Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

See all formats and pricing
More options …
Volume 16, Issue 2


Stem cells from adipose tissue

Malgorzata Witkowska-Zimny / Katarzyna Walenko
Published Online: 2011-03-26 | DOI: https://doi.org/10.2478/s11658-011-0005-0


This is a review of the growing scientific interest in the developmental plasticity and therapeutic potential of stromal cells isolated from adipose tissue. Adipose-derived stem/stromal cells (ASCs) are multipotent somatic stem cells that are abundant in fat tissue. It has been shown that ASCs can differentiate into several lineages, including adipose cells, chondrocytes, osteoblasts, neuronal cells, endothelial cells, and cardiomyocytes. At the same time, adipose tissue can be harvested by a minimally invasive procedure, which makes it a promising source of adult stem cells. Therefore, it is believed that ASCs may become an alternative to the currently available adult stem cells (e.g. bone marrow stromal cells) for potential use in regenerative medicine. In this review, we present the basic information about the field of adipose-derived stem cells and their potential use in various applications.

Keywords: Adult stem cells; Adipose-derived stem cells/stromal cells; Adipose tissue; Regenerative medicine

  • [1] Zuk, P.A. The adipose-derived stem cell: Looking back and looking ahead. Mol. Biol. Cell 21 (2010) 1783–1787. CrossrefGoogle Scholar

  • [2] Dazzi, F., Ramasamy, R., Glennie, S., Jones, S.P. and Roberts, I. The role of mesenchymal stem cells in haemopoiesis. Blood Rev. 20 (2006) 161–171. CrossrefGoogle Scholar

  • [3] Clarke, D.L., Johansson, C.B., Wilbertz, J., Veress, B., Nilsson, E., Karlstrom, H., Lendahl, U. and Frisen, J. Generalized potential of adult neural stem cells. Science 288 (2000) 1660–1663. CrossrefGoogle Scholar

  • [4] Ng, A.M., Saim, A.B., Tan, K.K., Tan, G.H., Mokhtar, S.A., Rose, I.M., Othman, F. and Idrus, R.B. Comparison of bioengineered human bone construct from four sources of osteogenic cells. J. Orthop. Sci. 10 (2005) 192–199. CrossrefGoogle Scholar

  • [5] Crisan, M., Yap, S., Casteilla, L., Chen, C., Corselli, M., Park, T.S. and Peault, B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3 (2008) 301–313. CrossrefGoogle Scholar

  • [6] Huang, G.T., Gronthos, S. and Shi, S. Mesenchymal stem cells derived from dental tissues vs. Those from other sources: Their biology and role in regenerative medicine. J. Dent. Res. 88 (2009) 792–806. CrossrefGoogle Scholar

  • [7] Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P. and Hedrick, M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 7 (2001) 211–228. PubMedCrossrefGoogle Scholar

  • [8] Gesta, S., Tseng, Y.H. and Kahn, C.R. Developmental origin of fat: Tracking obesity to its source. Cell 131 (2007) 242–256. CrossrefGoogle Scholar

  • [9] Kershaw, E.E. and Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 89 (2004) 2548–2556. CrossrefGoogle Scholar

  • [10] Zhu, Y., Liu, T., Song, K., Fan, X., Ma, X. and Cui, Z. Adipose-derived stem cell: A better stem cell than bmsc. Cell Biochem. Funct. 26 (2008) 664–675. CrossrefGoogle Scholar

  • [11] Katz, A.J., Llull, R., Hedrick, M.H. and Futrell, J.W. Emerging approaches to the tissue engineering of fat. Clin. Plast Surg. 26 (1999) 587–603. Google Scholar

  • [12] Schaffler, A. and Buchler, C. Concise review: Adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies. Stem Cells 25 (2007) 818–827. CrossrefGoogle Scholar

  • [13] Williams, S.K., McKenney, S. and Jarrell, B.E. Collagenase lot selection and purification for adipose tissue digestion. Cell Transplant. 4 (1995) 281–289. CrossrefGoogle Scholar

  • [14] Nakagami, H., Morishita, R., Maeda, K., Kikuchi, Y., Ogihara, T. and Kaneda, Y. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J. Atheroscler. Thromb. 13 (2006) 77–81. CrossrefGoogle Scholar

  • [15] Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. and Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8 (2006) 315–317. CrossrefGoogle Scholar

  • [16] Gronthos, S., Franklin, D.M., Leddy, H.A., Robey, P.G., Storms, R.W. and Gimble, J.M. Surface protein characterization of human adipose tissuederived stromal cells. J. Cell Physiol. 189 (2001) 54–63. CrossrefGoogle Scholar

  • [17] Dawn, B. and Bolli, R. Adult bone marrow-derived cells: Regenerative potential, plasticity, and tissue commitment. Basic Res. Cardiol. 100 (2005) 494–503. CrossrefGoogle Scholar

  • [18] De Ugarte, D.A., Alfonso, Z., Zuk, P.A., Elbarbary, A., Zhu, M., Ashjian, P., Benhaim, P., Hedrick, M.H. and Fraser, J.K. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol. Lett. 89 (2003) 267–270. CrossrefGoogle Scholar

