Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Editor-in-Chief: /

IMPACT FACTOR 2016: 1.260
5-year IMPACT FACTOR: 1.506

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.615
Source Normalized Impact per Paper (SNIP) 2016: 0.470

See all formats and pricing
More options …
Volume 16, Issue 3 (Sep 2011)

Exploring the binding dynamics of BAR proteins

Doron Kabaso / Ekaterina Gongadze / Jernej Jorgačevski / Marko Kreft / Ursula Rienen / Robert Zorec / Aleš Iglič
Published Online: 2011-07-23 | DOI: https://doi.org/10.2478/s11658-011-0013-0


We used a continuum model based on the Helfrich free energy to investigate the binding dynamics of a lipid bilayer to a BAR domain surface of a crescent-like shape of positive (e.g. I-BAR shape) or negative (e.g. F-BAR shape) intrinsic curvature. According to structural data, it has been suggested that negatively charged membrane lipids are bound to positively charged amino acids at the binding interface of BAR proteins, contributing a negative binding energy to the system free energy. In addition, the cone-like shape of negatively charged lipids on the inner side of a cell membrane might contribute a positive intrinsic curvature, facilitating the initial bending towards the crescent-like shape of the BAR domain. In the present study, we hypothesize that in the limit of a rigid BAR domain shape, the negative binding energy and the coupling between the intrinsic curvature of negatively charged lipids and the membrane curvature drive the bending of the membrane. To estimate the binding energy, the electric potential at the charged surface of a BAR domain was calculated using the Langevin-Bikerman equation. Results of numerical simulations reveal that the binding energy is important for the initial instability (i.e. bending of a membrane), while the coupling between the intrinsic shapes of lipids and membrane curvature could be crucial for the curvature-dependent aggregation of negatively charged lipids near the surface of the BAR domain. In the discussion, we suggest novel experiments using patch clamp techniques to analyze the binding dynamics of BAR proteins, as well as the possible role of BAR proteins in the fusion pore stability of exovesicles.

Keywords: BAR proteins; Binding dynamics; Patch clamp; Charged lipids; Intrinsic shape

  • [1] Farsad, K., Ringstad, N., Takei, K., Floyd, S.R., Rose, K. and De Camilli P. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 105 (2001) 193–200. http://dx.doi.org/10.1083/jcb.200107075CrossrefGoogle Scholar

  • [2] Tarricone, C., Xiao, B., Justin, N., Walker, P.A., Rittinger, K., Gamblin, S.J. and Smerdon, S.J. The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways. Nature 411 (2001) 215–219. http://dx.doi.org/10.1038/35075620CrossrefGoogle Scholar

  • [3] Zimmerberg, Y.J. and Kozlov, M.M. How proteins produce cellular curvature. Nat. Rev. Mol. Cell Biol. 7 (2006) 9–19. http://dx.doi.org/10.1038/nrm1784CrossrefGoogle Scholar

  • [4] Veksler, A. and Gov, N.S. Phase transitions of the coupled membranecytoskeleton modify cellular shape. Biophys. J. 11 (2007) 3798–3810. http://dx.doi.org/10.1529/biophysj.107.113282Web of ScienceCrossrefGoogle Scholar

  • [5] Frost, A., Unger, V.M. and De Camilli, P. The BAR Domain Superfamily: Membrane-Molding Macromolecules. Cell 137 (2009) 191–196. http://dx.doi.org/10.1016/j.cell.2009.04.010CrossrefWeb of ScienceGoogle Scholar

  • [6] Wang, Q., Navarro, M.V., Peng, G., Molinelli, E., Lin-Goh, S. and Judson, B.L., Rajashankar, K.R. and Sondermann, H. Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein Pacsin/Syndapin. Proc. Nat. Acad. Sci. USA 106 (2009) 12700–12705. http://dx.doi.org/10.1073/pnas.0902974106CrossrefGoogle Scholar

  • [7] Peter, B.J., Kent, H.M., Mills, I.G., Vallis, Y., Butler, P.J., Evans, P.R. and McMahon, H.T. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303 (2004) 495–499. http://dx.doi.org/10.1126/science.1092586CrossrefGoogle Scholar

  • [8] Itoh, T. and De Camilli, P. BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. Biochim. Biophys. Acta 1761 (2006) 897–912. Google Scholar

  • [9] Heath, R.J.W. and Insall, R.H. F-BAR domains: multifunctional regulators of membrane curvature. J. Cell Sci. 121 (2008) 1951–1954. http://dx.doi.org/10.1242/jcs.023895CrossrefWeb of ScienceGoogle Scholar

