Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Editor-in-Chief: /


IMPACT FACTOR 2016: 1.260
5-year IMPACT FACTOR: 1.506

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.615
Source Normalized Impact per Paper (SNIP) 2016: 0.470

Online
ISSN
1689-1392
See all formats and pricing
More options …
Volume 16, Issue 3 (Sep 2011)

Perinatal sources of mesenchymal stem cells: Wharton’s jelly, amnion and chorion

Malgorzata Witkowska-Zimny / Edyta Wrobel
Published Online: 2011-07-23 | DOI: https://doi.org/10.2478/s11658-011-0019-7

Abstract

Recently, stem cell biology has become an interesting topic, especially in the context of treating diseases and injuries using transplantation therapy. Several varieties of human stem cells have been isolated and identified in vivo and in vitro. Ideally, stem cells for regenerative medical application should be found in abundant quantities, harvestable in a minimally invasive procedure, then safely and effectively transplanted to either an autologous or allogenic host. The two main groups of stem cells, embryonic stem cells and adult stem cells, have been expanded to include perinatal stem cells. Mesenchymal stem cells from perinatal tissue may be particularly useful in the clinic for autologous transplantation for fetuses and newborns, and after banking in later stages of life, as well as for in utero transplantation in case of genetic disorders.

This review highlights the characteristics and therapeutic potential of three human mesenchymal stem cell types obtained from perinatal sources: Wharton’s jelly, the amnion, and the chorion.

Keywords: Perinatal stem cells; Wharton’s jelly; Amnion; Chorion; Placenta; Mesenchymal stem/stromal cells; Regenerative medicine

  • [1] Kiessling, A.A. and Anderson, S.C. Human embryonic stem cells. (Jonas and Bartlett), Boston (2003). Google Scholar

  • [2] Mitalipov, S. and Wolf, D. Totipotency, pluripotency and nuclear reprogramming. Adv. Biochem. Eng. Biotechnol. 114 (2009) 185–199. Google Scholar

  • [3] Solter, D. From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nat. Rev. Genet. 7 (2006) 319–327. http://dx.doi.org/10.1038/nrg1827CrossrefGoogle Scholar

  • [4] Campagnoli, C., Roberts, I. A., Kumar, S., Bennett, P.R., Bellantuono, I. and Fisk, N.M. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98 (2001) 2396–2402. http://dx.doi.org/10.1182/blood.V98.8.2396CrossrefGoogle Scholar

  • [5] Witkowska-Zimny, M. and Walenko, K. Stem cells from adipose tissue. Cell Mol. Biol. Lett. 16 (2011) 236–257. http://dx.doi.org/10.2478/s11658-011-0005-0CrossrefGoogle Scholar

  • [6] van de Ven, C., Collins, D., Bradley, M.B., Morris, E. and Cairo, M.S. The potential of umbilical cord blood multipotent stem cells for nonhematopoietic tissue and cell regeneration. Exp. Hematol. 35 (2007) 1753–1765. http://dx.doi.org/10.1016/j.exphem.2007.08.017CrossrefGoogle Scholar

  • [7] Miao, Z., Jin, J., Chen, L., Zhu, J., Huang, W., Zhao, J., Qian, H. and Zhang, X. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol. Int. 30 (2006) 681–687. http://dx.doi.org/10.1016/j.cellbi.2006.03.009CrossrefGoogle Scholar

  • [8] Mizokami, T., Hisha, H., Okazaki, S., Takaki, T., Wang, X.L., Song, C.Y., Li, Q., Kato, J., Hosaka, N., Inaba, M., Kanzaki, H. and Ikehara, S. Preferential expansion of human umbilical cord blood-derived CD34-positive cells on major histocompatibility complex-matched amnion-derived mesenchymal stem cells. Haematologica 94 (2009) 618–628. http://dx.doi.org/10.3324/haematol.2008.004705CrossrefGoogle Scholar

  • [9] Romanov, Y.A., Svintsitskaya, V.A. and Smirnov, V.N. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21 (2003) 105–110. http://dx.doi.org/10.1634/stemcells.21-1-105CrossrefGoogle Scholar

  • [10] Kobayashi, K., Kubota, T. and Aso, T. Study on myofibroblast differentiation in the stromal cells of Wharton’s jelly: expression and localization of alpha-smooth muscle actin. Early Hum Dev. 51 (1998) 223–233. http://dx.doi.org/10.1016/S0378-3782(97)00123-0CrossrefGoogle Scholar

  • [11] Mitchell, K.E., Weiss, M.L., Mitchell, B.M., Martin, P., Davis, D., Morales, L., Helwig, B., Beerenstrauch, M., Abou-Easa, K., Hildreth, T., Troyer, D. and Medicetty, S. Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 21 (2003) 50–60. http://dx.doi.org/10.1634/stemcells.21-1-50CrossrefGoogle Scholar