  • [19] Wagner, W., Wein, F., Seckinger, A., Frankhauser, M., Wirkner, U., Krause, U., Blake, J., Schwager, C., Eckstein, V., Ansorge, W. and Ho, A.D. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp. Hematol. 33 (2005) 1402–1416. CrossrefGoogle Scholar

  • [20] Kern, S., Eichler, H., Stoeve, J., Kluter, H. and Bieback, K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24 (2006) 1294–1301. CrossrefGoogle Scholar

  • [21] Romanov, Y.A., Darevskaya, A.N., Merzlikina, N.V. and Buravkova, L.B. Mesenchymal stem cells from human bone marrow and adipose tissue: Isolation, characterization, and differentiation potentialities. Bull. Exp. Biol. Med. 140 (2005) 138–143. CrossrefGoogle Scholar

  • [22] Puissant, B., Barreau, C., Bourin, P., Clavel, C., Corre, J., Bousquet, C., Taureau, C., Cousin, B., Abbal, M., Laharrague, P., Penicaud, L., Casteilla, L. and Blancher, A. Immunomodulatory effect of human adipose tissuederived adult stem cells: Comparison with bone marrow mesenchymal stem cells. Br. J. Haematol. 129 (2005) 118–129. CrossrefGoogle Scholar

  • [23] Peroni, D., Scambi, I., Pasini, A., Lisi, V., Bifari, F., Krampera, M., Rigotti, G., Sbarbati, A. and Galie, M. Stem molecular signature of adipose-derived stromal cells. Exp. Cell Res. 314 (2008) 603–615. CrossrefGoogle Scholar

  • [24] Egusa, H., Iida, K., Kobayashi, M., Lin, T.Y., Zhu, M., Zuk, P.A., Wang, C.J., Thakor, D.K., Hedrick, M.H. and Nishimura, I. Downregulation of extracellular matrix-related gene clusters during osteogenic differentiation of human bone marrow- and adipose tissue-derived stromal cells. Tissue Eng. 13 (2007) 2589–2600. CrossrefGoogle Scholar

  • [25] Stolzing, A., Jones, E., McGonagle, D. and Scutt, A. Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies. Mech. Ageing Dev. 129 (2008) 163–173. CrossrefGoogle Scholar

  • [26] Taha, M.F. and Hedayati, V. Isolation, identification and multipotential differentiation of mouse adipose tissue-derived stem cells. Tissue Cell 42 (2010) 211–216. CrossrefGoogle Scholar

  • [27] Froehlich, H., Gulati, R., Boilson, B., Witt, T., Harbuzariu, A., Kleppe, L., Dietz, A.B., Lerman, A. and Simari, R.D. Carotid repair using autologous adipose-derived endothelial cells. Stroke 40 (2009) 1886–1891. CrossrefGoogle Scholar

  • [28] Rodda, D.J., Chew, J.L., Lim, L.H., Loh, Y.H., Wang, B., Ng, H.H. and Robson, P. Transcriptional regulation of nanog by oct4 and sox2. J. Biol. Chem. 280 (2005) 24731–24737. Google Scholar

  • [29] Liedtke, S., Enczmann, J., Waclawczyk, S., Wernet, P. and Kogler, G. Oct4 and its pseudogenes confuse stem cell research. Cell Stem Cell 1 (2007) 364–366. CrossrefGoogle Scholar

  • [30] Prunet-Marcassus, B., Cousin, B., Caton, D., Andre, M., Penicaud, L. and Casteilla, L. From heterogeneity to plasticity in adipose tissues: Site-specific differences. Exp. Cell Res. 312 (2006) 727–736. Google Scholar

  • [31] Avram, A.S., Avram, M.M. and James, W.D. Subcutaneous fat in normal and diseased states: 2. Anatomy and physiology of white and brown adipose tissue. J. Am. Acad. Dermatol. 53 (2005) 671–683. CrossrefGoogle Scholar

  • [32] Fraser, J.K., Wulur, I., Alfonso, Z., Zhu, M. and Wheeler, E.S. Differences in stem and progenitor cell yield in different subcutaneous adipose tissue depots. Cytotherapy 9 (2007) 459–467. CrossrefGoogle Scholar

  • [33] Festy, F., Hoareau, L., Bes-Houtmann, S., Pequin, A.M., Gonthier, M.P., Munstun, A., Hoarau, J.J., Cesari, M. and Roche, R. Surface protein expression between human adipose tissue-derived stromal cells and mature adipocytes. Histochem. Cell Biol. 124 (2005) 113–121. CrossrefGoogle Scholar

  • [34] Kang, Y., Park, C., Kim, D., Seong, C.M., Kwon, K. and Choi, C. Unsorted human adipose tissue-derived stem cells promote angiogenesis and myogenesis in murine ischemic hindlimb model. Microvasc. Res. 80 (2010) 310–316. CrossrefGoogle Scholar

  • [35] Kajiyama, H., Hamazaki, T.S., Tokuhara, M., Masui, S., Okabayashi, K., Ohnuma, K., Yabe, S., Yasuda, K., Ishiura, S., Okochi, H. and Asashima, M. Pdx1-transfected adipose tissue-derived stem cells differentiate into insulinproducing cells in vivo and reduce hyperglycemia in diabetic mice. Int. J. Dev. Biol. 54 (2010) 699–705. Google Scholar