  • [10] Shimada, A., Takano, K., Shirouzu, M., Hanawa-Suetsugu, K., Terada, T., Toyooka, K., Umehara, T., Yamamoto, M., Yokoyama, S. and Suetsugu, S. Mapping of the basic amino-acid residues responsible for tubulation and cellular protrusion by the EFC/F-BAR domain of pacsin2/syndapin II. FEBS Lett. 584 (2010) 1111–1118. http://dx.doi.org/10.1016/j.febslet.2010.02.058Web of ScienceGoogle Scholar

  • [11] Zimmerberg, J. and McLaughlin, S. Membrane curvature: How BAR domains bend bilayers. Curr. Biol. 14 (2004) 250–252. http://dx.doi.org/10.1016/j.cub.2004.02.060CrossrefGoogle Scholar

  • [12] Iglič, A., Slivnik, T. and Kralj-Iglič, V. Elastic properties of biological membranes influenced by attached proteins. J. Biomech. 40 (2007) 2492–2500. http://dx.doi.org/10.1016/j.jbiomech.2006.11.005Web of ScienceCrossrefGoogle Scholar

  • [13] Kabaso, D., Shlomovitz, R., Auth, T., Lew, V.L. and Gov, N.S. Curling and local shape changes of red blood cell membranes driven by cytoskeletal reorganization. Biophys. J. 99 (2010) 808–816. http://dx.doi.org/10.1016/j.bpj.2010.04.067Web of ScienceCrossrefGoogle Scholar

  • [14] Kabaso, D., Gongadze, E., Perutkova, S., Kralj-Iglič, V., Matschegewski, C., Beck, U., van Rienen, U. and Iglič, A. Mechanics and electrostatics of the interactions between osteoblasts and titanium surface. Comp. Meth. Biomech. Biomed. Eng. (2011) in print. CrossrefGoogle Scholar

  • [15] Kabaso, D., Lokar, M., Kralj-Iglič, V., Veranič, P. and Iglič, A. Temperature, cholera toxin-B and degree of malignant transformation are factors that influence formation of membrane nanotubes in urothelial cancer cell line. Int. J. Nanomed. 6 (2011) 495–509. CrossrefGoogle Scholar

  • [16] Kralj-Iglič, V., Heinrich, V., Svetina, S. and Zeks, B. Free energy of closed membrane with anisotropic inclusions. Eur. Phys. J. B. 10 (1999) 5–8. http://dx.doi.org/10.1007/s100510050822CrossrefGoogle Scholar

  • [17] Božič, B., Kralj-Iglič, V. and Svetina, S. Coupling between vesicle shape and lateral distribution of mobile membrane inclusion. Phys. Rev. E 73 (2006) 041915. http://dx.doi.org/10.1103/PhysRevE.73.041915CrossrefGoogle Scholar

  • [18] Cai, W. and Lubensky, T.C. Covariant hydrodynamics of fluid membranes. Phys. Rev. Lett. 73 (1994) 1186–1189. http://dx.doi.org/10.1103/PhysRevLett.73.1186CrossrefGoogle Scholar

  • [19] Helfrich, W. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C 28 (1973) 693–703. Google Scholar

  • [20] Gongadze, E., van Rienen, U., Kralj-Iglič, V. and Iglič, A. Langevin Poisson-Boltzmann equation: point-like ions and water dipoles near charged membrane surface. Gen. Physiol. Biophys. 30 (2011) in print. Web of ScienceGoogle Scholar

  • [21] Iglič, A., Gongadze, E. and Bohinc, K. Excluded volume effect and orientational ordering near charged surface in solution of ions and Langevin dipoles. Bioelectrochemistry 79 (2010) 223–227. http://dx.doi.org/10.1016/j.bioelechem.2010.05.003CrossrefWeb of ScienceGoogle Scholar

  • [22] Gongadze, E, Bohinc, K., van Rienen, U., Kralj-Iglič, V. and Iglič, A. Spatial variation of permittivity near a charged membrane in contact with electrolyte solution, in: Advances in planar lipid bilayers and liposomes (Iglič, A. Ed.) 11th volume, Elsevier, 2010, 101–126. Google Scholar

  • [23] Hamill, O., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Eur. J. Phys. 391 (1981) 85–100. http://dx.doi.org/10.1007/BF00656997CrossrefGoogle Scholar

  • [24] Hille, B. Gating Mechanisms: Kinetic Thinking. In: Ionic Channels of Excitable Membranes (1992) 575–603. Google Scholar

