Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Editor-in-Chief: /


IMPACT FACTOR 2016: 1.260
5-year IMPACT FACTOR: 1.506

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.615
Source Normalized Impact per Paper (SNIP) 2016: 0.470

Online
ISSN
1689-1392
See all formats and pricing
More options …
Volume 16, Issue 4 (Dec 2011)

ERp57/GRP58: A protein with multiple functions

Carlo Turano / Elisa Gaucci / Caterina Grillo / Silvia Chichiarelli
Published Online: 2011-09-29 | DOI: https://doi.org/10.2478/s11658-011-0022-z

Abstract

The protein ERp57/GRP58 is a stress-responsive protein and a component of the protein disulfide isomerase family. Its functions in the endoplasmic reticulum are well known, concerning mainly the proper folding and quality control of glycoproteins, and participation in the assembly of the major histocompatibility complex class 1. However, ERp57 is present in many other subcellular locations, where it is involved in a variety of functions, primarily suggested by its participation in complexes with other proteins and even with DNA. While in some instances these roles need to be confirmed by further studies, a great number of observations support the participation of ERp57 in signal transduction from the cell surface, in regulatory processes taking place in the nucleus, and in multimeric protein complexes involved in DNA repair.

Keywords: Protein disulfide isomerases; Calcitriol; STAT3; Cellular stress; Signal transduction; DNA repair

  • [1] Turano, C., Coppari, S., Altieri, F. and Ferraro, A. Proteins of the PDI family: unpredicted non-ER locations and functions. J. Cell. Physiol. 193 (2002) 154–163. http://dx.doi.org/10.1002/jcp.10172CrossrefGoogle Scholar

  • [2] Khanal, R.C. and Nemere, I. The ERp57/GRp58/1,25D3-MARRS receptor: multiple functional roles in diverse cell systems. Curr. Med. Chem. 14 (2007) 1087–1093. http://dx.doi.org/10.2174/092986707780362871CrossrefGoogle Scholar

  • [3] Coe, H. and Michalak, M. ERp57, a multifunctional endoplasmic reticulum resident oxidoreductase. Int. J. Biochem. Cell Biol. 42 (2010) 796–799. http://dx.doi.org/10.1016/j.biocel.2010.01.009CrossrefGoogle Scholar

  • [4] Bennett, C.F., Balcarek, J.M., Varrichio, A. and Crooke, S.T. Molecular cloning and complete amino-acid sequence of form-I phosphoinositidespecific phospholipase C. Nature 334 (1988) 268–270. http://dx.doi.org/10.1038/334268a0CrossrefGoogle Scholar

  • [5] Lee, A.S. The accumulation of three specific proteins related to glucoseregulated proteins in a temperature-sensitive hamster mutant cell line K12. J. Cell. Physiol. 106 (1981) 119–125. http://dx.doi.org/10.1002/jcp.1041060113CrossrefGoogle Scholar

  • [6] Ferrari, D.M., Söling, H.D. The protein disulphide-isomerase family: unravelling a string of folds. Biochem. J. 339 (1999) 1–10. http://dx.doi.org/10.1042/0264-6021:3390001CrossrefGoogle Scholar

  • [7] Silvennoinen, L., Myllyharju, J., Ruoppolo, M., Orrù, S., Caterino, M., Kivirikko, K.I. and Koivunen, P. Identification and characterization of structural domains of human ERp57: association with calreticulin requires several domains. J. Biol. Chem. 279 (2004) 13607–13615. http://dx.doi.org/10.1074/jbc.M313054200CrossrefGoogle Scholar

  • [8] Russell, S.J., Ruddock, L.W., Salo, K.E., Oliver, J.D., Roebuck, Q.P., Llewellyn, D.H., Roderick, H.L., Koivunen, P., Myllyharju, J. and High, S. The primary substrate binding site in the b’ domain of ERp57 is adapted for endoplasmic reticulum lectin association. J. Biol. Chem. 279 (2004) 18861–18869. http://dx.doi.org/10.1074/jbc.M400575200CrossrefGoogle Scholar

  • [9] Kozlov, G., Maattanen, P., Schrag, J.D., Pollock, S., Cygler, M., Nagar, B., Thomas, D.Y. and Gehring, K. Crystal structure of the bb’ domains of the protein disulfideisomerase ERp57. Structure 14 (2006) 1331–1339. http://dx.doi.org/10.1016/j.str.2006.06.019CrossrefGoogle Scholar