  • [36] Levi, B., James, A.W., Nelson, E.R., Vistnes, D., Wu, B., Lee, M., Gupta, A. and Longaker, M.T. Human adipose derived stromal cells heal critical size mouse calvarial defects. PLoS One 5 (2010) e11177. Google Scholar

  • [37] Kilroy, G.E., Foster, S.J., Wu, X., Ruiz, J., Sherwood, S., Heifetz, A., Ludlow, J.W. and Gimble, J.M. Cytokine profile of human Adipose-derived Stem Cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. Cell. Physiol. 212 (2007) 702–709. CrossrefGoogle Scholar

  • [38] Witkowska-Zimny, M., Wróbel, E. and Przybylski, J. The most importat trascriptional factors of osteoblastogeesis. Adv. Cell Biol. 2 (2010) 17–28. Google Scholar

  • [39] Mauney, J.R., Nguyen, T., Gillen, K., Kirker-Head, C., Gimble, J.M. and Kaplan, D.L. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3d scaffolds. Biomaterials 28 (2007) 5280–5290. CrossrefGoogle Scholar

  • [40] Zhao, Y., Lin, H., Zhang, J., Chen, B., Sun, W., Wang, X., Zhao, W., Xiao, Z. and Dai, J. Crosslinked three-dimensional demineralized bone matrix for the adipose-derived stromal cell proliferation and differentiation. Tissue Eng. Part A 15 (2009) 13–21. CrossrefGoogle Scholar

  • [41] Hong, L., Colpan, A., Peptan, I.A., Daw, J., George, A. and Evans, C.A. 17-beta estradiol enhances osteogenic and adipogenic differentiation of human adipose-derived stromal cells. Tissue Eng. 13 (2007) 1197–1203. Google Scholar

  • [42] Brayfield, C., Marra, K. and Rubin, J.P. Adipose stem cells for soft tissue regeneration. Handchir. Mikrochir. Plast. Chir. 42 (2010) 124–128. CrossrefPubMedGoogle Scholar

  • [43] Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P. and Hedrick, M.H. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13 (2002) 4279–4295. CrossrefGoogle Scholar

  • [44] Lee, J.H., Rhie, J.W., Oh, D.Y. and Ahn, S.T. Osteogenic differentiation of human adipose tissue-derived stromal cells (hascs) in a porous threedimensional scaffold. Biochem. Biophys. Res. Commun. 370 (2008) 456–460. Google Scholar

  • [45] Lee, S.J., Kang, S.W., Do, H.J., Han, I., Shin, D.A., Kim, J.H. and Lee, S.H. Enhancement of bone regeneration by gene delivery of bmp2/runx2 bicistronic vector into adipose-derived stromal cells. Biomaterials 31 (2010) 5652–5659. CrossrefGoogle Scholar

  • [46] Jeon, O., Rhie, J.W., Kwon, I.K., Kim, J.H., Kim, B.S. and Lee, S.H. In vivo bone formation following transplantation of human adipose-derived stromal cells that are not differentiated osteogenically. Tissue Eng. Part A 14 (2008) 1285–1294. CrossrefGoogle Scholar

  • [47] Lin, Y., Wang, T., Wu, L., Jing, W., Chen, X., Li, Z., Liu, L., Tang, W., Zheng, X. and Tian, W. Ectopic and in situ bone formation of adipose tissue-derived stromal cells in biphasic calcium phosphate nanocomposite. J. Biomed. Mater Res. A 81 (2007) 900–910. CrossrefGoogle Scholar

  • [48] Li, X., Yao, J., Wu, L., Jing, W., Tang, W., Lin, Y., Tian, W. and Liu, L. Osteogenic induction of adipose-derived stromal cells: Not a requirement for bone formation in vivo. Artif. Organs 34 (2009) 46–54. Google Scholar

  • [49] Gastaldi, G., Asti, A., Scaffino, M.F., Visai, L., Saino, E., Cometa, A.M. and Benazzo, F. Human adipose-derived stem cells (hASCs) proliferate and differentiate in osteoblast-like cells on trabecular titanium scaffolds. J. Biomed. Mater Res. 94A (2010) 790–799. Google Scholar

  • [50] Cowan, C.M., Shi, Y.Y., Aalami, O.O., Chou, Y.F., Mari, C., Thomas, R., Quarto, N., Contag, C.H., Wu, B. and Longaker, M.T. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat. Biotechnol. 22 (2004) 560–567. CrossrefGoogle Scholar

  • [51] Shen, F.H., Zeng, Q., Lv, Q., Choi, L., Balian, G., Li, X. and Laurencin, C.T. Osteogenic differentiation of adipose-derived stromal cells treated with GDF-5 cultured on a novel three-dimensional sintered microsphere matrix. Spine J. 6 (2006) 615–623. CrossrefGoogle Scholar

  • [52] Hennig, T., Lorenz, H., Thiel, A., Goetzke, K., Dickhut, A., Geiger, F. and Richter, W. Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and bmp profile and is overcome by bmp-6. J. Cell Physiol. 211 (2007) 682–691. Google Scholar

