Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Editor-in-Chief: /


IMPACT FACTOR 2016: 1.260
5-year IMPACT FACTOR: 1.506

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.615
Source Normalized Impact per Paper (SNIP) 2016: 0.470

Online
ISSN
1689-1392
See all formats and pricing
More options …
Volume 16, Issue 2 (Jun 2011)

DMSO modulates the pathway of apoptosis triggering

Blaž Banič / Damijan Nipič / Dušan Šuput / Irina Milisav
Published Online: 2011-03-26 | DOI: https://doi.org/10.2478/s11658-011-0007-y

Abstract

We demonstrate here that distribution of caspase-9 influences the pathway of apoptosis triggering, since caspase-9 is activated efficiently only when it is distributed solely in the cytosol. Caspase-9 moves to the nuclei in a response to cell stress during isolation of primary hepatocytes; this is called preapoptotic cell stress response. The dimethyl sulfoxide (DMSO) treatment cannot prevent the migration of caspase-9 into the nuclei when it is added to primary hepatocytes immediately after isolation; however, it can trigger redistribution of caspase-9 from the nuclei into the cytosol when added 1 day post-isolation. This redistribution is temporary, since caspase-9 returns to the nuclei within 48 hours of DMSO treatment. Thereafter, some caspase-9 is retained in the nuclei of DMSO-treated hepatocytes for longer than in the nuclei of untreated hepatocytes. By measuring caspase activities, we demonstrate that the addition of DMSO to cell culture medium can temporarily normalize the susceptibility of hepatocytes for apoptosis triggering through the intrinsic pathway. DMSO contributes also to the prolonged pathway inactivation, i.e., by extending preapoptotic cell stress response. We propose that DMSO extends the survival of primary hepatocytes by modulating preapoptotic cell stress response, which could be exploited for extending the lifespan of other primary cell cultures.

Keywords: Apoptosis; Preapoptotic cell stress response; DMSO; Hepatocytes; Caspase-9; Intrinsic pathway

  • [1] Puppi, J. and Dhawan, A. Human hepatocyte transplantation overview. Methods. Mol. Biol. 481 (2009) 1–16. http://dx.doi.org/10.1007/978-1-59745-201-4_1CrossrefGoogle Scholar

  • [2] Strom, S.C., Fisher, R.A., Thompson, M.T., Sanyal, A.J., Cole, P.E., Ham, J.M. and Posner, M.P. Hepatocyte transplantation as a bridge to orthotopic liver transplantation in terminal liver failure. Transplantation 63 (1997) 559–569. http://dx.doi.org/10.1097/00007890-199702270-00014CrossrefGoogle Scholar

  • [3] Bilir, B.M., Guinette, D., Karrer, F., Kumpe, D.A., Krysl, J., Stephens, J., McGavran, L., Ostrowska, A. and Durham, J. Hepatocyte transplantation in acute liver failure. Liver Transpl. 6 (2000) 32–40. CrossrefGoogle Scholar

  • [4] Schneider, A., Attaran, M., Meier, P.N., Strassburg, C., Manns, M.P., Ott, M., Barthold, M., Arseniev, L., Becker, T. and Panning, B. Hepatocyte transplantation in an acute liver failure due to mushroom poisoning. Transplantation 82 (2006) 1115–1116. http://dx.doi.org/10.1097/01.tp.0000232451.93703.abCrossrefGoogle Scholar

  • [5] Horslen, S.P., McCowan, T.C., Goertzen, T.C., Warkentin, P.I., Cai, H.B., Strom, S.C. and Fox, I.J. Isolated hepatocyte transplantation in an infant with a severe urea cycle disorder. Pediatrics 111 (2003) 1262–1267. http://dx.doi.org/10.1542/peds.111.6.1262CrossrefGoogle Scholar

  • [6] Stephenne, X., Najimi, M., Sibille, C., Nassogne, M.C., Smets, F. and Sokal, E.M. Sustained engraftment and tissue enzyme activity after liver cell transplantation for argininosuccinate lyase deficiency. Gastroenterology 130 (2006) 1317–1323. http://dx.doi.org/10.1053/j.gastro.2006.01.008CrossrefGoogle Scholar

  • [7] Muraca, M., Gerunda, G., Neri, D., Vilei, M.T., Granato, A., Feltracco, P., Meroni, M., Giron, G. and Burlina, A.B. Hepatocyte transplantation as a treatment for glycogen storage disease type 1a. Lancet 359 (2002) 317–318. http://dx.doi.org/10.1016/S0140-6736(02)07529-3Google Scholar