  • [10] Klappa, P., Ruddock, L.W., Darby, N.J. and Freedman, R.B. The b′ domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins. EMBO J. 17 (1998) 927–935. http://dx.doi.org/10.1093/emboj/17.4.927CrossrefGoogle Scholar

  • [11] Gaucci, E., Chichiarelli, S., Grillo, C., Del Vecchio, E., Eufemi, M. and Turano, C. The binding of antibiotics to ERp57/GRP58. J. Antibiot. (Tokyo) 61 (2008) 400–402. http://dx.doi.org/10.1038/ja.2008.56CrossrefGoogle Scholar

  • [12] Dick, T.P., Bangia, N., Peaper, D.R. and Cresswell, P. Disulfide bond isomerization and the assembly of MHC class I-peptide complexes. Immunity 16 (2002) 87–98. http://dx.doi.org/10.1016/S1074-7613(02)00263-7CrossrefGoogle Scholar

  • [13] Grillo, C., D’Ambrosio, C., Scaloni, A., Maceroni, M., Merluzzi, S., Turano, C. and Altieri, F. Cooperative activity of Ref-1/APE and ERp57 in reductive activation of transcription factors. Free Radic. Biol. Med. 41 (2006) 1113–1123. http://dx.doi.org/10.1016/j.freeradbiomed.2006.06.016CrossrefGoogle Scholar

  • [14] Donella-Deana, A., James, P., Staudenmann, W., Cesaro, L., Marin, O., Brunati, A.M., Ruzzene, M. and Pinna, L.A. Isolation from spleen of a 57-kDa protein substrate of the tyrosine kinase Lyn. Identification as a protein related to protein disulfide-isomerase and localisation of the phosphorylation sites. Eur. J. Biochem. 235 (1996) 18–25. http://dx.doi.org/10.1111/j.1432-1033.1996.00018.xCrossrefGoogle Scholar

  • [15] Kita, K., Okumura, N., Takao, T., Watanabe, M., Matsubara, T., Nishimura, O. and Nagai, K. Evidence for phosphorylation of rat liver glucose-regulated protein 58, GRP58/ERp57/ER-60, induced by fasting and leptin. FEBS Lett. 580 (2006) 199–205. http://dx.doi.org/10.1016/j.febslet.2005.11.074CrossrefGoogle Scholar

  • [16] Zhou, L., McKenzie, B.A., Eccleston, E.D. Jr, Srivastava, S.P., Chen, N., Erickson, R.R. and Holtzman, J.L. The covalent binding of [14C]acetaminophen to mouse hepatic microsomal proteins: the specific binding to calreticulin and the two forms of the thiol:protein disulfide oxidoreductases. Chem. Res. Toxicol. 9 (1996) 1176–1182. http://dx.doi.org/10.1021/tx960069dCrossrefGoogle Scholar

  • [17] Martin, J.L., Pumford, N.R., LaRosa, A.C., Martin, B.M., Gonzaga, H.M., Beaven, M.A. and Pohl, L.R. A metabolite of halothane covalently binds to an endoplasmic reticulum protein that is highly homologous to phosphatidylinositol-specific phospholipase C-alpha but has no activity. Biochem. Biophys. Res. Commun. 178 (1991) 679–685. http://dx.doi.org/10.1016/0006-291X(91)90161-YCrossrefGoogle Scholar

  • [18] Laragione, T., Gianazza, E., Tonelli, R., Bigini, P., Mennini, T., Casoni, F., Massignan, T., Bonetto, V. and Ghezzi, P. Regulation of redox-sensitive exofacial protein thiols in CHO cells. Biol. Chem. 387 (2006) 1371–1376. http://dx.doi.org/10.1515/BC.2006.172CrossrefGoogle Scholar

  • [19] van der Vlies, D., Pap, E.H., Post, J.A., Celis, J.E. and Wirtz, K.W. Endoplasmic reticulum resident proteins of normal human dermal fibroblasts are the major targets for oxidative stress induced by hydrogen peroxide. Biochem. J. 366 (2002) 825–830. Google Scholar

  • [20] Grillo, C., D’Ambrosio, C., Consalvi, V., Chiaraluce, R., Scaloni, A., Maceroni, M., Eufemi, M. and Altieri, F. DNA-binding activity of the ERp57 C-terminal domain is related to a redox-dependent conformational change. J. Biol. Chem. 282 (2007) 10299–10310. http://dx.doi.org/10.1074/jbc.M700966200CrossrefGoogle Scholar