  • [53] Kim, H.J. and Im, G.I. Chondrogenic differentiation of adipose tissuederived mesenchymal stem cells: Greater doses of growth factor are necessary. J. Orthop. Res. 27 (2009) 612–619. CrossrefGoogle Scholar

  • [54] Kim, B.S., Kang, K.S. and Kang, S.K. Soluble factors from ascs effectively direct control of chondrogenic fate. Cell Prolif. 43 (2010) 249–261. CrossrefGoogle Scholar

  • [55] Awad, H.A., Halvorsen, Y.D., Gimble, J.M. and Guilak, F. Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng. 9 (2003) 1301–1312. Google Scholar

  • [56] Mahmoudifar, N. and Doran, P.M. Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions. Biomaterials 31 (2010) 3858–3867. CrossrefGoogle Scholar

  • [57] Betre, H., Ong, S.R., Guilak, F., Chilkoti, A., Fermor, B. and Setton, L.A. Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials 27 (2006) 91–99. CrossrefGoogle Scholar

  • [58] Jin, X., Sun, Y., Zhang, K., Wang, J., Shi, T., Ju, X. and Lou, S. Ectopic neocartilage formation from predifferentiated human adipose derived stem cells induced by adenoviral-mediated transfer of hTGF beta2. Biomaterials 28 (2007) 2994–3003. CrossrefGoogle Scholar

  • [59] Brzoska, M., Geiger, H., Gauer, S. and Baer, P. Epithelial differentiation of human adipose tissue-derived adult stem cells. Biochem. Biophys. Res. Commun. 330 (2005) 142–150. Google Scholar

  • [60] Rodriguez, L.V., Alfonso, Z., Zhang, R., Leung, J., Wu, B. and Ignarro, L.J. Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc. Natl. Acad. Sci. USA 103 (2006) 12167–12172. CrossrefGoogle Scholar

  • [61] Rodriguez-Serrano, F., Alvarez, P., Caba, O., Picon, M., Marchal, J.A., Peran, M., Prados, J., Melguizo, C., Rama, A.R., Boulaiz, H. and Aranega, A. Promotion of human adipose-derived stem cell proliferation mediated by exogenous nucleosides. Cell Biol. Int. 34 (2010) 917–924. CrossrefGoogle Scholar

  • [62] Madonna, R. and De Caterina, R. In vitro neovasculogenic potential of resident adipose tissue precursors. Am. J. Physiol. Cell Physiol. 295 (2008) C1271–1280. Google Scholar

  • [63] Heydarkhan-Hagvall, S., Schenke-Layland, K., Yang, J.Q., Heydarkhan, S., Xu, Y., Zuk, P.A., MacLellan, W.R. and Beygui, R.E. Human adipose stem cells: A potential cell source for cardiovascular tissue engineering. Cells Tissues Organs 187 (2008) 263–274. Google Scholar

  • [64] Planat-Benard, V., Silvestre, J.S., Cousin, B., Andre, M., Nibbelink, M., Tamarat, R., Clergue, M., Manneville, C., Saillan-Barreau, C., Duriez, M., Tedgui, A., Levy, B., Penicaud, L. and Casteilla, L. Plasticity of human adipose lineage cells toward endothelial cells: Physiological and therapeutic perspectives. Circulation 109 (2004) 656–663. CrossrefGoogle Scholar

  • [65] Verseijden, F., Posthumus-van Sluijs, S.J., Pavljasevic, P., Hofer, S.O., van Osch, G.J. and Farrell, E. Adult human bone marrow- and adipose tissuederived stromal cells support the formation of prevascular-like structures from endothelial cells in vitro. Tissue Eng. Part A 16 (2010) 101–114. CrossrefGoogle Scholar

  • [66] Scherberich, A., Galli, R., Jaquiery, C., Farhadi, J. and Martin, I. Threedimensional perfusion culture of human adipose tissue-derived endothelial and osteoblastic progenitors generates osteogenic constructs with intrinsic vascularization capacity. Stem Cells 25 (2007) 1823–1829. CrossrefGoogle Scholar

  • [67] Nakagami, H., Maeda, K., Morishita, R., Iguchi, S., Nishikawa, T., Takami, Y., Kikuchi, Y., Saito, Y., Tamai, K., Ogihara, T. and Kaneda, Y. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler. Thromb. Vasc. Biol. 25 (2005) 2542–2547. CrossrefGoogle Scholar

  • [68] Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., Temm-Grove, C.J., Bovenkerk, J.E., Pell, C.L., Johnstone, B.H., Considine, R.V. and March, K.L. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109 (2004) 1292–1298. CrossrefGoogle Scholar

  • [69] Muller, A.M., Mehrkens, A., Schafer, D.J., Jaquiery, C., Guven, S., Lehmicke, M., Martinetti, R., Farhadi, I., Jakob, M., Scherberich, A. and Martin, I. Towards an intraoperative engineering of osteogenic and vasculogenic grafts from the stromal vascular fraction of human adipose tissue. Eur. Cell Mater. 19 (2010) 127–135. Google Scholar

  • [70] Nakada, A., Fukuda, S., Ichihara, S., Sato, T., Itoi, S., Inada, Y., Endo, K. and Nakamura, T. Regeneration of central nervous tissue using a collagen scaffold and adipose-derived stromal cells. Cells Tissues Organs 190 (2009) 326–335. CrossrefGoogle Scholar

