endocrine control of melanin pigmentation. J. Clin. Endocrinol. Metab. 14 (1954) 1463–1490. http://dx.doi.org/10.1210/jcem-14-12-1463CrossrefGoogle Scholar

  • [69] Novales, R.R. and Novales, B.J. The effects of osmotic pressure and calcium deficiency on the responses of tissue cultured melanophores to melanocyte stimulating hormone. Gen. Comp. Endocrinol. 5 (1965) 568–576. http://dx.doi.org/10.1016/0016-6480(65)90046-8CrossrefGoogle Scholar

  • [70] Graham, J.D.P. The response to catecholamines of melanophores of Xenopus laevis J. Physiol. 158 (1961) 5–6. Google Scholar

  • [71] Novales, R.R. and Davis, W.J. Cellular aspects of the control of physiological colour changes in amphibians. Am. Zool. 9 (1969) 479–488. Google Scholar

  • [72] Ferroni, E.N. and Castrucci, A.M. A sensitive in vitro bioassay for melanotropic peptides. Braz. J. Biol. Res. 20 (1987) 213–220. Google Scholar

  • [73] Greenberg, N. and Crews, D. Endocrine and behavioral responses to aggression and social dominance in the green anole lizard, Anolis carolinensis. Gen. Compar. Endocrinol. 77 (1990) 1–10. http://dx.doi.org/10.1016/0016-6480(90)90309-ACrossrefGoogle Scholar

  • [74] Kleinholz, L.H. Studies in reptilian color change III. Control of light phase and behavior of isolated skin. J. Exp. Zoolog. 15 (1938b) 492–499. Google Scholar

  • [75] Kleinholz, L.H. Studies in reptilian color change II. The pituitary and adrenal glands in the regulation of the melanophores of Anolis carolinensis. J. Exp. Zoolog. 15 (1938a) 474–491. Google Scholar

  • [76] Jenssen, T.A., Greenberg, N. and Hovde, K.A. Behavioral profile of freeranging male Anolis carolinensis across breeding and post-breeding seasons. Herpetological Monographs 9 (1995) 41–62. http://dx.doi.org/10.2307/1466995CrossrefGoogle Scholar

  • [77] Goldman, J.M. and Hadley, M.E. In vitro demonstration of adrenergic receptors controlling melanophore responses of the lizard, Anolis carolinensis. J. Pharmacol. Exp. Ther. 166 (1970) 1–7. Google Scholar

  • [78] Ovais, M., and Ali, S.A. Effect of autonomic drugs on the isolated melanophores of wall lizard. Hemidactylus flaviviridis. Curr. Sci. 5 (1984) 303–306. Google Scholar

  • [79] Gordon, P.R. and Gilchrest, B.A. Human melanogenesis is stimulated by diacylglycerol. J. Invest. Dermatol. 93 (1989) 700–702. http://dx.doi.org/10.1111/1523-1747.ep12319900CrossrefGoogle Scholar

  • [80] Park, H.Y., Lee, J., Gonzalez, S., Middelkamp-Hup, M.A., Kapasi, S. and Peterson, S. Topical application of a protein kinase C inhibitor reduces skin and hair pigmentation. J. Invest. Dermatol. 122 (2004) 159–166. http://dx.doi.org/10.1046/j.0022-202X.2003.22134.xCrossrefGoogle Scholar

  • [81] Schallreuter, K.U. and Wood, J.M. The importance of L-phenylalanine transport and its autocrine turnover to L-tyrosine for melanogenesis in human epidermal melanocytes. Biochem. Biophys. Res. Commun. 262 (1999) 423–428. http://dx.doi.org/10.1006/bbrc.1999.1241CrossrefGoogle Scholar

  • [82] Schallreuter, K.U., Korner, C., Pittelkow, M.R., Swanson, N. and Gardner, M.L.G. The induction of the α-1 adrenoceptor signal transduction system on human melanocytes. Exp. Dermatol. 5 (1996) 20–23. http://dx.doi.org/10.1111/j.1600-0625.1996.tb00088.xGoogle Scholar

  • [83] Schallreuter, K.U. Epidermal adrenergic signal transduction as part of the neuronal network in the human epidermis. J. Investig. Dermatol. Symp. Proc. 1 (1997) 37–40. Google Scholar

  • [84] Role, L.W. and Berg, D.K. Nicotinic receptors in the development and modulation of CNS synapses. Neuron 16 (1996) 1077–1085. http://dx.doi.org/10.1016/S0896-6273(00)80134-8CrossrefGoogle Scholar

  • [85] Robertson, O.H. Factors influencing the state of dispersion of the dermal melanophores in Rainbow trout. Univ. of Chicago Press. Physiol. Zool. 24 (1951) 309–323. Google Scholar

  • [86] Reidinger, L. and Umrath K. Die parasympathetikolytische and parasympathikomimethieche wirking des Atropins auf die chromatophoren. Z. Vgl. Physiol. 34 (1952) 373–378. Google Scholar

  • [87] Ando, S. Note on the type of the mechanism of the colour change in the medaka, Oryzias latipes. Annot. Zool. Jpn. 33 (1960) 33–36. Google Scholar

  • [88] Green, L. Mechanism of movement of granules in melanocytes of Fundulus heteroclitus. Proc. Nat. Acad. Sci. USA 59 (1968) 1179–1189. http://dx.doi.org/10.1073/pnas.59.4.1179CrossrefGoogle Scholar

  • [89] Smith, D.C. and Smith, M.T. Observations on the melanophores of Scorpaena ustulata. Biol. Bull. Woods Hole 67 (1934) 45–58. http://dx.doi.org/10.2307/1537481CrossrefGoogle Scholar

  • [90] Parker, G.H. Color change in echinoderms. Proc. Nat. Acad. Sci. USA 17 (1931) 594–596. http://dx.doi.org/10.1073/pnas.17.11.594CrossrefGoogle Scholar

  • [91] Scott, G.T. Physiology and pharmacology of color change in the sand flounder Scopthalamus aquosus. Limnol. Oceanogr. 10 (1965) 230–246. Google Scholar

  • [92] Castrucci, A.M.L. Chromatophores of the teleost Tilapia melanopleura II. The effects of chemical mediators, microtubule-disrupting drugs and ouabain. Comp. Biochem. Physiol. Part A: Physiol. 50 (1973) 457–462. http://dx.doi.org/10.1016/0300-9629(75)90300-XCrossrefGoogle Scholar