  • [21] Freedman, R.B., Hirst, T.R. and Tuite, M.F. Protein disulphide isomerase: building bridges in protein folding. Trends Biochem. Sci. 19 (1994) 331–336. http://dx.doi.org/10.1016/0968-0004(94)90072-8CrossrefGoogle Scholar

  • [22] Okudo, H., Kito, M., Moriyama, T., Ogawa, T. and Urade, R. Transglutaminase activity of human ER-60. Biosci. Biotechnol. Biochem. 66 (2002) 1423–1426. http://dx.doi.org/10.1271/bbb.66.1423CrossrefGoogle Scholar

  • [23] Urade, R., Nasu, M., Moriyama, T., Wada, K. and Kito, M. Protein degradation by the phosphoinositide-specific phospholipase C-alpha family from rat liver endoplasmic reticulum. J. Biol. Chem. 267 (1992) 15152–15159. Google Scholar

  • [24] Murthy, M.S. and Pande, S.V. A stress-regulated protein, GRP58, a member of thioredoxin superfamily, is a carnitine palmitoyltransferase isoenzyme. Biochem. J. 304 (1994) 31–34. Google Scholar

  • [25] Oliver, J.D., van der Wal, F.J., Bulleid, N.J. and High, S. Interaction of the thiol-dependent reductase ERp57 with nascent glycoproteins. Science 275 (1997) 86–88. http://dx.doi.org/10.1126/science.275.5296.86CrossrefGoogle Scholar

  • [26] Molinari, M. and Helenius, A. Glycoproteins form mixed disulphides with oxidoreductases during folding in living cells. Nature 402 (1999) 90–93. http://dx.doi.org/10.1038/47062CrossrefGoogle Scholar

  • [27] Oliver, J.D., Roderick, H.L., Llewellyn, D.H. and High, S. ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol. Biol. Cell. 10 (1999) 2573–2582. CrossrefGoogle Scholar

  • [28] Jessop, C.E., Chakravarthi, S., Garbi, N., Hämmerling, G.J., Lovell, S. and Bulleid, N.J. ERp57 is essential for efficient folding of glycoproteins sharing common structural domains. EMBO J. 26 (2007) 28–40 http://dx.doi.org/10.1038/sj.emboj.7601505CrossrefGoogle Scholar

  • [29] Lindquist, J.A., Jensen, O.N., Mann, M. and Hämmerling, G.J. ER-60, a chaperone with thiol-dependent reductase activity involved in MHC class I assembly. EMBO J. 17 (1998) 2186–2195. http://dx.doi.org/10.1093/emboj/17.8.2186CrossrefGoogle Scholar

  • [30] Dick, T.P., Bangia, N., Peaper, D.R. and Cresswell, P. Disulfide bond isomerization and the assembly of MHC class I-peptide complexes. Immunity 16 (2002) 87–98. http://dx.doi.org/10.1016/S1074-7613(02)00263-7CrossrefGoogle Scholar

  • [31] Dong, G., Wearsch, P.A., Peaper, D.R., Cresswell, P. and Reinisch, K.M. Insights into MHC class I peptide loading from the structure of the tapasin-ERp57 thioloxidoreductase heterodimer. Immunity 30 (2009) 21–32. http://dx.doi.org/10.1016/j.immuni.2008.10.018CrossrefGoogle Scholar

  • [32] Zhang, Y., Kozlov, G., Pocanschi, C.L., Brockmeier, U., Ireland, B.S., Maattanen, P., Howe, C., Elliott, T., Gehring, K. and Williams, D.B. ERp57 does not require interactions with calnexin and calreticulin to promote assembly of class I histocompatibility molecules, and it enhances peptide loading independently of its redox activity. J. Biol. Chem. 284 (2009) 10160–10173. http://dx.doi.org/10.1074/jbc.M808356200CrossrefGoogle Scholar

  • [33] Peaper, D.R. and Cresswell, P. The redox activity of ERp57 is not essential for its functions in MHC class I peptide loading. Proc. Natl. Acad. Sci. USA 105 (2008) 10477–10482. http://dx.doi.org/10.1073/pnas.0805044105CrossrefGoogle Scholar

  • [34] Garbi, N., Tanaka, S., Momburg, F., and Hammerling, G.J. Impaired assembly of the major histocompatibility complex class I peptide-loading complex in mice deficient in the oxidoreductase ERp57. Nat. Immunol. 7 (2006) 93–102. http://dx.doi.org/10.1038/ni1288CrossrefGoogle Scholar