  • [12] Weiss, M.L., Medicetty, S., Bledsoe, A.R., Rachakatla, R.S., Choi, M., Merchav, S., Luo, Y., Rao, M.S., Velagaleti, G. and Troyer, D. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells 24 (2006) 781–792. http://dx.doi.org/10.1634/stemcells.2005-0330CrossrefGoogle Scholar

  • [13] Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. and Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8 (2006) 315–317. http://dx.doi.org/10.1080/14653240600855905CrossrefGoogle Scholar

  • [14] La Rocca, G., Anzalone, R. and Farina, F. The expression of CD68 in human umbilical cord mesenchymal stem cells: new evidences of presence in non-myeloid cell types. Scand. J. Immunol. 70 (2009) 161–162. http://dx.doi.org/10.1111/j.1365-3083.2009.02283.xCrossrefGoogle Scholar

  • [15] Weiss, M.L., Anderson, C., Medicetty, S., Seshareddy, K.B., Weiss, R.J., VanderWerff, I., Troyer, D. and McIntosh, K.R. Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells 26 (2008) 2865–2874. http://dx.doi.org/10.1634/stemcells.2007-1028CrossrefGoogle Scholar

  • [16] Troyer, D.L. and Weiss, M.L. Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 26 (2008) 591–599. http://dx.doi.org/10.1634/stemcells.2007-0439CrossrefGoogle Scholar

  • [17] Fong, C.Y., Chak, L.L., Biswas, A., Tan, J.H., Gauthaman, K., Chan, W.K. and Bongso, A. Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell. Rev. 7 (2011) 1–16. http://dx.doi.org/10.1007/s12015-010-9166-xCrossrefGoogle Scholar

  • [18] Fong, C.Y., Chak, L.L., Subramanian, A., Tan, J.H., Biswas, A., Gauthaman, K., Choolani, M., Chan, W.K. and Bongso, A. A three dimensional anchorage independent in vitro system for the prolonged growth of embryoid bodies to study cancer cell behaviour and anticancer agents. Stem Cell Rev. 5 (2009) 410–419. http://dx.doi.org/10.1007/s12015-009-9092-yCrossrefGoogle Scholar

  • [19] Djouad, F., Charbonnier, L.M., Bouffi, C., Louis-Plence, P., Bony, C., Apparailly, F., Cantos, C., Jorgensen, C. and Noel, D. Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 25 (2007) 2025–2032. http://dx.doi.org/10.1634/stemcells.2006-0548CrossrefGoogle Scholar

  • [20] La Rocca, G., Anzalone, R., Corrao, S., Magno, F., Loria, T., Lo Iacono, M., Di Stefano, A., Giannuzzi, P., Marasa, L., Cappello, F., Zummo, G. and Farina, F. Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochem. Cell Biol. 131 (2009) 267–282. http://dx.doi.org/10.1007/s00418-008-0519-3CrossrefGoogle Scholar

  • [21] Le Blanc, K. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 5 (2003) 485–489. http://dx.doi.org/10.1080/14653240310003611CrossrefGoogle Scholar

  • [22] Chen, K., Wang, D., Du, W.T., Han, Z.B., Ren, H., Chi, Y., Yang, S.G., Zhu, D., Bayard, F. and Han, Z.C. Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clin. Immunol. 135 (2010) 448–458. http://dx.doi.org/10.1016/j.clim.2010.01.015Google Scholar

  • [23] Fong, C.Y., Richards, M., Manasi, N., Biswas, A. and Bongso, A. Comparative growth behaviour and characterization of stem cells from human Wharton’s jelly. Reprod. Biomed. Online 15 (2007) 708–718. http://dx.doi.org/10.1016/S1472-6483(10)60539-1CrossrefGoogle Scholar

  • [24] Ayuzawa, R., Doi, C., Rachakatla, R.S., Pyle, M.M., Maurya, D.K., Troyer, D. and Tamura, M. Naive human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo. Cancer Lett. 280 (2009) 31–37. http://dx.doi.org/10.1016/j.canlet.2009.02.011CrossrefGoogle Scholar

  • [25] Angelucci, S., Marchisio, M., Di Giuseppe, F., Pierdomenico, L., Sulpizio, M., Eleuterio, E., Lanuti, P., Sabatino, G., Miscia, S. and Di Ilio, C. Proteome analysis of human Wharton’s jelly cells during in vitro expansion. Proteome Sci. 8 (2010) 18. http://dx.doi.org/10.1186/1477-5956-8-18CrossrefGoogle Scholar

  • [26] Wang, H.S., Hung, S.C., Peng, S.T., Huang, C.C., Wei, H.M., Guo, Y.J., Fu, Y.S., Lai, M.C. and Chen, C.C. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22 (2004) 1330–1337. http://dx.doi.org/10.1634/stemcells.2004-0013CrossrefGoogle Scholar