  • [93] Healy, E.G. and Ross, D.M. The effects of drugs on the background color response of the minnow, Phoxinus phoxinus L. Comp. Biochem. Physiol. 19 (1966) 545–580. http://dx.doi.org/10.1016/0010-406X(66)90039-9CrossrefGoogle Scholar

  • [94] Fujii, R. and Miyashita, Y. Receptor mechanism in fish melanophores-III neutrally controlled melanosome aggregation in a siluroid (Palasilurus asotus) is strangely mediated by cholinoceptors. Comp. Biol. Physiol. 55C (1976) 43–49. Google Scholar

  • [95] Fujii, R., Miyashita, Y. and Fujii, Y. Muscarinic cholinoceptors mediate neurally evoked pigment aggregation in glass catfish melanophores. J. Neural. Transm. 54 (1982) 29–39. http://dx.doi.org/10.1007/BF01249276CrossrefGoogle Scholar

  • [96] Hayashi, H. and Fujii, R. Muscarinic cholinoceptors that mediate pigment aggregation are present in the melanophores of cyprinids (Zacco spp.). Pigment Cell Res. 6 (1993) 37–44. http://dx.doi.org/10.1111/j.1600-0749.1993.tb00579.xCrossrefGoogle Scholar

  • [97] Ovais, M. and Gorakh, A.K. Adrenergic and cholinergic receptors in the isolated scale melanophores of a teleostean fish Cirrhinus mrigala (Ham.) Asian J. Exp. Sci. 4 (1988) 36–34. Google Scholar

  • [98] Ovais, M. Control of melanophore movements in isolated skin melanophores of a catfish Clarius batrachus (Linn.). Indian J. Physiol. Pharmac. 38 (1994) 185–188. Google Scholar

  • [99] Moller, H. and Lerner, A.B. Melanocyte stimulating hormone inhibition by acetylcholine and noradrenaline in the frog skin bioassay. Acta Endocrinol. 51 (1966) 149–160. Google Scholar

  • [100] Bhattacharya, S.K., Parikh, A.K. and Das, P.K. Effect of acetylcholine on melanophores of Rana tigerina. Experientia 32 (1976) 1039–1040. http://dx.doi.org/10.1007/BF01933959CrossrefGoogle Scholar

  • [101] Ali, A.S., Peter, J. and Ali, S.A. Role of cholinergic receptors in melanophore responses of amphibians. Acta Biol. Hung. 46 (1995) 61–73. Google Scholar

  • [102] Garnier, M., Lamacz, M., Galas, L., Lenglet, S., Tonon, M-C. and Vaudry, H. Pharmacological and functional characterization of muscarinic receptors in the frog pars intermedia. Endocrinology 139 (1998) 3525–3533. http://dx.doi.org/10.1210/en.139.8.3525CrossrefGoogle Scholar

  • [103] Grando, S.A., Pittelkow, M.R. and Schallreuter, K.U. adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. J. Invest. Dermatol. 126 (2006) 1948–1965. http://dx.doi.org/10.1038/sj.jid.5700151CrossrefGoogle Scholar

  • [104] Buchli, R., Ndoye, A., Arredondo, J., Webber, R.J. and Grando, S.A. Identification and characterization of muscarinic acetylcholine receptor subtypes expressed in human skin melanocytes. Mol. Cell. Biochem. 228 (2001) 57–72. http://dx.doi.org/10.1023/A:1013368509855CrossrefGoogle Scholar

  • [105] Kurzen, H.L., Wessler, C.J., Kirkpatrick, K., Kawashima and Grando, S.A. The non neuronal cholinergic system in human skin. Horm. Metab. Res. 39 (2007) 125–135. http://dx.doi.org/10.1055/s-2007-961816CrossrefGoogle Scholar

  • [106] Iyengar, B. Modulation of melanocytic activity by acetylcholine. Acta Anat. (Basel) 136 (1989) 139–141. http://dx.doi.org/10.1159/000146813CrossrefGoogle Scholar

  • [107] Wallstrom, M., Sand, L., Nilsson, F. and Hirsch, J.M. The long term effect of nicotine on the oral mucosa. Addiction 94 (1999) 417–423. http://dx.doi.org/10.1046/j.1360-0443.1999.94341711.xCrossrefGoogle Scholar

  • [108] Fujii, R. Coloration and chromatophore. In: The physiology of fishes. (Evans, D.H. Ed.), CRC Press, Boca Raton, 1993, 535–562. Google Scholar

  • [109] Filadelfi, A.M and Castrucci, A.M. Comparative aspects of the pineal/melatonin system of poikilothermic vertebrates. J. Pineal Res. 20 (1996) 175–186. http://dx.doi.org/10.1111/j.1600-079X.1996.tb00256.xCrossrefGoogle Scholar

  • [110] Mira, E. Prime osservazioni sull’ attivata della melatonina sui cromatofori di Scardinus erythrophtalmus L. — Arch. Int Pharmacodyn. Ther. 138 (1962) 41–50. Google Scholar

  • [111] Hu, F. Hormonal influence on goldfish pigment cells in vitro, In: Cinemicrography in cell biology, (Rose, G.G. Ed.), Academic Press, New York, 1963, 339–356. Google Scholar

  • [112] Hafeez, M.A. Effects of melatonin on the body coloration and spontaneous swimming activity in rainbow trout, Salmo gairdneri. Comp. Biochem. Physiol. 36 (1970) 639–656. http://dx.doi.org/10.1016/0010-406X(70)90523-2CrossrefGoogle Scholar

  • [113] Owens, D.W., Gem, W.A., Ralph, C.L. and Boardman, T.J. Nonrelationship between plasma melatonin and background adaption in the rainbow trout (Salmo gairdneri) Gen. Comp. Endocrinol. 34 (1978) 459–467. http://dx.doi.org/10.1016/0016-6480(78)90287-3CrossrefGoogle Scholar

  • [114] Visconti, M.A. and Castrucci, A.M. Melanotropin receptors in the cartilaginous fish, Potamotrygon reticulates and in lungfish, Lepidosiren paradoxa. Comp. Biochem. Physiol. 106 (1993) 523–528. http://dx.doi.org/10.1016/0305-0491(93)90127-QCrossrefGoogle Scholar

  • [115] Teh, M.T. and Sudgen, D. An endogenous 5 HT receptor mediates pigment granule dispersion in Xenopus laevis melanophores. Br. J. Pharm. 132 (2001) 1799–1808. http://dx.doi.org/10.1038/sj.bjp.0703988CrossrefGoogle Scholar