  • [35] Li, Y. and Camacho, P. Ca2+-dependent redox modulation of SERCA 2b by ERpERp57. J. Cell Biol. 164 (2004) 35–46. http://dx.doi.org/10.1083/jcb.200307010CrossrefGoogle Scholar

  • [36] Schelhaas, M., Malmström, J., Pelkmans, L., Haugstetter, J., Ellgaard, L., Grünewald, K. and Helenius, A. Simian Virus 40 depends on ER protein folding and quality control factors for entry into host cells. Cell 131 (2007) 516–529. http://dx.doi.org/10.1016/j.cell.2007.09.038CrossrefGoogle Scholar

  • [37] Desjardins, M. ER-mediated phagocytosis: a new membrane for new functions. Nat. Rev. Immunol. 3 (2003) 280–291. http://dx.doi.org/10.1038/nri1053CrossrefGoogle Scholar

  • [38] Frickel, E.M., Riek, R., Jelesarov, I., Helenius, A., Wuthrich, K. and Ellgaard, L. TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc. Natl. Acad. Sci. USA 99 (2002) 1954–1959. http://dx.doi.org/10.1073/pnas.042699099CrossrefGoogle Scholar

  • [39] Hirano, N., Shibasaki, F., Sakai, R., Tanaka, T., Nishida, J., Yazaki, Y., Takenawa, T. and Hirai, H. Molecular cloning of the human glucoseregulated protein ERp57/GRP58, a thiol-dependent reductase. Identification of its secretory form and inducible expression by the oncogenic transformation. Eur. J. Biochem. 234 (1995) 336–342. http://dx.doi.org/10.1111/j.1432-1033.1995.336_c.xCrossrefGoogle Scholar

  • [40] Johnson, S., Michalak, M., Opas, M. and Eggleton, P. The ins and outs of calreticulin: from the ER lumen to the extracellular space. Trends Cell Biol. 11 (2001) 122–129. http://dx.doi.org/10.1016/S0962-8924(01)01926-2CrossrefGoogle Scholar

  • [41] Afshar, N., Black, B.E. and Paschal, B.M. Retrotranslocation of the chaperone calreticulin from the endoplasmic reticulum lumen to the cytosol. Mol. Cell. Biol. 25 (2005) 8844–8853. http://dx.doi.org/10.1128/MCB.25.20.8844-8853.2005CrossrefGoogle Scholar

  • [42] Ellerman, D.A., Myles, D.G. And Primakoff P. A role for sperm surface protein disulfide isomerase activity in gamete fusion: evidence for the participation of ERp57. Dev. Cell. 10 (2006) 831–837. http://dx.doi.org/10.1016/j.devcel.2006.03.011CrossrefGoogle Scholar

  • [43] Nemere, I., Farach-Carson, M.C., Rohe, B., Sterling, T.M., Norman, A.W., Boyan, B.D. and Safford, S.E. Ribozyme knockdown functionally links a 1,25(OH)2D3 membrane binding protein (1,25D3-MARRS) and phosphate uptake in intestinal cells. Proc. Natl. Acad. Sci. USA 101 (2004) 7392–7397. http://dx.doi.org/10.1073/pnas.0402207101CrossrefGoogle Scholar

  • [44] Boyan, B.D., Wong, K.L., Fang, M. and Schwartz, Z. 1alpha,25(OH)2D3 is an autocrine regulator of extracellular matrix turnover and growth factor release via ERp60 activated matrix vesicle metalloproteinases. J. Steroid. Biochem. Mol. Biol. 103 (2007) 467–472. http://dx.doi.org/10.1016/j.jsbmb.2006.11.003CrossrefGoogle Scholar

  • [45] Chen, J., Olivares-Navarrete, R., Wang, Y., Herman, T.R., Boyan, B.D. and Schwartz, Z. Protein-disulfide isomerase-associated 3 (Pdia3) mediates the membrane response to 1,25-dihydroxyvitamin D3 in osteoblasts. J. Biol. Chem. 285 (2010) 37041–37050. http://dx.doi.org/10.1074/jbc.M110.157115CrossrefGoogle Scholar

  • [46] Tunsophon, S. and Nemere, I. Protein kinase C isotypes in signal transduction for the 1,25D3-MARRS receptor (ERp57/PDIA3) in steroid hormone-stimulated phosphate uptake. Steroids 75 (2010) 307–313. http://dx.doi.org/10.1016/j.steroids.2010.01.004CrossrefGoogle Scholar

