Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

See all formats and pricing
More options …
Volume 16, Issue 2


Involvement of carboxyl groups in chloride transport and reversible DIDS binding to band 3 protein in human erythrocytes

Teresa Janas / Tadeusz Janas
Published Online: 2011-03-26 | DOI: https://doi.org/10.2478/s11658-011-0010-3


Noncovalent DIDS binding to Band 3 (AE1) protein in human erythrocyte membranes, modified by non-penetrating, water soluble 1-ethyl-3-(4-azonia-4,4-dimethylpentyl)-carbodiimide iodide (EAC), was studied at 0°C in the presence of 165 mM KCl. Under experimental conditions applied up to (48 ± 5) % of irreversible chloride self-exchange inhibition was observed. The apparent dissociation constant, KD, for “DIDS-Band 3” complex, determined from the chloride transport experiments, was (34 ± 3) nM and (80 ± 12) nM for control and EAC-treated resealed ghosts, respectively. The inhibition constant, Ki, for DIDS was (35 ± 6) nM and (60 ± 8) nM in control and EAC-treated ghosts, respectively. The reduced affinity for DIDS reversible binding was not a result of negative cooperativity of DIDS binding sites of Band 3 oligomer since Hill’s coefficients were indistinguishable from 1 (within the limit error) both for control and EAC-treated ghosts. By using tritium-labeled DIDS, 4,4’-diisothiocyanato-2,2’-stilbenedisulfonate ([3H]DIDS), the association rate constant, k+1 (M−1s−1), was measured. The mean values of (4.3 ± 0.7) × 105 M−1s−1 for control and (2.7 ± 0.7) × 105 M−1s−1 for EAC-treated ghosts were obtained. The mean values for KD, evaluated from [3H]DIDS binding measurements, were (37 ± 9) nM and (90 ± 21) nM for control and EAC-modified ghosts, respectively. The results demonstrate that EAC modification of AE1 reduces about 2-fold the affinity of AE1 for DIDS. It is suggested that half of the subunits are modified near the transport site by EAC.

Keywords: Band 3; Carbodiimide; Dissociation constant; Erythrocyte membrane; Stilbenedisulfonate

  • [1] Lepke, S., Heberle, J. and Passow, H. The band 3 protein: anion exchanger and anion-proton cotransporter. in: Red Cell Membrane Transport in Health and Disease (Bernhardt, I. and Ellory J.C., Eds.), Springer, Heidelberg, 2003, 221–252. Google Scholar

  • [2] Knauf, P.A. and Pal, P. Band 3 mediated transport. in: Red Cell Membrane Transport in Health and Disease (Bernhardt, I. and Ellory J.C., Eds.), Springer, Heidelberg, 2003, 253–301. Google Scholar

  • [3] Wieth, J.O. and Bjerrum, P.J. Titration of transport and modifier sites in the red cell anion transport system. J. Gen. Physiol. 79 (1982b) 253–282. http://dx.doi.org/10.1085/jgp.79.2.253CrossrefGoogle Scholar

  • [4] Zaki, L. Inhibition of anion transport across red blood cells with 1,2-cyclohexanedione. Biochim. Biophys. Acta 99 (1981) 243–251. Google Scholar

  • [5] Wieth, J.O., Bjerrum, P.J. and Borders, C.L. Jr. Irreversible inhibition of red cell chloride exchange with phenylglyoxal, an arginine-specific reagent. J. Gen. Physiol. 79 (1982c) 283–312. http://dx.doi.org/10.1085/jgp.79.2.283CrossrefGoogle Scholar

  • [6] Janas, T., Janas, T., Kilian, M. and Przestalski, S. Activation energy of sulphate ion transport across methylated human erythrocyte membranes. FEBS Lett. 236 (1988) 93–94. http://dx.doi.org/10.1016/0014-5793(88)80291-6CrossrefGoogle Scholar

  • [7] Wieth, J.O., Andersen, O.S., Brahm, J., Bjerrum, P.J. and Borders, C.L.Jr. Chloride-bicarbanate exchange in red blood cells. Philos. Trans. R. Soc. Lond, Series B 299 (1982a) 383–399. http://dx.doi.org/10.1098/rstb.1982.0139CrossrefGoogle Scholar

  • [8] Milanick, M.A. and Gunn, R.B. Proton-sulfate cotransport: mechanism of H+ and sulfate addition to the chloride transporter of human red blood cells. J. Gen. Physiol. 79 (1982) 87–113. http://dx.doi.org/10.1085/jgp.79.1.87CrossrefGoogle Scholar

  • [9] Milanick, M.A. and Gunn, R.B. Proton-sulfate cotransport: external proton activation of sulfate influx into human red blood cells. Am. J. Physiol. 247 (1984) C247–C259. Google Scholar

  • [10] Cabantchik, Z. I. and Greger, G. Chemical probes for anion transporters of mammalian cell membranes. Am. J. Physiol. 262 (1992) C803–C827. Google Scholar

  • [11] Ship, S., Shami, Y., Breuer, W. and Rothstein, A. Synthesis of tritiated 4,4’-diisothiocyano-2,2’-stilbene disulfonic acid ([3H]DIDS) and its covalent reaction with sites related to anion transport in human red blood cells. J. Membr. Biol. 33 (1977) 311–323. http://dx.doi.org/10.1007/BF01869522CrossrefGoogle Scholar