  • [116] David, S., Kathryn, D., Hough, K.A. and Teh, M.T. Melatonin, melatonin receptors and melanophores: a moving story. Pigment Cell Res. 17 (2004) 454–460. http://dx.doi.org/10.1111/j.1600-0749.2004.00185.xCrossrefGoogle Scholar

  • [117] Slominski, A., Baker, J., Rosano, T.G., Guist, L.W., Ermak, G., Grande, M. and Gaudet, S.J. Metabolism of serotonin to N-acetylserotonin, melatonin and 5-methoxytryptamine in hamster skin culture. J. Biol. Chem. 271 (1996) 12281–12286. http://dx.doi.org/10.1074/jbc.271.21.12281CrossrefGoogle Scholar

  • [118] Slominski, A., Pisarchik, A., Semak, I., Seatman, T., Wortsman, J., Szczesniewski, A., Slugocki, G., McNulty, J., Kauser, S., Tobin, D.J, Jing, C. and Johansson, O. Serotonergic and melatonergic systems are fully expressed in human skin. FASEB J. 16 (2002) 896–898. Google Scholar

  • [119] Slominski, A., Semak, I., Pisarchik, A., Sweatman, T., Szczesniewski, A. and Wortsman, J. Conversion of L-tryptophan to serotonin and melatonin in human melanoma cells. FEBS Lett. 511 (2002) 102–106. http://dx.doi.org/10.1016/S0014-5793(01)03319-1CrossrefGoogle Scholar

  • [120] Tobin, D.J., Zmijewski, M.A., Wortsman, J. and Paus, R. Melatonin in the skin: synthesis, metabolism and functions. Trends Endol. Metab. 19 (2008) 17–24. http://dx.doi.org/10.1016/j.tem.2007.10.007CrossrefGoogle Scholar

  • [121] Slominski, A., Fischer, T.W., Zmijewski, A., Wortsman, J., Semak, I., Slominski, R.M. and Tobin, D.J. On the role of melatonin in skin physiology and pathology. Endocrinology 27 (2005) 137–148. Google Scholar

  • [122] Cerletti. A. and Berde, B. Effect of d-lysergic acid diethylamide and 5-hydroxytryptamine on guppy Poecilia reticulatus chromatophores. Experientia 11 (1955) 312–313. http://dx.doi.org/10.1007/BF02158392CrossrefGoogle Scholar

  • [123] Ruffin, N.E., Reed, B.L. and Finnin B.C. The specificity of melatonin as a melanophore controlling factor in the pencil fish. Life Sci. 8Part II (1969) 1167–1174. http://dx.doi.org/10.1016/0024-3205(69)90171-4Google Scholar

  • [124] Davey, K.G. Serotonin and change of color in frogs. Nature 183 (1959) 1271–1273. http://dx.doi.org/10.1038/1831271a0CrossrefGoogle Scholar

  • [125] Veerdonk, K. and Vande, V.C.G. Serotonin,a melanocyte stimulating component in the dorsal skin secretion of Xenopus laevis. Nature 187 (1960) 948. http://dx.doi.org/10.1038/187948a0CrossrefGoogle Scholar

  • [126] Lerner, A.B. and Case, J.D. Melatonin. Fed. Proc. Am. Soc. Biol. 19 (1960) 590–592. Google Scholar

  • [127] Nakajima, T. Active peptides in amphibian skin. TIPS 2 (1981) 202–205. Google Scholar

  • [128] Yoshie, S., Toshihiko, I. and Fujita, T. Coexistence of bombesin and 5 hydroxytryptamine in the cutaneous gland of frog Bombina orientalis. Cell Tissue Res. 239 (1984) 25–29. http://dx.doi.org/10.1007/BF00214898CrossrefGoogle Scholar

  • [129] Miller, L.J. Serotoninergic activity stimulates melanin dispersion within dermal melanophores of newts. Life Sci. 44 (1989) 355–359. http://dx.doi.org/10.1016/0024-3205(89)90229-4CrossrefGoogle Scholar

  • [130] Potenza, M.N. and Michael, R.L. Characterization of serotonin receptor endogenous to frog melanophores. Naunyn. Schm. Arch. Pharm. 349 (1994) 11–19. Google Scholar

  • [131] Olivereau, M. Serotonin and MSH secretion: Effect of parachlorpphenylalanine on the pituitary cytology of the eel. Cell Tissue Res. 19 (1978) 83–92. Google Scholar

  • [132] Olivereau, M., Olivereau, J-M., and Aimar, C. Responses of MSH and prolactin cells to 5-hydroxytryptophan (5-HTP) in amphibians and teleosts. Cell Tissue Res. 207 (1980) 377–385. http://dx.doi.org/10.1007/BF00224614Google Scholar

  • [133] Slominski, S.A., Wortsman, J. and Tobin, D.J. Serotonergic and melatonergic system: securing a place under the sun. FASEB J. 19 (2005) 176–194. http://dx.doi.org/10.1096/fj.04-2079revCrossrefGoogle Scholar

  • [134] Lundeberg, L., El-Nour, H., Mohabbati, S., Morales, M., Azmitis, E. and Nordlind, K. Expression of serotonin receptors in allergic contact eczematous human skin. Arch. Dermatol. Res. 294 (2002) 393–398. Google Scholar

  • [135] Slominski, A., Pisarchik, A., Zbytek, B., Tobin, D.J., Kauser, S. and Wortsman, J. Functional activity of serotonergic and melatonergic systems expressed in the skin. J. Cell Physiol. 196 (2003) 144–153. http://dx.doi.org/10.1002/jcp.10287CrossrefGoogle Scholar

  • [136] Slominski, A., Pisarchik, A., Semak, I., Sweatman, T., Szczesniewski, A. and Wortsman, J. Serotonergic system in hamster skin. J. Invest. Dermatol. 119 (2002) 934–942. http://dx.doi.org/10.1046/j.1523-1747.2002.00156.xCrossrefGoogle Scholar

  • [137] Slominski, A., Pisarchik, A., Semak, I., Seweatman, T. and Wortsman, J. Characterization of the serotonergic system in the C57BL/6 mouse skin. Eur. J. Biochem. 270 (2003) 3335–3344. http://dx.doi.org/10.1046/j.1432-1033.2003.03708.xCrossrefGoogle Scholar

  • [138] Slominski, A., Pisarchik, A., Johansson, O., Jing, C., Semak, I., Slugocki, G. and Wortsman, J. Tryptophan hydroxylase (TPH) expression in human skin cells. Biochim. Biophys. Acta 1639 (2003) 80–86. Google Scholar