  • [71] Erba, P., Terenghi, G. and Kingham, P.J. Neural differentiation and therapeutic potential of adipose tissue derived stem cells. Curr. Stem Cell Res. Ther. 5 (2009) 153–160. Google Scholar

  • [72] Okura, H., Komoda, H., Fumimoto, Y., Lee, C.M., Nishida, T., Sawa, Y. and Matsuyama, A. Transdifferentiation of human adipose tissue-derived stromal cells into insulin-producing clusters. J. Artif. Organs 12 (2009) 123–130. CrossrefGoogle Scholar

  • [73] Timper, K., Seboek, D., Eberhardt, M., Linscheid, P., Christ-Crain, M., Keller, U., Muller, B. and Zulewski, H. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem. Biophys. Res. Commun. 341 (2006) 1135–1140. Google Scholar

  • [74] Long, J.L., Zuk, P., Berke, G.S. and Chhetri, D.K. Epithelial differentiation of adipose-derived stem cells for laryngeal tissue engineering. Laryngoscope 120 (2010) 125–131. Google Scholar

  • [75] Jeong, J.H., Lee, J.H., Jin, E.S., Min, J.K., Jeon, S.R. and Choi, K.H. Regeneration of intervertebral discs in a rat disc degeneration model by implanted adipose-tissue-derived stromal cells. Acta Neurochir. (Wien) 152 (2010) 1771–1777. Google Scholar

  • [76] Banas, A., Teratani, T., Yamamoto, Y., Tokuhara, M., Takeshita, F., Quinn, G., Okochi, H. and Ochiya, T. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 46 (2007) 219–228. CrossrefGoogle Scholar

  • [77] Aurich, H., Sgodda, M., Kaltwasser, P., Vetter, M., Weise, A., Liehr, T., Brulport, M., Hengstler, J.G., Dollinger, M.M., Fleig, W.E. and Christ, B. Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut 58 (2009) 570–581. CrossrefGoogle Scholar

  • [78] Hong, S.J., Traktuev, D.O. and March, K.L. Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Curr. Opin. Organ Transplant. 15 (2010) 86–91. CrossrefGoogle Scholar

  • [79] Goudenege, S., Pisani, D.F., Wdziekonski, B., Di Santo, J.P., Bagnis, C., Dani, C. and Dechesne, C.A. Enhancement of myogenic and muscle repair capacities of human adipose-derived stem cells with forced expression of myod. Mol. Ther. 17 (2009) 1064–1072. CrossrefGoogle Scholar

  • [80] Kang, S.K., Putnam, L.A., Ylostalo, J., Popescu, I.R., Dufour, J., Belousov, A. and Bunnell, B.A. Neurogenesis of rhesus adipose stromal cells. J. Cell Sci. 117 (2004) 4289–4299. CrossrefGoogle Scholar

  • [81] Kingham, P.J., Kalbermatten, D.F., Mahay, D., Armstrong, S.J., Wiberg, M. and Terenghi, G. Adipose-derived stem cells differentiate into a schwann cell phenotype and promote neurite outgrowth in vitro. Exp. Neurol. 207 (2007) 267–274. Google Scholar

  • [82] Safford, K.M., Safford, S.D., Gimble, J.M., Shetty, A.K. and Rice, H.E. Characterization of neuronal/glial differentiation of murine adipose-derived adult stromal cells. Exp. Neurol. 187 (2004) 319–328. Google Scholar

  • [83] Park, I.H., Zhao, R., West, J.A., Yabuuchi, A., Huo, H., Ince, T.A., Lerou, P.H., Lensch, M.W. and Daley, G.Q. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451 (2008) 141–146. Google Scholar

  • [84] Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. and Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131 (2007) 861–872. CrossrefGoogle Scholar

  • [85] Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, II and Thomson, J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science 318 (2007) 1917–1920. CrossrefGoogle Scholar

  • [86] Sun, N., Panetta, N.J., Gupta, D.M., Wilson, K.D., Lee, A., Jia, F., Hu, S., Cherry, A.M., Robbins, R.C., Longaker, M.T. and Wu, J.C. Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc. Natl. Acad. Sci. USA 106 (2009) 15720–15725. CrossrefGoogle Scholar

  • [87] Grisendi, G., Bussolari, R., Cafarelli, L., Petak, I., Rasini, V., Veronesi, E., De Santis, G., Spano, C., Tagliazzucchi, M., Barti-Juhasz, H., Scarabelli, L., Bambi, F., Frassoldati, A., Rossi, G., Casali, C., Morandi, U., Horwitz, E.M., Paolucci, P., Conte, P. and Dominici, M. Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res. 70 (2010) 3718–3729. CrossrefGoogle Scholar

  • [88] Liu, H., Chu, Y. and Lou, G. Fiber-modified adenovirus can mediate human adipose tissue-derived mesenchymal stem cell-based anti-angiogenic gene therapy. Biotechnol. Lett. 32 (2010) 1181–1188. CrossrefGoogle Scholar