  • [27] Anzalone, R., Iacono, M.L., Corrao, S., Magno, F., Loria, T., Cappello, F., Zummo, G., Farina, F. and La Rocca, G. New emerging potentials for human Wharton’s jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity. Stem Cells Dev. 19 (2010) 423–438. http://dx.doi.org/10.1089/scd.2009.0299CrossrefGoogle Scholar

  • [28] Anzalone, R., Lo Iacono, M., Loria, T., Di Stefano, A., Giannuzzi, P., Farina, F. and La Rocca, G., Wharton’s Jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Rev. 7 (2011) 342–363, DOI: 10.1007/s12015-010-9196-4. http://dx.doi.org/10.1007/s12015-010-9196-4Google Scholar

  • [29] Baksh, D., Yao, R. and Tuan, R.S. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25 (2007) 1384–1392. http://dx.doi.org/10.1634/stemcells.2006-0709CrossrefGoogle Scholar

  • [30] Hou, T., Xu, J., Wu, X., Xie, Z., Luo, F., Zhang, Z. and Zeng, L. Umbilical cord Wharton’s Jelly: a new potential cell source of mesenchymal stromal cells for bone tissue engineering. Tissue Eng. Part A 15 (2009) 2325–2334. http://dx.doi.org/10.1089/ten.tea.2008.0402CrossrefGoogle Scholar

  • [31] Hildebrandt, C., Buth, H. and Thielecke, H. Influence of cell culture media conditions on the osteogenic differentiation of cord blood-derived mesenchymal stem cells. Ann. Anat. 191 (2009) 23–32. http://dx.doi.org/10.1016/j.aanat.2008.09.009CrossrefGoogle Scholar

  • [32] Schneider, R.K., Puellen, A., Kramann, R., Raupach, K., Bornemann, J., Knuechel, R., Perez-Bouza, A. and Neuss, S. The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells and matrix remodelling in three-dimensional collagen scaffolds. Biomaterials 31 (2010) 467–480. http://dx.doi.org/10.1016/j.biomaterials.2009.09.059CrossrefGoogle Scholar

  • [33] Penolazzi, L., Vecchiatini, R., Bignardi, S., Lambertini, E., Torreggiani, E., Canella, A., Franceschetti, T., Calura, G., Vesce, F. and Piva, R. Influence of obstetric factors on osteogenic potential of umbilical cord-derived mesenchymal stem cells. Reprod. Biol. Endocrinol. 7 (2009) DOI10.1186/1477-7827-7-106. CrossrefGoogle Scholar

  • [34] Chen, M.Y., Lie, P.C., Li, Z.L. and Wei, X. Endothelial differentiation of Wharton’s jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells. Exp. Hematol. 37 (2009) 629–640. http://dx.doi.org/10.1016/j.exphem.2009.02.003CrossrefGoogle Scholar

  • [35] Kadam, S.S., Tiwari, S. and Bhonde, R.R. Simultaneous isolation of vascular endothelial cells and mesenchymal stem cells from the human umbilical cord. In Vitro Cell Dev. Biol. Anim. 45 (2009) 23–27. http://dx.doi.org/10.1007/s11626-008-9155-4CrossrefGoogle Scholar

  • [36] Tsai, P.C., Fu, T.W., Chen, Y.M., Ko, T.L., Chen, T.H., Shih, Y.H., Hung, S.C. and Fu, Y. The therapeutic potential of human umbilical mesenchymal stem cells from Wharton’s jelly in the treatment of rat liver fibrosis. Liver Transpl. 15 (2009) 484–495. http://dx.doi.org/10.1002/lt.21715CrossrefGoogle Scholar

  • [37] Wang, H.S., Shyu, J.F., Shen, W.S., Hsu, H.C., Chi, T.C., Chen, C.P., Huang, S.W., Shyr, Y.M., Tang, K.T. and Chen, T.H. Transplantation of insulin producing cells derived from umbilical cord stromal mesenchymal stem cells to treat NOD mice. Cell Transplant. (2010) DOI: 10.3727/096368910X522270. CrossrefGoogle Scholar

  • [38] Lund, R.D., Wang, S., Lu, B., Girman, S., Holmes, T., Sauve, Y., Messina, D.J., Harris, I.R., Kihm, A.J., Harmon, A.M., Chin, F.Y., Gosiewska, A. and Mistry, S.K. Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem Cells 25 (2007) 602–611. http://dx.doi.org/10.1634/stemcells.2006-0308CrossrefGoogle Scholar

  • [39] Friedman, R., Betancur, M., Boissel, L., Tuncer, H., Cetrulo, C. and Klingemann, H. Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation. Biol. Blood Marrow Transplant. 13 (2007) 1477–1486. http://dx.doi.org/10.1016/j.bbmt.2007.08.048CrossrefGoogle Scholar

  • [40] Malkowski, A., Sobolewski, K., Jaworski, S. and Bankowski, E. FGF binding by extracellular matrix components of Wharton’s jelly. Acta Biochim. Pol. 54 (2007) 357–363. Google Scholar