  • [139] Iyengar, B. Indoleamines and the UV-light-sensitive photoperiodic responses of the melanocyte network: a biological calendar. Experientia 50 (1994) 733–736. http://dx.doi.org/10.1007/BF01919373CrossrefGoogle Scholar

  • [140] Séguéla, P., Watkins, K.C. and Descarries, L. Ultra structural relationships of serotonin axon terminals in the cerebral cortex of the adult rat. J. Comp. Neurol. 289 (1989) 129–142. http://dx.doi.org/10.1002/cne.902890111CrossrefGoogle Scholar

  • [141] Göthert, M., Bühlen, M., Fink, K., and Molderings, G. Regulation of neurotransmitter release in the central and peripheral nervous system via pre-synaptic 5-HT receptors. In: Serotonin in the Central Nervous System and Periphery. (Takada, A., Curzon, G., Eds). Amsterdam: Elsevier, 1995, 23–30. Google Scholar

  • [142] Johansson, O., Liu, P.-Y., Bondesson, L., Norlind, K., Olsson, M.J., Lontz, W., Verhofstad, A., Liang, Y., and Gangi, S. A serotonin-like immunoreactivity is present in human cutaneus melanocytes. J. Invest. Dermatol. 111 (1998) 1010–1014. http://dx.doi.org/10.1046/j.1523-1747.1998.00460.xCrossrefGoogle Scholar

  • [143] Norlind, K., Azmiyia, E.C. and Slominski, A. The skin as a mirror of the soul: exploring the possible roles of serotonin. Exp. Dermatol. 17 (2008) 301–311. http://dx.doi.org/10.1111/j.1600-0625.2007.00670.xCrossrefGoogle Scholar

  • [144] Iyengar, B. The UV-responsive melanocyte system: a peripheral network for photoperiod time measurement, a function of indoleamine expression. Acta Anat. (Basel) 163 (1998) 173–178. http://dx.doi.org/10.1159/000046495CrossrefGoogle Scholar

  • [145] Bos, J.D. Skin immune system (SIS). CRC Press, Boca Raton, 1997, Florida. Google Scholar

  • [146] Fitzpatrick, T.B., Eisen, A.Z., Wolff, K., Freedberg, I.M. and Austen, K.F. Dermatology in General Medicine. Mc Graw-Hill New York, 1997. Google Scholar

  • [147] Weisshaar, E., Ziethen, B. and Gollnick, H. Can a serotonin type 3 (5-HT3) receptor antagonist reduce experimentally-induced itch? Inflamm. Res. 46 (1997) 412–416. http://dx.doi.org/10.1007/s000110050213CrossrefGoogle Scholar

  • [148] Balaskas, E.V., Bamihas, G.I., Karamouzis, M., Voyiatzis, G. and Tourkantonis, A. Histamine and serotonin in uremic pruritis: effect of ondansetron in CAPD-pruritic patient. Nephron 78 (1998) 395–402. http://dx.doi.org/10.1159/000044967CrossrefGoogle Scholar

  • [149] Hagermark, O. Periperal and central mediators of itch. Skin Pharmacol. 5 (1992) 1–8. http://dx.doi.org/10.1159/000211009CrossrefGoogle Scholar

  • [150] Kam, P.C. and Tan, K.H., Pruritis-itching for a cause and relief? Anaesthesia 51 (1996) 1133–1138. http://dx.doi.org/10.1111/j.1365-2044.1996.tb15050.xCrossrefGoogle Scholar

  • [151] Marieb, E. Human anatomy and physiology. San Francisco: Benjamin Cummings. 2001, 414. Google Scholar

  • [152] Hill, S.J., Ganellin, C.R., Timmerman, H., Schwartz, J.C., Shankley, N.P., Young, J.M., Schunack, W., Levi, R. and Haas, H.L.. International Union of Pharmacology XIII. Classification of histamine receptors. Pharmacol. Rev. 49 (1997) 253–278. Google Scholar

  • [153] Kendall, A.I. and Schmidt, F.O. Physiological action of certain cultures of the gas bacillus. Studies in bacterial metabolism. LXXXI. J. Infect. Diseases 39 (1926) 250–259. CrossrefGoogle Scholar

  • [154] Acharya, L.S.K. and Ovais, M. Effect of histaminergic drugs on melanophores of fish scales an in vitro study. J. Cell Tissue Res. 5 (2005) 425–478. Google Scholar

  • [155] Bhattacharya, S.K., Sanyal, A.K., Lal, R. and Ghosal, S. Histamine releasing activity of some indole-3-alkylamines: Aspects of allergy and applied immunol. IV, 1973, (Sanyal,R.K. Ed.), Delhi. Google Scholar

  • [156] Fernando, M.M. and Grove, D.J. Melanophore aggregation in the plaice (Pleuronectes platessa L.) I. Changes in in vivo sensitivity to sympathomimetic amines. Comp. Biochem. Physiol. 48 A (1974 a) 711–721. http://dx.doi.org/10.1016/0300-9629(74)90614-8CrossrefGoogle Scholar

  • [157] Ali, S.A, Ali, A.S. and Ovais, M. Effect of histaminergic drugs on tail melanophores of tadpole, Bufo melanostictus. Indian J. Exp. Biol. 31 (1993) 440–442. Google Scholar

  • [158] Ovais, M. and Chimania, S.R. Mechanism of histamine induced dispersal response in the isolated web melanophores of a frog, Rana tigerina (Daud.). Indian J. Exp. Biol. 33 (1995) 348–352. Google Scholar

  • [159] Ali, S.A., Peter, J. and Ali A.S. Histamine receptors in the skin melanophores of Indian Bull frog Rana tigerina. Comp. Biochem Physiol. A. 121 (1998) 229–334. http://dx.doi.org/10.1016/S1095-6433(98)10111-3CrossrefGoogle Scholar

  • [160] Peter, J., Ali, S.A. and Ali, S.A. Effect of histaminergic drugs on integumental melanophores of Bufo melanostictus. Indian J. Exp. Biol. 34 (1996) 427–430. Google Scholar

  • [161] Tomita, Y., Maeda, K. and Tagami, H. Stimulatory effect of histamine on normal human melanocytes in vitro. Tohoku J. Exp. Med. 155 (1988) 209–210. http://dx.doi.org/10.1620/tjem.155.209CrossrefGoogle Scholar

  • [162] Niekerk, C.H.V. and Prinsloo, A.E.M. Effect of skin pigmentation on the response to intra-dermal histamine. Int. Arch. Allergy Immunol. 76 (1985) 73–75. http://dx.doi.org/10.1159/000233664CrossrefGoogle Scholar