  • [89] Ghosh, S., Dean, A., Walter, M., Bao, Y., Hu, Y., Ruan, J. and Li, R. Cell density-dependent transcriptional activation of endocrine-related genes in human adipose tissue-derived stem cells. Exp. Cell Res. 316 (2010) 2087–2098. Google Scholar

  • [90] Walter, M., Liang, S., Ghosh, S., Hornsbz, P.J., and Li, R. Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells. Oncogene 28 (2009) 2745–2755. Google Scholar

  • [91] Awad, H.A., Wickham, M.Q., Leddy, H.A., Gimble, J.M. and Guilak, F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25 (2004) 3211–3222. CrossrefGoogle Scholar

  • [92] Cheng, N.C., Estes, B.T., Awad, H.A. and Guilak, F. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng. Part A 15 (2009) 231–241. CrossrefGoogle Scholar

  • [93] Haimi, S., Suuriniemi, N., Haaparanta, A.M., Ella, V., Lindroos, B., Huhtala, H., Raty, S., Kuokkanen, H., Sandor, G.K., Kellomaki, M., Miettinen, S. and Suuronen, R. Growth and osteogenic differentiation of adipose stem cells on pla/bioactive glass and pla/beta-tcp scaffolds. Tissue Eng. Part A 15 (2009) 1473–1480. CrossrefGoogle Scholar

  • [94] Marino, G., Rosso, F., Cafiero, G., Tortora, C., Moraci, M., Barbarisi, M. and Barbarisi, A. Beta-tricalcium phosphate 3d scaffold promote alone osteogenic differentiation of human adipose stem cells: In vitro study. J. Mater. Sci. Mater. Med. 21 353–363. Google Scholar

  • [95] McCullen, S.D., Zhu, Y., Bernacki, S.H., Narayan, R.J., Pourdeyhimi, B., Gorga, R.E. and Loboa, E.G. Electrospun composite poly(l-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells. Biomed. Mater. 4 (2009) 035002. CrossrefGoogle Scholar

  • [96] Park, I.S., Han, M., Rhie, J.W., Kim, S.H., Jung, Y. and Kim, I.H. The correlation between human adipose-derived stem cells differentiation and cell adhesion mechanism. Biomaterials 30 (2009) 6835–6843. CrossrefGoogle Scholar

  • [97] Muller, A.M., Davenport, M., Verrier, S., Droeser, R., Alini, M., Bocelli-Tyndall, C., Schaefer, D.J., Martin, I. and Scherberich, A. Platelet lysate as a serum substitute for 2d static and 3d perfusion culture of stromal vascular fraction cells from human adipose tissue. Tissue Eng. Part A 15 (2009) 869–875. CrossrefGoogle Scholar

  • [98] Hicok, K.C., Du Laney, T.V., Zhou, Y.S., Halvorsen, Y.D., Hitt, D.C., Cooper, L.F. and Gimble, J.M. Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Eng. 10 (2004) 371–380. CrossrefGoogle Scholar

  • [99] Lee, J.H. and Kemp, D.M. Human adipose-derived stem cells display myogenic potential and perturbed function in hypoxic conditions. Biochem. Biophys. Res. Commun. 341 (2006) 882–888. Google Scholar

  • [100] Vieira, N.M., Brandalise, V., Zucconi, E., Jazedje, T., Secco, M., Nunes, V.A., Strauss, B.E., Vainzof, M. and Zatz, M. Human multipotent adiposederived stem cells restore dystrophin expression of duchenne skeletalmuscle cells in vitro. Biol. Cell 100 (2008) 231–241. CrossrefGoogle Scholar

  • [101] Mizuno, H., Zuk, P.A., Zhu, M., Lorenz, H.P., Benhaim, P. and Hedrick, M.H. Myogenic differentiation by human processed lipoaspirate cells. Plast. Reconstr. Surg. 109 (2002) 199–209. CrossrefGoogle Scholar

  • [102] Rodriguez, A.M., Pisani, D., Dechesne, C.A., Turc-Carel, C., Kurzenne, J.Y., Wdziekonski, B., Villageois, A., Bagnis, C., Breittmayer, J.P., Groux, H., Ailhaud, G. and Dani, C. Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J. Exp. Med. 201 (2005) 1397–1405. Google Scholar

  • [103] Lee, W.C., Sepulveda, J.L., Rubin, J.P. and Marra, K.G. Cardiomyogenic differentiation potential of human adipose precursor cells. Int. J. Cardiol. 133 (2009) 399–401. Google Scholar

  • [104] Planat-Benard, V., Menard, C., Andre, M., Puceat, M., Perez, A., Garcia-Verdugo, J.M., Penicaud, L. and Casteilla, L. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ. Res. 94 (2004) 223–229. CrossrefGoogle Scholar

  • [105] Jumabay, M., Matsumoto, T., Yokoyama, S., Kano, K., Kusumi, Y., Masuko, T., Mitsumata, M., Saito, S., Hirayama, A., Mugishima, H. and Fukuda, N. Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair infarcted cardiac tissue in rats. J. Mol. Cell. Cardiol. 47 (2009) 565–575. CrossrefGoogle Scholar

  • [106] Ashjian, P.H., Elbarbary, A.S., Edmonds, B., De Ugarte, D., Zhu, M., Zuk, P.A., Lorenz, H.P., Benhaim, P. and Hedrick, M.H, In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast. Reconstr. Surg. 111 (2003) 1922–1931. CrossrefGoogle Scholar