  • [41] Benirschke, K.K.P. Pathology of the human placenta. Springer-Verlag, New York (1995). Google Scholar

  • [42] Horwitz, E.M., Le Blanc, K., Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F.C., Deans, R.J., Krause, D.S. and Keating, A. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7 (2005) 393–395. http://dx.doi.org/10.1080/14653240500319234CrossrefGoogle Scholar

  • [43] Miki, T., Lehmann, T., Cai, H., Stolz, D.B. and Strom, S.C. Stem cell characteristics of amniotic epithelial cells. Stem Cells 23 (2005) 1549–1559. http://dx.doi.org/10.1634/stemcells.2004-0357CrossrefGoogle Scholar

  • [44] In ’t Anker, P.S., Scherjon, S.A., Kleijburg-van der Keur, C., de Groot-Swings, G.M., Claas, F.H., Fibbe, W.E. and Kanhai, H.H. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22 (2004) 1338–1345. http://dx.doi.org/10.1634/stemcells.2004-0058CrossrefGoogle Scholar

  • [45] Bilic, G., Zeisberger, S.M., Mallik, A.S., Zimmermann, R. and Zisch, A.H. Comparative characterization of cultured human term amnion epithelial and mesenchymal stromal cells for application in cell therapy. Cell Transplant. 17 (2008) 955–968. http://dx.doi.org/10.3727/096368908786576507CrossrefGoogle Scholar

  • [46] Alviano, F., Fossati, V., Marchionni, C., Arpinati, M., Bonsi, L., Franchina, M., Lanzoni, G., Cantoni, S., Cavallini, C., Bianchi, F., Tazzari, P.L., Pasquinelli, G., Foroni, L., Ventura, C., Grossi, A. and Bagnara, G.P. Term Amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to differentiate into endothelial cells in vitro. BMC Dev. Biol. 7 (2007) DOI:10.1186/1471-213X-7-11. CrossrefGoogle Scholar

  • [47] Zhang, Y., Adachi, Y., Suzuki, Y., Minamino, K., Iwasaki, M., Hisha, H., Song, C.Y., Kusafuka, K., Nakano, K., Koike, Y., Wang, J., Koh, E., Cui, Y., Li, C. and Ikehara, S. Simultaneous injection of bone marrow cells and stromal cells into bone marrow accelerates hematopoiesis in vivo. Stem Cells 22 (2004) 1256–1262. http://dx.doi.org/10.1634/stemcells.2004-0173CrossrefGoogle Scholar

  • [48] Koizumi, N.J., Inatomi, T.J., Sotozono, C.J., Fullwood, N.J., Quantock, A.J. and Kinoshita, S. Growth factor mRNA and protein in preserved human amniotic membrane. Curr. Eye. Res. 20 (2000) 173–177. CrossrefGoogle Scholar

  • [49] Fauza, D. Amniotic fluid and placental stem cells. Best Pract. Res. Clin. Obstet. Gynaecol. 18 (2004) 877–891. http://dx.doi.org/10.1016/j.bpobgyn.2004.07.001CrossrefGoogle Scholar

  • [50] Guillot, P.V., O’Donoghue, K., Kurata, H. and Fisk, N.M. Fetal stem cells: betwixt and between. Semin. Reprod. Med. 24 (2006) 340–347. http://dx.doi.org/10.1055/s-2006-952149CrossrefGoogle Scholar

  • [51] Prusa, A.R. and Hengstschlager, M. Amniotic fluid cells and human stem cell research: a new connection. Med. Sci. Monit. 8 (2002) 253–257. Google Scholar

  • [52] Tsai, M.S., Lee, J.L., Chang, Y.J. and Hwang, S.M. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum. Reprod. 19 (2004) 1450–1456. http://dx.doi.org/10.1093/humrep/deh279CrossrefGoogle Scholar

  • [53] De Coppi, P., Bartsch, G., Jr., Siddiqui, M.M., Xu, T., Santos, C.C., Perin, L., Mostoslavsky, G., Serre, A.C., Snyder, E.Y., Yoo, J.J., Furth, M.E., Soker, S. and Atala, A. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25 (2007) 100–106. http://dx.doi.org/10.1038/nbt1274CrossrefGoogle Scholar

  • [54] Antonucci, I., Iezzi, I., Morizio, E., Mastrangelo, F., Pantalone, A., Mattioli-Belmonte, M., Gigante, A., Salini, V., Calabrese, G., Tete, S., Palka, G. and Stuppia, L. Isolation of osteogenic progenitors from human amniotic fluid using a single step culture protocol. BMC Biotechnol. 9 (2009) DOI:10.1186/1472-6750-9-9. CrossrefGoogle Scholar