  • [25] Sikdar, S.K., Zorec, R. and Mason, W.T. cAMP directly facilitates Cainduced exocytosis in bovine lactotrophs. FEBS Lett. 273 (1990) 150–154. http://dx.doi.org/10.1016/0014-5793(90)81072-VCrossrefGoogle Scholar

  • [26] Rupnik, M. and Zorec, R. Cytosolic chloride ions stimulate Ca2+-induced exocytosis in melanotrophs. FEBS Lett. 303 (1992) 221–223. http://dx.doi.org/10.1016/0014-5793(92)80524-KGoogle Scholar

  • [27] Kreft, M. and Zorec, R. Cell-attached measurements of attofarad capacitance steps in rat melanotrophs. Pflügers Archiv. 434 (1997) 212–214. http://dx.doi.org/10.1007/s004240050387CrossrefGoogle Scholar

  • [28] Fosnaric, M., Iglič, A., Kroll, D. and May, S. Monte Carlo simulations of complex formation between a mixed fluid vesicle and a charged colloid. J. Chem. Phys. 131 (2009) 105103. http://dx.doi.org/10.1063/1.3191782CrossrefGoogle Scholar

  • [29] Khelashvili, G., Harries, D. and Weinstein, H. Modeling membrane deformations and lipid demixing upon protein-membrane interaction: The BAR dimer adsorption. Biophys. J. 97 (2009) 1626–1635. http://dx.doi.org/10.1016/j.bpj.2009.07.006Web of ScienceCrossrefGoogle Scholar

  • [30] Jorgačevski, J., Fošnarič, M., Vardjan, N., Stenovec, M., Potokar, M., Kreft, M., Kralj-Iglič, V., Iglič, A. and Zorec, R. Fusion pore stability of peptidergic vesicles. Mol. Membr. Biol. 27 (2010) 65–80. http://dx.doi.org/10.3109/09687681003597104Web of ScienceCrossrefGoogle Scholar

  • [31] Neher, E. and Marty, A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc. Natl. Acad. Sci. USA 79 (1982) 6712–6716. http://dx.doi.org/10.1073/pnas.79.21.6712CrossrefGoogle Scholar

  • [32] Darios, F., Wasser, C., Shakirzyanova, A., Giniatullin, A., Goodman, K., Munoz-Bravo, J.L., Raingo, J., Jorgacevski, J., Kreft, M., Zorec, R., Rosa, J.M., Gandia, L., Gutirrez, L.M., Binz, T., Giniatullin, R., Kavalali, E.T. and Davletov, B. Sphingosine facilitates SNARE complex assembly and activates synaptic vesicle exocytosis. Neuron 62 (2009) 683–694. http://dx.doi.org/10.1016/j.neuron.2009.04.024Web of ScienceCrossrefGoogle Scholar

  • [33] Blood, P. and Voth, G. Direct observation of bin/amphiphysin/rvs (BAR) domain-induced membrane curvature by means of molecular dynamics simulations. Proc. Nat. Acad. Sci. USA 103 (2006) 15068–15072. http://dx.doi.org/10.1073/pnas.0603917103CrossrefGoogle Scholar

  • [34] Kabaso, D., Gongadze, E., Elter, P., van Rienen, U., Gimsa, J., Kralj-Iglič, V. and Iglič, A. Attachment of rod-like (BAR) proteins and membrane shape. Mini Rev. Med. Chem. 11 (2011) 272–282. http://dx.doi.org/10.2174/138955711795305353Web of ScienceCrossrefGoogle Scholar

  • [35] Lobasso, S., Saponetti, M.S., Polidoro, F., Lopalco, P., Urbanija, J., Kralj-Iglič, V. and Corcelli, A. Archaebacterial lipid membranes as models to study the interaction of 10-N-nonyl acridine orange with phospholipids. Chem. Phys. Lipids. 157 (2009) 12–20. http://dx.doi.org/10.1016/j.chemphyslip.2008.09.002CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2011-07-23

Published in Print: 2011-09-01

Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-011-0013-0.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Nina Vardjan, Jernej Jorgačevski, and Robert Zorec
The Neuroscientist, 2013, Volume 19, Number 2, Page 160
Doron Kabaso, Ana I. Calejo, Jernej Jorgačevski, Marko Kreft, Robert Zorec, and Aleš Iglič
The Scientific World Journal, 2012, Volume 2012, Page 1

Comments (0)

Please log in or register to comment.
Log in