  • [8] Fitzpatrick, E., Mitry, R.R. and Dhawan, A. Human hepatocyte transplantation: state of the art. J. Intern. Med. 266 (2009) 339–357. http://dx.doi.org/10.1111/j.1365-2796.2009.02152.xCrossrefWeb of ScienceGoogle Scholar

  • [9] Fox, I.J., Chowdhury, J.R., Kaufman, S.S., Goertzen, T.C., Chowdhury, N.R., Warkentin, P.I., Dorko, K., Sauter, B.V. and Strom, S.C. Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. N. Engl. J. Med. 338 (1998) 1422–1426. http://dx.doi.org/10.1056/NEJM199805143382004CrossrefGoogle Scholar

  • [10] Ambrosino, G., Varotto, S., Strom, S.C., Guariso, G., Franchin, E., Miotto, D., Caenazzo, L., Basso, S., Carraro, P., Valente, M.L., D’Amico, D., Zancan, L. and D’Antiga, L. Isolated hepatocyte transplantation for Crigler-Najjar syndrome type 1. Cell. Transplant. 14 (2005) 151–157. http://dx.doi.org/10.3727/000000005783983250CrossrefGoogle Scholar

  • [11] Gomez-Lechon, M.J., Donato, M.T., Castell, J.V. and Jover, R. Human hepatocytes as a tool for studying toxicity and drug metabolism. Curr. Drug. Metab. 4 (2003) 292–312. http://dx.doi.org/10.2174/1389200033489424CrossrefGoogle Scholar

  • [12] Liang, J. F. and Akaike, T. Dimethyl sulfoxide induces multilayer aggregates and prolongs survival of primary cultured hepatocytes. Biotechnol. Tech. 11 (1997) 869–872. http://dx.doi.org/10.1023/A:1018402014414CrossrefGoogle Scholar

  • [13] Oberhammer F.A., Pavelka M., Sharma S., Tiefenbacher R., Purchio A.F., Bursch W. and Schulte-Hermann R. Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor beta 1. Proc. Natl. Acad. Sci. USA 89 (1992) 5408–5412. http://dx.doi.org/10.1073/pnas.89.12.5408CrossrefGoogle Scholar

  • [14] Salvesen, G.S. and Dixit, V.M. Caspases: intracellular signaling by proteolysis. Cell 91 (1997) 443–446. http://dx.doi.org/10.1016/S0092-8674(00)80430-4CrossrefGoogle Scholar

  • [15] Tafani, M., Minchenko, D.A., Serroni, A. and Farber, J.L. Induction of the mitochondrial permeability transition mediates the killing of HeLa cells. Cancer Res. 61 (2001) 2459–2466. Google Scholar

  • [16] Zhang, X.D., Gillespie, S.K. and Hersey P. Staurosporine induces apoptosis of melanoma by both caspase-dependent and — independent apoptotic pathways. Mol. Cancer Ther. 3 (2004) 187–197. Google Scholar

  • [17] Nipič, D., Pirc, A., Banič, B., Šuput, D. and Milisav, I. Preapoptotic cell stress response of primary hepatocytes. Hepatology 51 (2010) 2140–2151. Google Scholar

  • [18] Tuschl, G. and Mueller, S.O. Effects of cell culture conditions on primary rat hepatocytes-cell morphology and differential gene expression. Toxicology 218 (2006) 205–215. http://dx.doi.org/10.1016/j.tox.2005.10.017CrossrefGoogle Scholar

  • [19] Rowley, S.D., Bensinger, W.I., Gooley, T.A. and Buckner, C.D. Effect of cell concentration on bone marrow and peripheral blood stem cell cryopreservation. Blood 83 (1994) 2731–2736. Google Scholar

  • [20] Sosef, M.N., Baust, J.M., Sugimachi, K., Fowler, A., Tompkins, R.G. and Toner, M. Cryopreservation of isolated primary rat hepatocytes: enhanced survival and long-term hepatospecific function. Ann. Surg. 241 (2005) 125–133. Google Scholar

  • [21] Fiore, M. and Degrassi, F. Dimethyl sulfoxide restores contact inhibitioninduced growth arrest and inhibits cell density-dependent apoptosis in hamster cells. Exp. Cell. Res. 251 (1999) 102–110. http://dx.doi.org/10.1006/excr.1999.4542CrossrefGoogle Scholar

  • [22] Trubiani, O., Ciancarelli, M., Rapino, M. and Di Primio, R. Dimethyl sulfoxide induces programmed cell death and reversible G1 arrest in the cell cycle of human lymphoid pre-T cell line. Immunol. Lett. 50 (1996) 51–57. http://dx.doi.org/10.1016/0165-2478(96)02518-7CrossrefGoogle Scholar