  • [163] Yoshida, M., Takahashi, Y. and Inoue, S. Histamine induces melanogenesis and morphologic changes by protein kinase a activation via H2 receptors in human normal melanocytes. J. Invest. Dermatol. 114 (2000) 334–342. http://dx.doi.org/10.1046/j.1523-1747.2000.00874.xCrossrefGoogle Scholar

  • [164] Lassalle, M.W., Igarashi, S., Sasaki, M., Wakamatsu, K., Ito, S. and Horikoshi, T. Effects of melanogenesis-inducing nitric oxide and histamine on the production of eumelanin and pheomelanin in cultured human melanocytes. Pigment Cell Res. 16 (2003) 81–84. http://dx.doi.org/10.1034/j.1600-0749.2003.00004.xCrossrefGoogle Scholar

  • [165] Gilchrest, B.A., Soter, N.A., Stoff, J.S. and Mihm, M.C. Jr. The human sunburn reaction: histological and biochemical studies. J. Am. Acad. Dermatol. 5 (1981) 411–422. http://dx.doi.org/10.1016/S0190-9622(81)70103-8CrossrefGoogle Scholar

  • [166] Tomita, Y., Maeda, K. and Tagami, H. Mechanisms for hyper-pigmentation in postinflammatory pigmentation, urticaria pigmentosa and sunburn. Dermatologica 179 (1989) 149–153. http://dx.doi.org/10.1159/000248449CrossrefGoogle Scholar

  • [167] Chou, V.H., Lee-Wong, M., Wong, R. and Cohen, H.W. The variances in histamine control skin-testing response between Asian/Pacific islanders and other racial groups. J. Allergy Clin. Immunol. 113 (2004) S181. http://dx.doi.org/10.1016/j.jaci.2004.01.088CrossrefGoogle Scholar

  • [168] Metz, J.R, Peter, J.J. and Flik, G. Molecular biology and physiology of the melanocortin system in fish: a review. Gen. Comp. Endocrinol. 48 (2006) 150–162. http://dx.doi.org/10.1016/j.ygcen.2006.03.001CrossrefGoogle Scholar

  • [169] Selz, Y., Braasch, I., Hoffmann, C., Schmidt, C., Schulthesis, C., Schartl, M. and Volff, J.N. Evolution of melanocortin receptors in teleost fish: the melanocortin type 1 receptor. Gene 40 (2007) 114–122. http://dx.doi.org/10.1016/j.gene.2007.07.005CrossrefGoogle Scholar

  • [170] Richardson, J., Lundegaard, P.R., Reynolds, N.L., Dorin, J.R., Porteous, D.J., Jackson, I.J. and Patton, E.E. mc1-r pathway regulation of zebrafish melanosome dispersion. Zebrafish 5 (2008) 289–295. http://dx.doi.org/10.1089/zeb.2008.0541CrossrefGoogle Scholar

  • [171] Haitina, T., Klovins, J., Takahashi, A., Lowgren, M., Ringholm, A., Enberg, J., Kawauchi, H., Larson, E., Fredriksson, R. and Schioth, H. Functional characterization of two melanocortin (MC) receptors in lamprey showing orthology to the MC1 and MC4 receptor subtypes. BMC Evol. Biol. 7 (2007) 101. http://dx.doi.org/10.1186/1471-2148-7-101Google Scholar

  • [172] Cerdá-Reverter, J.M., Ling, M.K., Schiöth, H.B. and Peter, R.E. Molecular cloning, characterization and brain mapping of the melanocortin 5 receptor in the goldfish. J. Neurochem. 87 (2003) 1354–1367. http://dx.doi.org/10.1046/j.1471-4159.2003.02107.xCrossrefGoogle Scholar

  • [173] Abdel-Malek, Z., Swope, V.B., Suzuki, I., Akcali, C., Harriger, M.D., Boyce, S.T., Urabe, K. and Hearing, V.J. Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proc. Natl. Acad. Sci. USA 92 (1995) 1789–1793. http://dx.doi.org/10.1073/pnas.92.5.1789CrossrefGoogle Scholar

  • [174] Thody, A.J, Ridley, K., Penny, R.J., Chalmers, R., Fisher, C. and Shuster, S. MSH peptides are present in mammalian skin. Peptides 4 (1983) 813–816. http://dx.doi.org/10.1016/0196-9781(83)90072-4CrossrefGoogle Scholar

  • [175] Tsatmali, M., Yukitake, J. and Thody, A.J. ACTH1-17 is a more potent agonist at the human MC1 receptor than alpha-MSH. Cell. Mol. Biol. 45 (1999) 1029–1034. Google Scholar

  • [176] Tsatmali, M., Ancans, J., Yukitake, J. and Thody, A.J. Skin POMC peptides: their actions at the human MC-1 receptor and roles in the tanning response. Pigment Cell Res. 13Suppl 8 (2000) 125–129. http://dx.doi.org/10.1034/j.1600-0749.13.s8.22.xGoogle Scholar

  • [177] Tsatmali, M., Ancan, J. and Thody, A.J. Melanocyte function and its control by melanocortin peptides. J. Histochem. Cytochem. 50 (2002) 125–134. CrossrefGoogle Scholar

  • [178] Kauser, S., Schallreuter, K.U., Thody, A.J., Gummer, C. and Tobin, D.J. Regulation of human epidermal melanocyte biology by beta-endorphin. J. Invest. Dermat. 120 (2003) 1073–1080. http://dx.doi.org/10.1046/j.1523-1747.2003.12242.xCrossrefGoogle Scholar

  • [179] Kauser, S., Thody, A.J., Schallreuter, K.U., Gummer, C.L. and Tobin, D.J. A fully functional proopiomelanocortin/melanocortin-1 receptor system regulates the differentiation of human scalp hair follicle melanocytes. Endocrinology 146 (2005) 532–543. http://dx.doi.org/10.1210/en.2004-1145Google Scholar

  • [180] Rousseau, K., Kauser, S., Pritchard, L., Warhurst, A., Oliver, R.L., Slominski, A., Wei, E.T., Thody, A.J, Tobin, D.J and White, A. Proopiomelanocortin (POMC), the ACTH/melanocortin precursor, is secreted by human epidermal keratinocytes and melanocytes and stimulates melanogenesis. FASEB J. 21 (2007) 1844–1856. http://dx.doi.org/10.1096/fj.06-7398comCrossrefGoogle Scholar