  • [55] Phermthai, T., Odglun, Y., Julavijitphong, S., Titapant, V., Chuenwattana, P., Vantanasiri, C. and Pattanapanyasat, K. A novel method to derive amniotic fluid stem cells for therapeutic purposes. BMC Cell Biol. 11 (2010) DOI: 10.1186/1471-2121-11-79. CrossrefGoogle Scholar

  • [56] Prusa, A.R., Marton, E., Rosner, M., Bernaschek, G. and Hengstschlager, M. Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Hum. Reprod. 18 (2003) 1489–1493. http://dx.doi.org/10.1093/humrep/deg279Google Scholar

  • [57] Schmidt, D., Achermann, J., Odermatt, B., Breymann, C., Mol, A., Genoni, M., Zund, G. and Hoerstrup, S.P. Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenitor cells as single cell source. Circulation 116 (2007) 64–70. http://dx.doi.org/10.1161/CIRCULATIONAHA.107.184051CrossrefGoogle Scholar

  • [58] Tsai, M.S., Hwang, S.M., Tsai, Y.L., Cheng, F.C., Lee, J.L. and Chang, Y.J. Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol. Reprod. 74 (2006) 545–551. http://dx.doi.org/10.1095/biolreprod.105.046029CrossrefGoogle Scholar

  • [59] Klemmt, P.A., Vafaizadeh, V. and Groner, B. Murine amniotic fluid stem cells contribute mesenchymal but not epithelial components to reconstituted mammary ducts. Stem Cell Res. Ther. 1 (2010) DOI: 10.1186/scrt20. CrossrefGoogle Scholar

  • [60] Chiavegato, A., Bollini, S., Pozzobon, M., Callegari, A., Gasparotto, L., Taiani, J., Piccoli, M., Lenzini, E., Gerosa, G., Vendramin, I., Cozzi, E., Angelini, A., Iop, L., Zanon, G.F., Atala, A., De Coppi, P. and Sartore, S. Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immunodeficient rat. J. Mol. Cell Cardiol. 42 (2007) 746–759. http://dx.doi.org/10.1016/j.yjmcc.2006.12.008CrossrefGoogle Scholar

  • [61] Dzierzak, E. and Robin, C. Placenta as a source of hematopoietic stem cells. Trends Mol. Med. 16 (2010) 361–367. http://dx.doi.org/10.1016/j.molmed.2010.05.005CrossrefGoogle Scholar

  • [62] Zhang, Y., Li, C., Jiang, X., Zhang, S., Wu, Y., Liu, B., Tang, P. and Mao, N. Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells. Exp. Hematol. 32 (2004) 657–664. http://dx.doi.org/10.1016/j.exphem.2004.04.001CrossrefGoogle Scholar

  • [63] Portmann-Lanz, C.B., Schoeberlein, A., Huber, A., Sager, R., Malek, A., Holzgreve, W. and Surbek, D.V. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am. J. Obstet. Gynecol. 194 (2006) 664–673. http://dx.doi.org/10.1016/j.ajog.2006.01.101CrossrefGoogle Scholar

  • [64] Soncini, M., Vertua, E., Gibelli, L., Zorzi, F., Denegri, M., Albertini, A., Wengler, G.S. and Parolini, O. Isolation and characterization of mesenchymal cells from human fetal membranes. J. Tissue Eng. Regen. Med. 1 (2007) 296–305. http://dx.doi.org/10.1002/term.40CrossrefGoogle Scholar

  • [65] Castrechini, N.M., Murthi, P., Gude, N.M., Erwich, J.J., Gronthos, S., Zannettino, A., Brennecke, S.P. and Kalionis, B. Mesenchymal stem cells in human placental chorionic villi reside in a vascular Niche. Placenta 31 (2010) 203–212. http://dx.doi.org/10.1016/j.placenta.2009.12.006CrossrefGoogle Scholar

  • [66] Fukuchi, Y., Nakajima, H., Sugiyama, D., Hirose, I., Kitamura, T. and Tsuji, K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 22 (2004) 649–658. http://dx.doi.org/10.1634/stemcells.22-5-649CrossrefGoogle Scholar

  • [67] Chien, C.C., Yen, B.L., Lee, F.K., Lai, T.H., Chen, Y.C., Chan, S.H. and Huang, H. I. In vitro differentiation of human placenta-derived multipotent cells into hepatocyte-like cells. Stem Cells 24 (2006) 1759–1768. http://dx.doi.org/10.1634/stemcells.2005-0521CrossrefGoogle Scholar

  • [68] Zhao, Y., Wang, H. and Mazzone, T. Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics. Exp. Cell Res. 312 (2006) 2454–2464. http://dx.doi.org/10.1016/j.yexcr.2006.04.008CrossrefGoogle Scholar

  • [69] Poloni, A., Maurizi, G., Babini, L., Serrani, F., Berardinelli, E., Mancini, S., Costantini, B., Discepoli, G. and Leoni, P. Human mesenchymal stem cells from chorionic villi and amniotic fluid are not susceptible to transformation after extensive in vitro expansion. Cell Transplant. (2010) DOI: 10.3727/096368910X536518. CrossrefGoogle Scholar