  • [107] Ryu, H.H., Lim, J.H., Byeon, Y.E., Park, J.R., Seo, M.S., Lee, Y.W., Kim, W.H., Kang, K.S. and Kweon, O.K. Functional recovery and neural differentiation after transplantation of allogenic adipose-derived stem cells in a canine model of acute spinal cord injury. J. Vet. Sci. 10 (2009) 273–284. CrossrefGoogle Scholar

  • [108] Li, K., Han, Q., Yan, X., Liao, L. and Zhao, R.C. Not a process of simple vicariousness, the differentiation of human adipose-derived mesenchymal stem cells to renal tubular epithelial cells plays an important role in acute kidney injury repairing. Stem Cells Dev. 19 (2010) 1267–1275. CrossrefGoogle Scholar

  • [109] Tobita, M., Uysal, A.C., Ogawa, R., Hyakusoku, H. and Mizuno, H. Periodontal tissue regeneration with adipose-derived stem cells. Tissue Eng. Part A 14 (2008) 945–953. CrossrefGoogle Scholar

About the article

Published Online: 2011-03-26

Published in Print: 2011-06-01

Citation Information: Cellular and Molecular Biology Letters, Volume 16, Issue 2, Pages 236–257, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-011-0005-0.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Tomasz Kloskowski, Tomasz Kowalczyk, Maciej Nowacki, and Tomasz Drewa
The International Journal of Artificial Organs, 2013, Volume 36, Number 6, Page 392
Haihui Liu, Mingtai Chen, Lulu Liu, Saisai Ren, Panpan Cheng, and Hao Zhang
Cellular Reprogramming, 2018
Arnaud Scherberich
World Journal of Stem Cells, 2013, Volume 5, Number 1, Page 1
Dongdong Xiao, Hao Yan, Qiong Wang, Xiangguo Lv, Ming Zhang, Yang Zhao, Zhe Zhou, Jiping Xu, Qian Sun, Kang Sun, Wei Li, and Mujun Lu
ACS Applied Materials & Interfaces, 2017
Silvana Gaiba, Lucimar Pereira de França, Jerônimo Pereira de França, and Lydia Masako Ferreira
Acta Cirurgica Brasileira, 2012, Volume 27, Number 7, Page 471
Simona Neri, Philippe Bourin, Julie-Anne Peyrafitte, Luca Cattini, Andrea Facchini, Erminia Mariani, and Robert Dettman
PLoS ONE, 2013, Volume 8, Number 10, Page e77895
Yan Song, Changliang Peng, Shasha Lv, Jing Cheng, Shanshan Liu, Qing Wen, Guangju Guan, and Gang Liu
International Immunopharmacology, 2017, Volume 44, Page 115
Gisela Pachón-Peña, Carolina Serena, Miriam Ejarque, Jordi Petriz, Xevi Duran, W. Oliva-Olivera, Rafael Simó, Francisco J. Tinahones, Sonia Fernández-Veledo, and Joan Vendrell
STEM CELLS Translational Medicine, 2016, Volume 5, Number 4, Page 464
Sona Zare, Maryam Anjomshoa, Soleiman Kurd, Jia-Ke Chai, Mostafa Dahmardei, Mohammad Ali Nilforoushzadeh, and Ayoob Rostamzadeh
Journal of Skin and Stem Cell, 2015, Volume 2, Number 2
V. Nardone, R. Zonefrati, C. Mavilia, C. Romagnoli, S. Ciuffi, S. Fabbri, G. Palmini, G. Galli, A. Tanini, and M. L. Brandi
Stem Cells International, 2015, Volume 2015, Page 1
Yun Kyung Jeon, Min Jung Bae, Ju In Kim, Joo Hyoung Kim, Soo Jong Choi, Su Kyoung Kwon, Joon Hyop An, Sang Soo Kim, Bo Hyun Kim, Yong Ki Kim, and In Joo Kim
Endocrinology and Metabolism, 2014, Volume 29, Number 4, Page 567
Shahla Hamza Al-Saqi, Mohammed Saliem, Hernan Concha Quezada, Åsa Ekblad, Aino Fianu Jonasson, Outi Hovatta, and Cecilia Götherström
Cell and Tissue Banking, 2015, Volume 16, Number 2, Page 181
Mallappa K. Kolar and Paul J. Kingham
Biochemical Society Transactions, 2014, Volume 42, Number 3, Page 697
Shahla Hamza Al-Saqi, Mohammed Saliem, Suvi Asikainen, Hernan Concha Quezada, Åsa Ekblad, Outi Hovatta, Katarina Le Blanc, Aino Fianu Jonasson, and Cecilia Götherström
Cytotherapy, 2014, Volume 16, Number 7, Page 915
Anna Arno, Alexandra H. Smith, Patrick H. Blit, Mohammed Al Shehab, Gerd G. Gauglitz, and Marc G. Jeschke
Pharmaceuticals, 2011, Volume 4, Number 12, Page 1355
Wojciech Konczalik and Maria Siemionow