  • [181] Eys, G J.J.M. van and Peters, P.T. W. Evidence for a direct role of alpha-MSH in morphological background adaptation of the skin in Sarotheradon mossambicus. Cell Tissue Res. 217 (1981) 361–372. http://dx.doi.org/10.1007/BF00233586CrossrefGoogle Scholar

  • [182] Halaban, R. The regulation of normal melanocyte proliferation. Pigment Cell. Res. 13 (2000) 4–14. http://dx.doi.org/10.1034/j.1600-0749.2000.130103.xCrossrefGoogle Scholar

  • [183] Cerda-Reverter, J.M., Ringholm, A., Schioth, H.B. and Peter, R.E. Molecular cloning, pharmacological characterization, and brain mapping of the melanocortin 4 receptor in the goldfish: Involvement in the control of food intake. Endocrinology 144 (2003) 2336–2349. http://dx.doi.org/10.1210/en.2002-0213CrossrefGoogle Scholar

  • [184] Wendelaar Bonga, S.E. The stress response in fish. Physiol. Rev. 77 (1997) 591–625. Google Scholar

  • [185] Sumpter, J.P., Pickering, A.D. and Pottinger, T.G. Stress-induced elevation of plasma alpha-MSH and endorphin in brown trout, Salmo trutta L. Gen. Comp. Endocrinol. 59 (1985) 257–265. http://dx.doi.org/10.1016/0016-6480(85)90377-6CrossrefGoogle Scholar

  • [186] Van der Salm, A.L., Metz, J.R., Wendelaar Bonga, S.E. and Flik, G. Alpha-MSH, the melanocortin-1 receptor and background adaptation in the Mozambique tilapia, Oreochromis mossambicus. Gen. Comp. Endocrinol. 144 (2005) 140–149. http://dx.doi.org/10.1016/j.ygcen.2005.05.009Google Scholar

  • [187] Lamers, A.E., Balm, P.H.M., Haenen, H.E.M.G., Jenks, B.G. and Wendelaar Bonga, S.E. Regulation of differential release of alphamelanocyte stimulating hormone forms from the pituitary of a teleost fish, Oreochromis mossambicus. J. Endocrinol. 129 (1991) 179–187. http://dx.doi.org/10.1677/joe.0.1290179CrossrefGoogle Scholar

  • [188] Novales, R.R. Recent studies on the melanin dispersing effect of MSH on melanophores. Gen. Comp. Endocrinol. Suppl. 3 (1972) 125–135. http://dx.doi.org/10.1016/0016-6480(72)90140-2CrossrefGoogle Scholar

  • [189] Baker, B.I., Wilson, J.F. and Bowley, T.J. Changes in pituitary and plasma levels of MSH in teleosts during physiological colour change. Gen. Comp. Endocrinol. 55 (1984) 142–149. http://dx.doi.org/10.1016/0016-6480(84)90138-2CrossrefGoogle Scholar

  • [190] Iga, T. and Takabatake, I. Action of melanophore-stimulating hormone on melanophores of the cyprinid fish Zacco temmincki. Comp. Biochem. Physiol. 73 (1982) 51–55. Google Scholar

  • [191] Abbott, F.S. The response of melanophores in isolated scales of Fundulus heteroclitus to melanophore-stimulating hormone (MSH). Can. J. Zool. 48 (1970) 581–584. http://dx.doi.org/10.1139/z70-097CrossrefGoogle Scholar

  • [192] Arends, R.J., Rotllant, J., Metz, J.R., Mancera, J.M., Wendelaar-Bonga, S.E. and Flik, G. alpha-MSH acetylation in the pituitary gland of the sea bream (Sparus aurata L.) in response to different backgrounds, confinement and air exposure. J. Endocrinol. 166 (2000) 427–435. http://dx.doi.org/10.1677/joe.0.1660427CrossrefGoogle Scholar

  • [193] Höglund, E., Balm, P.H.M. and Winberg, S. Behavioural and neuroendocrine effects of environmental background colour and social interaction in Arctic charr (Salvenlinus alpinus). J. Exp. Biol. 205 (2002) 2535–2543. Google Scholar

  • [194] Salm, A.L. van der, Martínez, M., Flik, G. and Wendelaar Bonga, S.E. Effects of husbandry conditions on the skin colour and stress response of red porgy, Pagrus pagrus. Aquaculture 241 (2004) 371–386. http://dx.doi.org/10.1016/j.aquaculture.2004.08.038CrossrefGoogle Scholar

  • [195] Van der Salm, A.L. Alpha-MSH, the melanocortin-1 receptor and background adaptation in the Mozambique tilapia, Oreochromis mossambicus. Gen. Comp. Endocrinol. 144 (2005) 140–149. http://dx.doi.org/10.1016/j.ygcen.2005.05.009CrossrefGoogle Scholar

  • [196] Lerner, A.B. and McGuire, J.S. Effect of alpha- and beta-melanocyte stimulating hormones on the skin colour of man. Nature 189 (1961) 176–179. http://dx.doi.org/10.1038/189176a0CrossrefGoogle Scholar

  • [197] Lerner, A.B. and McGuire, J.S. Melanocyte-stimulating hormone and adrenocorticotrophic hormone. Their relation to pigmentation. N. Engl. J. Med. 270 (1964) 539–546. http://dx.doi.org/10.1056/NEJM196403122701101CrossrefGoogle Scholar

  • [198] Geschwind, II, Huseby, R.A. and Nishioka, R. The effect of melanocyte-stimulating hormone on coat color in the mouse. Recent Prog. Horm. Res. 28 (1972) 91–130. Google Scholar

  • [199] Spencer, J.D., Chavan, B., Marles, L.K., Kauser, S., Rokos, H. and Schallreuter, K.U. A novel mechanism in control of human pigmentation by beta-melanocyte-stimulating hormone and 7-tetrahydrobiopterin. J. Endocrinol. 187 (2005) 293–302. http://dx.doi.org/10.1677/joe.1.06275CrossrefGoogle Scholar

  • [200] Nordlund, J.J., Biossy, R.E., Hearing, V.J., King, R.A. and Ortonne, J.P. The pigmentary system. Physiology and pathophysiology. New York and Oxford: Oxford University Press. Google Scholar

  • [201] Krude, H., Beibermann, H., Luck, W., Horn, R., Brabant, G. and Gruters, A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 19 (1998) 155–157. http://dx.doi.org/10.1038/509CrossrefGoogle Scholar