  • [70] Igura, K., Zhang, X., Takahashi, K., Mitsuru, A., Yamaguchi, S. and Takashi, T.A. Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy 6 (2004) 543–553. http://dx.doi.org/10.1080/14653240410005366-1CrossrefGoogle Scholar

  • [71] Zhang, X., Mitsuru, A., Igura, K., Takahashi, K., Ichinose, S., Yamaguchi, S. and Takahashi, T.A. Mesenchymal progenitor cells derived from chorionic villi of human placenta for cartilage tissue engineering. Biochem. Biophys. Res. Commun. 340 (2006) 944–952. http://dx.doi.org/10.1016/j.bbrc.2005.12.091CrossrefGoogle Scholar

  • [72] Cargnoni, A., Gibelli, L., Tosini, A., Signoroni, P. B., Nassuato, C., Arienti, D., Lombardi, G., Albertini, A., Wengler, G.S. and Parolini, O. Transplantation of allogeneic and xenogeneic placenta-derived cells reduces bleomycininduced lung fibrosis. Cell Transplant. 18 (2009) 405–422. http://dx.doi.org/10.3727/096368909788809857CrossrefGoogle Scholar

  • [73] Li, C., Zhang, W., Jiang, X. and Mao, N. Human-placenta-derived mesenchymal stem cells inhibit proliferation and function of allogeneic immune cells. Cell Tissue Res. 330 (2007) 437–446. http://dx.doi.org/10.1007/s00441-007-0504-5CrossrefGoogle Scholar

  • [74] Kolambkar, Y.M., Peister, A., Soker, S., Atala, A. and Guldberg, R.E. Chondrogenic differentiation of amniotic fluid-derived stem cells. J. Mol. Histol. 38 (2007) 405–413. http://dx.doi.org/10.1007/s10735-007-9118-1CrossrefGoogle Scholar

  • [75] Brooke, G., Rossetti, T., Pelekanos, R., Ilic, N., Murray, P., Hancock, S., Antonenas, V., Huang, G., Gottlieb, D., Bradstock, K. and Atkinson, K. Manufacturing of human placenta-derived mesenchymal stem cells for clinical trials. Br. J. Haematol. 144 (2009) 571–579. http://dx.doi.org/10.1111/j.1365-2141.2008.07492.xCrossrefGoogle Scholar

  • [76] Ilancheran, S., Michalska, A., Peh, G., Wallace, E.M., Pera, M. and Manuelpillai, U. Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol. Reprod. 77 (2007) 577–588. http://dx.doi.org/10.1095/biolreprod.106.055244CrossrefGoogle Scholar

  • [77] Zhao, P., Ise, H., Hongo, M., Ota, M., Konishi, I. and Nikaido, T. Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation 79 (2005) 528–535. http://dx.doi.org/10.1097/01.TP.0000149503.92433.39CrossrefGoogle Scholar

  • [78] Yeh, Y.C., Wei, H.J., Lee, W.Y., Yu, C.L., Chang, Y., Hsu, L.W., Chung, M.F., Tsai, M.S., Hwang, S.M. and Sung, H.W. Cellular cardiomyoplasty with human amniotic fluid stem cells: in vitro and in vivo studies. Tissue Eng. Part A 16 (2010) 1925–1936. http://dx.doi.org/10.1089/ten.tea.2009.0728CrossrefGoogle Scholar

  • [79] Yeh, Y.C., Lee, W.Y., Yu, C.L., Hwang, S.M., Chung, M.F., Hsu, L.W., Chang, Y., Lin, W.W., Tsai, M.S., Wei, H.J. and Sung, H.W. Cardiac repair with injectable cell sheet fragments of human amniotic fluid stem cells in an immune-suppressed rat model. Biomaterials 31 (2010) 6444–6453. http://dx.doi.org/10.1016/j.biomaterials.2010.04.069CrossrefGoogle Scholar

  • [80] Sakuragawa, N., Kakinuma, K., Kikuchi, A., Okano, H., Uchida, S., Kamo, I., Kobayashi, M. and Yokoyama, Y. Human amnion mesenchyme cells express phenotypes of neuroglial progenitor cells. J. Neurosci. Res. 78 (2004) 208–214. http://dx.doi.org/10.1002/jnr.20257CrossrefGoogle Scholar

  • [81] Portmann-Lanz, C.B., Schoeberlein, A., Portmann, R., Mohr, S., Rollini, P., Sager, R. and Surbek, D.V. Turning placenta into brain: placental mesenchymal stem cells differentiate into neurons and oligodendrocytes. Am. J. Obstet. Gynecol. 202 (2010) 294e1–e11. http://dx.doi.org/10.1016/j.ajog.2009.10.893CrossrefGoogle Scholar