  • [47] Nemere, I., Garbi, N., Hämmerling, G.J. and Khanal, R.C. Intestinal cell calcium uptake and the targeted knockout of the 1,25D3-MARRS (membrane-associated, rapid response steroid-binding) receptor/PDIA3/Erp57. J. Biol. Chem. 285 (2010) 31859–31866. http://dx.doi.org/10.1074/jbc.M110.116954CrossrefGoogle Scholar

  • [48] Richard, C.L., Farach-Carson, M.C., Rohe, B., Nemere, I. and Meckling, K.A. Involvement of 1,25D3-MARRS (membrane associated, rapid response steroid-binding), a novel vitamin D receptor, in growth inhibition of breast cancer cells. Exp. Cell Res. 316 (2010) 695–703. http://dx.doi.org/10.1016/j.yexcr.2009.12.015CrossrefGoogle Scholar

  • [49] Wu, W., Beilhartz, G., Roy, Y., Richard, C.L., Curtin, M., Brown, L., Cadieux, D., Coppolino, M., Farach-Carson, M.C., Nemere, I. and Meckling, K.A. Nuclear translocation of the 1,25D3-MARRS (membrane associated rapid response to steroids) receptor protein and NFkappaB in differentiating NB4 leukemia cells. Exp. Cell Res. 316 (2010) 1101–1108. http://dx.doi.org/10.1016/j.yexcr.2010.01.010CrossrefGoogle Scholar

  • [50] Mah, S.J., Ades, A.M., Mir, R., Siemens, I.R., Williamson, J.R. and Fluharty, S.J. Association of solubilized angiotensin II receptors with phospholipase C-alpha in murine neuroblastoma NIE-115 cells. Mol. Pharmacol. 42 (1992) 217–226. Google Scholar

  • [51] Aiyar, N., Bennett, C.F., Nambi, P., Valinski, W., Angioli, M., Minnich, M. and Crooke, S.T. Solubilization of rat liver vasopressin receptors as a complex with a guanine-nucleotide-binding protein and phosphoinositidespecific phospholipase C. Biochem. J. 261 (1989) 63–70. Google Scholar

  • [52] Altieri, F., Maras, B., Eufemi, M., Ferraro, A. and Turano, C. Purification of a 57kDa nuclear matrix protein associated with thiol:protein-disulfide oxidoreductase and phospholipase C activities. Biochem. Biophys. Res. Commun. 194 (1993) 992–1000. http://dx.doi.org/10.1006/bbrc.1993.1919CrossrefGoogle Scholar

  • [53] Srivastava, S.P., Fuchs, J.A. and Holtzman, J.L. The reported cDNA sequence for phospholipase C alpha encodes protein disulfide isomerase, isozyme Q-2 and not phospholipase-C. Biochem. Biophys. Res. Commun. 193 (1993) 971–978. http://dx.doi.org/10.1006/bbrc.1993.1720CrossrefGoogle Scholar

  • [54] Tokutomi, Y., Araki, N., Kataoka, K., Yamamoto, E. and Kim-Mitsuyama, S. Oxidation of Prx2 and phosphorylation of GRP58 by angiotensin II in human coronary smooth muscle cells identified by 2D-DIGE analysis. Biochem. Biophys. Res. Commun. 364 (2007) 822–830. http://dx.doi.org/10.1016/j.bbrc.2007.10.095CrossrefGoogle Scholar

  • [55] Zhu, L., Santos, N.C. and Kim, K.H. Disulfide isomerase glucose-regulated protein 58 is required for the nuclear localization and degradation of retinoic acid receptor alpha. Reproduction 139 (2010) 717–731. http://dx.doi.org/10.1530/REP-09-0527CrossrefGoogle Scholar

  • [56] Ndubuisi, M.I., Guo, G.G., Fried, V.A., Etlinger, J.D. and Sehgal, P.B. Cellular physiology of STAT3: Where’s the cytoplasmic monomer? J. Biol. Chem. 274 (1999) 25499–25509. http://dx.doi.org/10.1074/jbc.274.36.25499CrossrefGoogle Scholar

  • [57] Sehgal, P.B., Guo, G.G., Shah, M., Kumar, V. and Patel, K. Cytokine signaling: STATS in plasma membrane rafts. J. Biol. Chem. 277 (2002) 12067–12074. http://dx.doi.org/10.1074/jbc.M200018200CrossrefGoogle Scholar