  • [202] Valverde, P., Healy, H., Jackson, I., Rees, J.L. and Thody, A.J. Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat. Genet. 11 (1995) 328–330. http://dx.doi.org/10.1038/ng1195-328CrossrefGoogle Scholar

  • [203] Robbins, L.S., Nadeau, J.H., Johnson, K.R., Kelly, M.A., Roselli-Rehfuss L., Baack, E., Mountjoy, K.G. and Cone, C.D. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 72 (1993) 827–834. http://dx.doi.org/10.1016/0092-8674(93)90572-8CrossrefGoogle Scholar

  • [204] Slominski, A., Plonka, P.M., Pisarchik, A., Smart, J.L., Tolle, V., Wortsman, J. and Low, M.J. Preservation of eumelanin hair pigmentation in proopiomelanocortin — deficient mice on a non-agouti (a/a) genetic background. Endocrinology 146 (2005) 1245–1253. http://dx.doi.org/10.1210/en.2004-0733CrossrefGoogle Scholar

  • [205] Baker, B. I. and Rance, T.A. Further observations on the distribution and properties of teleost melanin concentrating hormone. Gen. Comp. Endocrinol. 50 (1983) 423–431. http://dx.doi.org/10.1016/0016-6480(83)90263-0CrossrefGoogle Scholar

  • [206] Naito, N., Nakai, Y., Kawauchi, H. and Hayashi, Y. Immunocytochemical identification melanin-concentrating hormone in the brain and pituitary gland of the teleost fishes Oncorhynchus keta and Salmo gairdneri. Cell. Tissue Res. 242 (1985) 41–48. http://dx.doi.org/10.1007/BF00225561CrossrefGoogle Scholar

  • [207] Kawauchi, H., Kawazoe, I., Tsubokawa, M., Kishida, M. and Baker, B.I. Characterization of melanin concentrating hormone in chum pituitaries. Nature 305 (1983) 321–323. http://dx.doi.org/10.1038/305321a0CrossrefGoogle Scholar

  • [208] Wilkes, B.C., Hruby, V.J, Castrucci, A.M., Sherbrooke, W.C. and Hadley, M.E. Synthesis of a cyclic melanotropic peptide exhibiting both melanin-concentrating and dispersing activities. Science 224 (1984) 1111–1113. http://dx.doi.org/10.1126/science.6609433CrossrefGoogle Scholar

  • [209] Saito, Y., Nothacker, H.P. and Cavelli, O. G. Protein coupled receptor SLC-1. Biochem. Biophys. Res. Commun. 289 (2000) 44–50. http://dx.doi.org/10.1006/bbrc.2001.5926CrossrefGoogle Scholar

  • [210] Saito, Y. and Nagasaki, H. The melanin-concentrating hormone system and its physiological functions. Res. Probl. Cell Differ. 46 (2008) 159–179. http://dx.doi.org/10.1007/400_2007_052CrossrefGoogle Scholar

  • [211] Nagai, M., Oshima, N. and Fujji, R. Comparative study of melanin concentrating hormone (MCH) action on teleost melanophores. Biol. Bull. 171 (1986) 360–370. http://dx.doi.org/10.2307/1541678CrossrefGoogle Scholar

  • [212] Takahashi, A., Kosugi, T., Kobayashi, Y., Yamanome, T., Schioth, H.B. and Kawauchi, H. The melanin concentrating hormone receptor (MCH-R2) mediates the effect of MCH to control body color for background adaptation in the barfin flounder. Gen. Comp. Endocrinol. 151 (2007) 210–219. http://dx.doi.org/10.1016/j.ygcen.2007.01.011CrossrefGoogle Scholar

  • [213] Oshima, N., Kasukawa, H., Fujii, R., Wilkes, C., Hruby, N.J., Castrucci, M. de.L. and Hadley, M.E. Melanin concentrating hormone (MCH) effects on teleost (Chrysiptera cyanea) melanophores. J. Exp. Zoolog. 234 (1985) 175–180. http://dx.doi.org/10.1002/jez.1402350203CrossrefGoogle Scholar

  • [214] Castrucci, A.M.L., Lebl, M., Hruby, V.J., Matsunaga, T.O. and Hadley, M.E. Melanin concentrating hormone (MCH): The message sequence. Life Sci. 45 (1989) 1141–1148. http://dx.doi.org/10.1016/0024-3205(89)90501-8CrossrefGoogle Scholar

  • [215] Svensson, S.P.S., Norberg, T., Andersson, R.G.G., Grundström, N. and Karlsson, J.O.G. MCH-induced pigment aggregation in teleost melanophores is associated with a c-AMP reduction. Life Sci. 48 (1991) 2043–2046. http://dx.doi.org/10.1016/0024-3205(91)90160-DCrossrefGoogle Scholar

  • [216] Kemp, E.H., Waterman, E.A., Hawes, B.E., O’Neill, K., Gottumukkala, R.V., Gawkrodger, D.J, Weetman, A.P. and Watson, P.F. The melanin-concentrating hormone receptor 1, a novel target of autoantibody responses in Vitiligo. J. Clin. Invest. 109 (2002) 923–930. CrossrefGoogle Scholar

  • [217] Kemp, E.H. and Weetman, A.P. Melanin-concentrating hormone and melanin-concentrating hormone receptors in mammalian skin physiopathology. Peptides 30 (2009) 2071–2075. http://dx.doi.org/10.1016/j.peptides.2009.04.025CrossrefGoogle Scholar

  • [218] Karne, S., Jayawickreme, C.K. and Lerner, M.R. Cloning and characterization of an endothelin-3 receptor (ET c receptor) from Xenopus laevis dermal melanophores. J. Biol. Chem. 268 (1993) 19126–19133. Google Scholar

  • [219] Fujii, R., Tanaka, Y. and Hayashi, H. Endothelin-1 causes aggregation of pigment in teleostean melanophores. Zoolog. Sci. 10 (1993) 763–772. Google Scholar

  • [220] Fujita, T. and Fujii, R. Endothelins disperse light scattering organelles in leucophores of the medaka, Oryzias latipes. Zoolog. Sci. 14 (1997) 559–569. http://dx.doi.org/10.2108/zsj.14.559CrossrefGoogle Scholar

  • [221] Murata, N. and Fujii, R. Pigment-aggregating action of endothelins on medaka xanthophores. Zoolog. Sci. 17 (2000) 853–862. http://dx.doi.org/10.2108/zsj.17.853CrossrefGoogle Scholar