  • [82] Portmann-Lanz, C.B., Baumann, M.U., Mueller, M., Wagner, A.M., Weiss, S., Haller, O., Sager, R., Reinhart, U. and Surbek, D.V. Neurogenic characteristics of placental stem cells in preeclampsia. Am. J. Obstet. Gynecol. 203 (2010) 391–397. http://dx.doi.org/10.1016/j.ajog.2010.06.054CrossrefGoogle Scholar

  • [83] Prusa, A.R., Marton, E., Rosner, M., Bettelheim, D., Lubec, G., Pollack, A., Bernaschek, G. and Hengstschlager, M. Neurogenic cells in human amniotic fluid. Am. J. Obstet. Gynecol. 191 (2004) 309–314. http://dx.doi.org/10.1016/j.ajog.2003.12.014CrossrefGoogle Scholar

  • [84] Yen, B.L., Chien, C. C., Chen, Y.C., Chen, J.T., Huang, J.S., Lee, F.K. and Huang, H.I. Placenta-derived multipotent cells differentiate into neuronal and glial cells in vitro. Tissue Eng. Part A 14 (2008) 9–17. http://dx.doi.org/10.1089/ten.a.2006.0352CrossrefGoogle Scholar

  • [85] Wu, C.C., Chao, Y.C., Chen, C.N., Chien, S., Chen, Y.C., Chien, C.C., Chiu, J.J. and Linju Yen, B. Synergism of biochemical and mechanical stimuli in the differentiation of human placenta-derived multipotent cells into endothelial cells. J. Biomech. 41 (2008) 813–821. http://dx.doi.org/10.1016/j.jbiomech.2007.11.008CrossrefGoogle Scholar

  • [86] Campard, D., Lysy, P.A., Najimi, M. and Sokal, E.M. Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocytelike cells. Gastroenterology 134 (2008) 833–848. http://dx.doi.org/10.1053/j.gastro.2007.12.024CrossrefGoogle Scholar

  • [87] Tamagawa, T., Oi, S., Ishiwata, I., Ishikawa, H. and Nakamura, Y. Differentiation of mesenchymal cells derived from human amniotic membranes into hepatocyte-like cells in vitro. Hum. Cell 20 (2007) 77–84. http://dx.doi.org/10.1111/j.1749-0774.2007.00032.xCrossrefGoogle Scholar

  • [88] Saulnier, N., Lattanzi, W., Puglisi, M.A., Pani, G., Barba, M., Piscaglia, A. C., Giachelia, M., Alfieri, S., Neri, G., Gasbarrini, G. and Gasbarrini, A. Mesenchymal stromal cells multipotency and plasticity: induction toward the hepatic lineage. Eur. Rev. Med. Pharmacol. Sci. 13 (2009) 71–78. Google Scholar

  • [89] Park, T.S., Gavina, M., Chen, C.W., Sun, B., Teng, P.N., Huard, J., Deasy, B.M., Zimmerlin, L. and Peault, B. Placental perivascular cells for human muscle regeneration. Stem Cells Dev. 20 (2011) 451–463. http://dx.doi.org/10.1089/scd.2010.0354CrossrefGoogle Scholar

  • [90] Strom, S. and Miki, T. Placental derived stem cells and uses thereof, United States Patent Application Publications, (2003) US2003/0235563. Google Scholar

  • [91] Koch, C.A. and Platt, J.L. Natural mechanisms for evading graft rejection: the fetus as an allograft. Springer Semin. Immunopathol. 25 (2003) 95–117. http://dx.doi.org/10.1007/s00281-003-0136-0CrossrefGoogle Scholar