  • [23] Galbraith, R.A., Sassa, S. and Kappas, A. Induction of haem synthesis in Hep G2 human hepatoma cells by dimethyl sulphoxide. A transcriptionally activated event. Biochem. J. 237 (1986) 597–600. Google Scholar

  • [24] Isom, H.C., Secott, T., Georgoff, I., Woodworth, C. and Mummaw, J. Maintenance of differentiated rat hepatocytes in primary culture. Proc. Natl. Acad. Sci. USA 82 (1985) 3252–3256. http://dx.doi.org/10.1073/pnas.82.10.3252CrossrefGoogle Scholar

  • [25] Bour, E.S., Ward, L.K., Cornman, G.A. and Isom, H.C. Tumor necrosis factor-alpha-induced apoptosis in hepatocytes in long-term culture. Am. J. Pathol. 148 (1996) 485–495. Google Scholar

  • [26] Isom, I., Georgoff, I., Salditt-Georgieff, M. and Darnell Jr., J.E., Persistence of liver-specific messenger RNA in cultured hepatocytes: different regulatory events for different genes. J. Cell. Biol. 105 (1987) 2877–2885. http://dx.doi.org/10.1083/jcb.105.6.2877CrossrefGoogle Scholar

  • [27] Milisav, I., Nipič, D. and Šuput, D. The riddle of mitochondrial caspase-3 from liver. Apoptosis 14 (2009) 1070–1075. http://dx.doi.org/10.1007/s10495-009-0381-3Web of ScienceCrossrefGoogle Scholar

  • [28] Berridge, M.V., Herst, P.M. and Tan, A.S. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol. Annu. Rev. 11 (2005) 127–152. http://dx.doi.org/10.1016/S1387-2656(05)11004-7CrossrefGoogle Scholar

About the article

Published Online: 2011-03-26

Published in Print: 2011-06-01


Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-011-0007-y.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Irina Milisav, Blaž Banič, and Dušan Šuput
Medical Hypotheses, 2017, Volume 102, Page 16
[3]
J J van Tonder, M Gulumian, A D Cromarty, and V Steenkamp
Human & Experimental Toxicology, 2014, Volume 33, Number 1, Page 41
[4]
Irina Milisav, Borut Poljšak, and Samo Ribarič
Apoptosis, 2017, Volume 22, Number 2, Page 265
[5]
SGB Furness, DL Hare, A Kourakis, AM Turnley, and PJ Wookey
Cell Death Discovery, 2016, Volume 2, Page 16062
[6]
Katarzyna A. Mitręga, Jerzy Nożyński, Maurycy Porc, Adrianna M. Spałek, and Tadeusz F. Krzemiński
Apoptosis, 2016, Volume 21, Number 2, Page 195
[7]
Andreas Koller, Raphaela Rid, Marlena Beyreis, Rodolfo Bianchini, Barbara S. Holub, Andreas Lang, Felix Locker, Bernhard Brodowicz, Ognjen Velickovic, Martin Jakab, Hubert Kerschbaum, Kamil Önder, and Barbara Kofler
Neuropeptides, 2016, Volume 56, Page 83
[8]
Yushi Huang, Guido Persoone, Dayanthi Nugegoda, and Donald Wlodkowic
Sensors and Actuators B: Chemical, 2016, Volume 226, Page 289
[9]
Benjamin P. Best
Rejuvenation Research, 2015, Volume 18, Number 5, Page 422
[10]
Irina Milisav, Borut Poljsak, and Dušan Šuput
International Journal of Molecular Sciences, 2012, Volume 13, Number 12, Page 10771
[11]
Astrid Nörenberg, Stefan Heinz, Katharina Scheller, Nicola J. Hewitt, Joris Braspenning, and Michael Ott
Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2013, Volume 758, Number 1-2, Page 69
[12]
Mathieu Vinken, Michaël Maes, André G. Oliveira, Bruno Cogliati, Pedro E. Marques, Gustavo B. Menezes, Maria Lúcia Zaidan Dagli, Tamara Vanhaecke, and Vera Rogiers
Archives of Toxicology, 2014, Volume 88, Number 2, Page 199
[13]
Hitesh Jagani, Josyula Rao, Vasanth Palanimuthu, Raghu Hariharapura, and Sagar Gang
Cellular and Molecular Biology Letters, 2013, Volume 18, Number 1

Comments (0)

Please log in or register to comment.
Log in