Annals of Plastic Surgery, 2014, Volume 72, Number 4, Page 475
N.G. Fairbairn, M.A. Randolph, and R.W. Redmond
Journal of Plastic, Reconstructive & Aesthetic Surgery, 2014, Volume 67, Number 5, Page 662
WeiWei Wang, Wei Wang, Yan Jiang, Zezheng Li, Jin Cheng, Nanmei Liu, GuoFeng Han, Shi Lu, and JinYuan Zhang
Biotechnology Letters, 2014, Volume 36, Number 3, Page 667
Paul J. Kingham, Mallappa K. Kolar, Liudmila N. Novikova, Lev N. Novikov, and Mikael Wiberg
Stem Cells and Development, 2014, Volume 23, Number 7, Page 741
Dario Siniscalco, James Jeffrey Bradstreet, Nataliia Sych, and Nicola Antonucci
Stem Cells International, 2013, Volume 2013, Page 1
Shengjuan Wei, Min Du, Zhihua Jiang, Marcio S Duarte, Melinda Fernyhough-Culver, Elke Albrecht, Katja Will, Linsen Zan, Gary J Hausman, Elham M Youssef Elabd, Werner G Bergen, Urmila Basu, and Michael V Dodson
Adipocyte, 2013, Volume 2, Number 3, Page 148
Izabela Harasymiak-Krzyżanowska, Alicja Niedojadło, Jolanta Karwat, Lidia Kotuła, Paulina Gil-Kulik, Magdalena Sawiuk, and Janusz Kocki
Cellular and Molecular Biology Letters, 2013, Volume 18, Number 4
Riccardo F. Mazzola
Journal of Craniofacial Surgery, 2013, Volume 24, Number 4, Page 1073
Ziyad Alharbi, Christian Opländer, Sultan Almakadi, Andrea Fritz, Michael Vogt, and Norbert Pallua
Journal of Plastic, Reconstructive & Aesthetic Surgery, 2013, Volume 66, Number 9, Page 1271
Gabriele Ceccarelli, Nora Bloise, Melissa Mantelli, Giulia Gastaldi, Lorenzo Fassina, Maria Gabriella Cusella De Angelis, Davide Ferrari, Marcello Imbriani, and Livia Visai
BioResearch Open Access, 2013, Volume 2, Number 4, Page 283
Giuseppe A. Ferraro, Francesco De Francesco, Gianfranco Nicoletti, Francesca Paino, Vincenzo Desiderio, Virginia Tirino, and Francesco D'Andrea
Journal of Cellular Biochemistry, 2013, Volume 114, Number 5, Page 1039
Patricia E. Engels, Mathias Tremp, Paul J. Kingham, Pietro G. di Summa, René D. Largo, Dirk J. Schaefer, and Daniel F. Kalbermatten
Cytotechnology, 2013, Volume 65, Number 3, Page 437
Bin Liu, Xin-Ying Tan, Yan-Pu Liu, Xiao-Fang Xu, Long Li, Hai-Yan Xu, Ran An, and Fa-Ming Chen
Tissue Engineering Part C: Methods, 2013, Volume 19, Number 1, Page 1
Emma Fossett, Wasim S. Khan, Umile Giuseppe Longo, and Peter J. Smitham
Journal of Orthopaedic Research, 2012, Volume 30, Number 7, Page 1013
Kuo-Liang Yang, Jiunn-Tat Lee, Cheng-Yoong Pang, Ting-Yi Lee, Shee-Ping Chen, Hock-Kean Liew, Shin-Yuan Chen, Tzu-Yung Chen, and Py-Yu Lin
Cellular and Molecular Biology Letters, 2012, Volume 17, Number 3
Ling Wu, Henk-Jan Prins, Marco N. Helder, Clemens A. van Blitterswijk, and Marcel Karperien
Tissue Engineering Part A, 2012, Volume 18, Number 15-16, Page 1542
Takashi Seki, Yukihiro Yokoyama, Hiroshi Nagasaki, Toshio Kokuryo, and Masato Nagino
Journal of Surgical Research, 2012, Volume 178, Number 1, Page 63
Juliet H.A. Bell and John W. Haycock
Tissue Engineering Part B: Reviews, 2012, Volume 18, Number 2, Page 116
J. Cieslak, M. Bartz, M. Stachowiak, B. Skowronska, K. A. Majewska, J. Harasymczuk, W. Stankiewicz, P. Fichna, and M. Switonski
Molecular Biology Reports, 2012, Volume 39, Number 4, Page 3951
Hyoung-Joon Chun, Young Soo Kim, Byeong Kyu Kim, Eun Hyun Kim, Ji Hyang Kim, Byung-Rok Do, Se Jin Hwang, Ju Yeon Hwang, and Yoon Kyoung Lee
World Neurosurgery, 2012, Volume 78, Number 3-4, Page 364
Malgorzata Witkowska-Zimny and Edyta Wrobel
Cellular and Molecular Biology Letters, 2011, Volume 16, Number 3
A Nagy Mehesz, J Brown, Z Hajdu, W Beaver, J V L da Silva, R P Visconti, R R Markwald, and V Mironov
Biofabrication, 2011, Volume 3, Number 2, Page 025002

Comments (0)

Please log in or register to comment.
Log in