About the article

Published Online: 2011-07-23

Published in Print: 2011-09-01


Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-011-0019-7.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Massume Abolhasani, Mohammad Ali Rezaee, Mehdi Mohammadi, Tayyeb Ghadimi, Mobin Mohammadi, and Mohammad Reza Rahmani
Immunology Letters, 2017
[2]
Rebecca Lim
STEM CELLS Translational Medicine, 2017, Volume 6, Number 9, Page 1767
[3]
Juanjuan Xu, Meiyu Sun, Ye Tan, Haowei Wang, Heping Wang, Pengdong Li, Ziran Xu, Yuhan Xia, Lisha Li, and Yulin Li
Differentiation, 2017, Volume 96, Page 30
[4]
Ingrid Garzón, Juliano Miyake, Miguel González-Andrades, Ramón Carmona, Carmen Carda, María del Carmen Sánchez-Quevedo, Antonio Campos, and Miguel Alaminos
STEM CELLS Translational Medicine, 2013, Volume 2, Number 8, Page 625
[5]
Chiara Mandò, Paola Razini, Chiara Novielli, Gaia Maria Anelli, Marzia Belicchi, Silvia Erratico, Stefania Banfi, Mirella Meregalli, Alessandro Tavelli, Marco Baccarin, Alessandro Rolfo, Silvia Motta, Yvan Torrente, and Irene Cetin
STEM CELLS Translational Medicine, 2016, Volume 5, Number 4, Page 451
[6]
Anjali Somal, Irfan A. Bhat, Indu B., Sriti Pandey, Bibhudatta S. K. Panda, Nipuna Thakur, Mihir Sarkar, Vikash Chandra, G. Saikumar, G. Taru Sharma, and Aditya Bhushan Pant
PLOS ONE, 2016, Volume 11, Number 6, Page e0156821
[7]
Seungok Lee, Byung-Joon Park, Ji Yeon Kim, DongWook Jekarl, Hyun Yoo Choi, Seong Yeoun Lee, Myungshin Kim, Yonggoo Kim, and Moon-Seo Park
Cytotherapy, 2015, Volume 17, Number 12, Page 1723
[8]
[9]
Hassan Rammal, Chaza Harmouch, Jean-Jacques Lataillade, Dominique Laurent-Maquin, Pierre Labrude, Patrick Menu, and Halima Kerdjoudj
Stem Cells and Development, 2014, Volume 23, Number 24, Page 2931
[10]
Andrei Constantinescu, Eugen Andrei, Florin Iordache, Elena Constantinescu, and Horia Maniu
In Vitro Cellular & Developmental Biology - Animal, 2014, Volume 50, Number 10, Page 937
[11]
Manuel Filioli Uranio, Maria Elena Dell'Aquila, Michele Caira, Antonio Ciro Guaricci, Mario Ventura, Claudia RITA Catacchio, Nicola Antonio Martino, and Luisa Valentini
Molecular Reproduction and Development, 2014, Volume 81, Number 6, Page 539
[12]
Ramyani Taran, Murali Krishna Mamidi, Gurbind Singh, Susmita Dutta, Ishwar S Parhar, John P John, Ramesh Bhonde, Rajarshi Pal, and Anjan Kumar Das
Journal of Biosciences, 2014, Volume 39, Number 1, Page 157
[13]
Dario Siniscalco, James Jeffrey Bradstreet, Nataliia Sych, and Nicola Antonucci
Stem Cells International, 2013, Volume 2013, Page 1
[14]
S. Indumathi, R. Harikrishnan, R. Mishra, J.S. Rajkumar, V. Padmapriya, R.P. Lissa, and M. Dhanasekaran
Tissue and Cell, 2013, Volume 45, Number 6, Page 434
[15]
William C. W. Chen, Tea Soon Park, Iain R. Murray, Ludovic Zimmerlin, Lorenza Lazzari, Johnny Huard, and Bruno Péault
Stem Cells International, 2013, Volume 2013, Page 1
[16]
Malgorzata Witkowska-Zimny, Katarzyna Walenko, Edyta Wrobel, Piotr Mrowka, Agnieszka Mikulska, and Jacek Przybylski
Cell Biology International, 2013, Volume 37, Number 6, Page 608
[17]
Kyung-Sul Kim, Hyun Sook Kim, Ji-Min Park, Han Wool Kim, Mi-kyung Park, Hyun-Seob Lee, Dae Seog Lim, Tae Hee Lee, Michael Chopp, and Jisook Moon
Neurobiology of Aging, 2013, Volume 34, Number 10, Page 2408
[18]
Irina N. Simões, Joana S. Boura, Francisco dos Santos, Pedro Z. Andrade, Carla M. P. Cardoso, Jeffrey M. Gimble, Cláudia L. da Silva, and Joaquim M. S. Cabral
Biotechnology Journal, 2013, Volume 8, Number 4, Page 448
[19]
Josh Neman, Vincent Duenas, Claudia M. Kowolik, Amanda C. Hambrecht, Mike Y. Chen, and Rahul Jandial
The Spine Journal, 2013, Volume 13, Number 2, Page 162
[20]
Olivia S. Beane and Eric M. Darling
Annals of Biomedical Engineering, 2012, Volume 40, Number 10, Page 2079
[21]
Carlos Eduardo Barra Couri, Maria Carolina de Oliveira, and Belinda Pinto Simões
Current Diabetes Reports, 2012, Volume 12, Number 5, Page 604
[22]
Jeroen C.H. Leijten, Nicole Georgi, Ling Wu, Clemens A. van Blitterswijk, and Marcel Karperien
Tissue Engineering Part B: Reviews, 2013, Volume 19, Number 1, Page 31
[23]
Eleanor M Donnelly, Jason Lamanna, and Nicholas M Boulis
Stem Cell Research & Therapy, 2012, Volume 3, Number 4, Page 24
[24]
Kuo-Liang Yang, Jiunn-Tat Lee, Cheng-Yoong Pang, Ting-Yi Lee, Shee-Ping Chen, Hock-Kean Liew, Shin-Yuan Chen, Tzu-Yung Chen, and Py-Yu Lin
Cellular and Molecular Biology Letters, 2012, Volume 17, Number 3

Comments (0)

Please log in or register to comment.
Log in