  • [222] Scarparo, A.C., Isoldi, M.C., de Lima, L.H., Visconti, M.A. and Castrucci, A.M. Expression of endothelin receptors in frog, chicken, mouse and human pigment cells. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 147 (2007) 640–646. http://dx.doi.org/10.1016/j.cbpa.2006.04.034CrossrefGoogle Scholar

  • [223] Demunter, A., De Wolf-Peeters, C., Degreef, H., Stas, M., van den and Oord, J.J. Expression of the endothelin B receptor in the pigment cell lesion of the skin. Evidence for its role as tumor progression marker in malignant melanoma. Virchows Arch. 438 (2001) 485–491. http://dx.doi.org/10.1007/s004280000362CrossrefGoogle Scholar

  • [224] Civelli, J.O., Bunzow, R. and Grandy, D.K. Molecular diversity of the dopamine receptors. Annu. Rev. Pharmacol. Toxicol. 32 (1998) 281–307. Google Scholar

  • [225] Kemenade, B.M, Tonon, M.C., Jenks, B.C. and Vaudry, H. Characteristics of receptors for dopamine in pars intermedia of the amphibian Xenopus laevis. Neuroendorinology 44 (1986) 446–456. http://dx.doi.org/10.1159/000124685CrossrefGoogle Scholar

  • [226] Ovais, M. and Chimania, S.R. Evidence of presence of GABA-ergic receptor mediated dispersion in isolated scale melanophores of a carp, Cirrhinus mrigala Ham. Indian J. Exp. Biol. 40 (2002) 78–82. Google Scholar

  • [227] Marotti, L.A. Jr., Jayawickreme, C.K. and Lerner, M.R. Functional characterization of receptor for vasoactive-intestinal peptide in cultured melanophores from Xenopus laevis. Pigment Cell Res. 12 (1999) 89–97. http://dx.doi.org/10.1111/j.1600-0749.1999.tb00748.xCrossrefGoogle Scholar

  • [228] McClintock, T.S., Rising, J.P. and Lerner, M.R. Melanophore pigment dispersion responses to agonists show two patterns of sensitivity to inhibitors of cAMP-dependent protein kinase and protein kinase C. J. Cell Physiol. 167 (1996) 1–7 http://dx.doi.org/10.1002/(SICI)1097-4652(199604)167:1<1::AID-JCP1>3.0.CO;2-TCrossrefGoogle Scholar

About the article

Published Online: 2011-01-13

Published in Print: 2011-03-01

Citation Information: Cellular and Molecular Biology Letters, Volume 16, Issue 1, Pages 162–200, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-010-0044-y.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Andrey D. Volgin, Alim Bashirzade, Tamara G. Amstislavskaya, Oleg A. Yakovlev, Konstantin A. Demin, Ying-Jui Ho, Dongmei Wang, Vadim A. Shevyrin, Dongni Yan, Zhichong Tang, Jingtao Wang, Mengyao Wang, Erik T. Alpyshov, Nazar Serikuly, Edina A. Wappler-Guzzetta, Anton M. Lakstygal, and Allan V. Kalueff
ACS Chemical Neuroscience, 2019, Volume 10, Number 5, Page 2176
Christina Kindermann, Edward J. Narayan, Jean-Marc Hero, and Kevin McGraw
PLoS ONE, 2014, Volume 9, Number 12, Page e114120
Jorge Galindo-Villegas, Erick Garcia-Garcia, and Victoriano Mulero
Developmental & Comparative Immunology, 2016, Volume 64, Page 178
Sharique A. Ali and Ishrat Naaz
Journal of Microscopy and Ultrastructure, 2014, Volume 2, Number 4, Page 230
Maria Nathália de Carvalho Magalhães Moraes, Maristela de Oliveira Poletini, Bruno Cesar Ribeiro Ramos, Leonardo Henrique Ribeiro Graciani de Lima, and Ana Maria de Lauro Castrucci
Photochemistry and Photobiology, 2014, Volume 90, Number 3, Page 696
Iain S. Haslam, Eric W. Roubos, Maria Luisa Mangoni, Katsutoshi Yoshizato, Hubert Vaudry, Jennifer E. Kloepper, David M. Pattwell, Paul F. A. Maderson, and Ralf Paus
Biological Reviews, 2014, Volume 89, Number 3, Page 618
Michael Nguyen, Manoj K. Poudel, Adam Michael Stewart, and Allan V. Kalueff
Brain Research Bulletin, 2013, Volume 98, Page 145
Allan V. Kalueff, Michael Gebhardt, Adam Michael Stewart, Jonathan M. Cachat, Mallorie Brimmer, Jonathan S. Chawla, Cassandra Craddock, Evan J. Kyzar, Andrew Roth, Samuel Landsman, Siddharth Gaikwad, Kyle Robinson, Erik Baatrup, Keith Tierney, Angela Shamchuk, William Norton, Noam Miller, Teresa Nicolson, Oliver Braubach, Charles P. Gilman, Julian Pittman, Denis B. Rosemberg, Robert Gerlai, David Echevarria, Elisabeth Lamb, Stephan C.F. Neuhauss, Wei Weng, Laure Bally-Cuif, and Henning Schneider, and the Zebrafish Neuros
Zebrafish, 2013, Volume 10, Number 1, Page 70
Christina Kindermann, Edward J. Narayan, Francis Wild, Clyde H. Wild, and Jean-Marc Hero
Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2013, Volume 165, Number 2, Page 223
Saima Salim, Ayesha S. Ali, and Sharique A. Ali
Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2013, Volume 164, Number 2, Page 117
Helen Nilsson Sköld, Sara Aspengren, and Margareta Wallin
Pigment Cell & Melanoma Research, 2013, Volume 26, Number 1, Page 29
Jonathan Cachat, Evan J. Kyzar, Christopher Collins, Siddharth Gaikwad, Jeremy Green, Andrew Roth, Mohamed El-Ounsi, Ari Davis, Mimi Pham, Samuel Landsman, Adam Michael Stewart, and Allan V. Kalueff
Behavioural Brain Research, 2013, Volume 236, Page 258
Susan R. Meier-Davis, Kevin Dines, Fatima M. Arjmand, Richard Hamlin, Betsy Huang, Jainye Wen, Chad Christianson, Jutaro Shudo, and Tetsuto Nagata
Cutaneous and Ocular Toxicology, 2012, Volume 31, Number 4, Page 312
Dong-Chan Kim, Seong-Hwan Rho, Jae-Choen Shin, Hyun Ho Park, and Dongjin Kim
Biochemical and Biophysical Research Communications, 2011, Volume 411, Number 1, Page 121

Comments (0)

Please log in or register to comment.
Log in