  • [12] Bjerrum, P.J., Andersen, O.S., Borders, C.L.Jr. and Wieth, J.O. Functional carboxyl groups in the red cell anion exchange protein. Modification with an impermeant carbodiimide. J. Gen. Physiol. 93 (1989) 813–839. http://dx.doi.org/10.1085/jgp.93.5.813CrossrefGoogle Scholar

  • [13] Funder, J., Tosteson, D.C. and Wieth, J.O. Effects of bicarbonate on lithium transport in human red cells. J. Gen. Physiol. 71 (1978) 721–746. http://dx.doi.org/10.1085/jgp.71.6.721CrossrefGoogle Scholar

  • [14] Funder, J. and Wieth, J.O. Chloride transport in human erythrocytes and ghosts: a quantitative comparison. J. Physiol. 262 (1976) 679–698. Google Scholar

  • [15] Janas, T., Bjerrum, P.J., Brahm, J. and Wieth, J.O. Kinetics of reversible DIDS inhibition of chloride self exchange in human erythrocytes. Am. J. Physiol. 257 (1989) C601–C606. Google Scholar

  • [16] Janas, T. and Janas, T. Reversible DIDS binding to Band 3 protein in human erythrocyte membranes. Mol. Membr. Biol. 17 (2000) 109–115. http://dx.doi.org/10.1080/09687680050117138CrossrefGoogle Scholar

  • [17] Alder, H.L., Roessler, E.B. Introduction to probability and statistics, Freeman and Company, San Francisco, 1977. Google Scholar

  • [18] Bjerrum, P.J. Identification and location of amino acid residues essential for anion transport in red cell membranes. in: Structure and function of membrane proteins (Quagliariello, E. and Palmiari, F., Eds.), Elsevier, Amsterdam, 1983, 107–115. Google Scholar

  • [19] Craik, J.D. and Reithmeier, R.A.F. Reversible and irreversible inhibition of phosphate transport in human erythrocytes by a membrane impermeant carbidiimide, J. Biol. Chem. 260 (1985) 2404–2408. Google Scholar

  • [20] Werner, P.K. and Reithmeier, R.A.F. The mechanisms of inhibition of anion exchange in human erythrocytes by 1-ethyl-3-[3-(trimethylammonio)propyl] carbodiimide. Biochim. Biophys. Acta 942 (1988) 19–32. http://dx.doi.org/10.1016/0005-2736(88)90270-2CrossrefGoogle Scholar

  • [21] Miller, Ch. Ion channels: doing hard chemistry with hard ions. Curr. Opin. Chem. Biol. 4 (2000) 148–151. http://dx.doi.org/10.1016/S1367-5931(99)00068-XCrossrefGoogle Scholar

  • [22] Salhany, J.M., Sloan, R.L. and Cordes, K.S. The carboxyl side chain of glutamate 681 interacts with a chloride binding modifier site that allosterically modulates the dimeric conformational state of band 3 (AE1). Implications for the mechanism of anion/proton cotransport. Biochemistry 42 (2003) 1589–1602. http://dx.doi.org/10.1021/bi0205294CrossrefGoogle Scholar

  • [23] Jennings, M.L. Evidence for a second binding/transport site for chloride in erythrocyte anion transporter AE1 modified at glutamate 681. Biophys. J. 88 (2005) 2681–2691. http://dx.doi.org/10.1529/biophysj.104.056812Google Scholar

  • [24] Falke, J.J. and Chan, S.I. Molecular Mechanisms of Band 3 inhibitors. 1. Transport site inhibitors. Biochemistry 25 (1986) 7888–7894. http://dx.doi.org/10.1021/bi00372a015Google Scholar

  • [25] Romero, M.L., Fulton, C.M. and Boron, W.F. The SLC4 family of HCO3− transporters. Pflugers Arch. Eur. J. Physiol. 447 (2004) 495–509. http://dx.doi.org/10.1007/s00424-003-1180-2Google Scholar

  • [26] Alper, S.L. Molecular physiology and genetics of Na+-independent SLC4 anion exchangers. J. Exp. Biol. 212 (2009) 1672–1683. http://dx.doi.org/10.1242/jeb.029454Google Scholar

  • [27] Kopito, R.R., Lee, B.S., Simmons, D.M., Lindsey, A.E., Morgans, C.W. and Schneider, K. Regulation of intracellular pH by a neuronal homolog of the erythrocyte anion exchanger. Cell 59 (1989) 927–937. http://dx.doi.org/10.1016/0092-8674(89)90615-6CrossrefGoogle Scholar

  • [28] Lu, J. and Boron, W.F. Reversible and irreversible interactions of DIDS with the human electrogenic Na/HCO3 cotransporter NBCe1-A: role of lysines in the KKMIK motif of TM5. Am. J. Physiol. 292 (2007) C1787–C1798. http://dx.doi.org/10.1152/ajpcell.00267.2006CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2011-03-26

Published in Print: 2011-06-01

Citation Information: Cellular and Molecular Biology Letters, Volume 16, Issue 2, Pages 342–358, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-011-0010-3.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Izabela Sadowska-Bartosz, Mirosław Soszyński, Stanisław Ułaszewski, Young Ko, and Grzegorz Bartosz
Cellular and Molecular Biology Letters, 2014, Volume 19, Number 2
Krzysztof Nowotarski, Karolina Sapoń, Monika Kowalska, Tadeusz Janas, and Teresa Janas
Cellular and Molecular Biology Letters, 2013, Volume 18, Number 4

Comments (0)

Please log in or register to comment.
Log in