  • [58] Guo, G.G., Patel, K., Kumar, V., Shah, M., Fried, V.A., Etlinger, J.D. and Sehgal, P.B. Association of the chaperone glucose-regulated protein 58 (GRP58/ER-60/ERp57) with Stat3 in cytosol and plasma membrane complexes. J. Interferon Cytokine Res. 22 (2002) 555–563. http://dx.doi.org/10.1089/10799900252982034CrossrefGoogle Scholar

  • [59] Eufemi, M., Coppari, S., Altieri, F., Grillo, C., Ferraro, A. and Turano, C. ERp57 is present in STAT3-DNA complexes. Biochem. Biophys. Res. Commun. 323 (2004) 1306–1312. http://dx.doi.org/10.1016/j.bbrc.2004.09.009CrossrefGoogle Scholar

  • [60] Chichiarelli, S., Gaucci, E., Ferraro, A., Grillo, C., Altieri, F., Cocchiola, R., Arcangeli, V., Turano, C. and Eufemi, M. Role of ERp57 in the signaling and transcriptional activity of STAT3 in a melanoma cell line. Arch. Biochem. Biophys. 494 (2010) 178–183. http://dx.doi.org/10.1016/j.abb.2009.12.004CrossrefGoogle Scholar

  • [61] Wyse, B., Ali, N. and Ellison, D.H. Interaction with grp58 increases activity of the thiazide-sensitive Na-Cl cotransporter. Am. J. Physiol. Renal Physiol. 282 (2002) F424–430. Google Scholar

  • [62] Panaretakis, T., Joza, N., Modjtahedi, N., Tesniere, A., Vitale, I., Durchschlag, M., Fimia, G.M., Kepp, O., Piacentini, M., Froehlich, K.U., van Endert, P., Zitvogel, L., Madeo, F. and Kroemer, G. The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ. 15 (2008) 1499–1509. http://dx.doi.org/10.1038/cdd.2008.67CrossrefGoogle Scholar

  • [63] Obeid, M. ERP57 membrane translocation dictates the immunogenicity of tumor cell death by controlling the membrane translocation of calreticulin. J. Immunol. 181 (2008) 2533–2543. Google Scholar

  • [64] Ramírez-Rangel, I., Bracho-Valdés, I., Vázquez-MacÍas, A., Carretero-Ortega, J., Reyes-Cruz, G. and Vázquez-Prado, J. Regulation of mTORC1 complex assembly and signaling by GRp58/ERp57. Mol. Cell. Biol. 31 (2011) 1657–1671. http://dx.doi.org/10.1128/MCB.00824-10CrossrefGoogle Scholar

  • [65] Sarbassov, D.D. and Sabatini, D.M. Redox regulation of the nutrientsensitive raptor-mTOR pathway and complex. J. Biol. Chem. 280 (2005) 39505–39509. http://dx.doi.org/10.1074/jbc.M506096200CrossrefGoogle Scholar

  • [66] Scherz-Shouval, R., Shvets, E., Fass, E., Shorer, H., Gil, L. and Elazar, Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 26 (2007) 1749–1760. http://dx.doi.org/10.1038/sj.emboj.7601623CrossrefGoogle Scholar

  • [67] Ohtani, H., Wakui, H., Ishino, T., Komatsuda, A. and Miura, A.B. An isoform of protein disulfide isomerase is expressed in the developing acrosome of spermatids during rat spermiogenesis and is transported into the nucleus of mature spermatids and epididymal spermatozoa. Histochemistry 100 (1993) 423–429. http://dx.doi.org/10.1007/BF00267822CrossrefGoogle Scholar

  • [68] Coppari, S., Altieri, F., Ferraro, A., Chichiarelli, S., Eufemi, M. and Turano, C. Nuclear localization and DNA interaction of protein disulfide isomerase ERp57 in mammalian cells. J. Cell. Biochem. 85 (2002) 325–333. http://dx.doi.org/10.1002/jcb.10137CrossrefGoogle Scholar

  • [69] Krynetski, E.Y., Krynetskaia, N.F., Bianchi, M.E. and Evans, W.E. A nuclear protein complex containing high mobility group proteins B1 and B2, heat shock cognate protein 70, ERp60, and glyceraldehyde-3-phosphate dehydrogenase is involved in the cytotoxic response to DNA modified by incorporation of anticancer nucleoside analogues. Cancer Res. 63 (2003) 100–106. Google Scholar

  • [70] Krynetskaia, N.F., Phadke, M.S., Jadhav, S.H. and Krynetskiy, E.Y. Chromatin-associated proteins HMGB1/2 and PDIA3 trigger cellular response to chemotherapy-induced DNA damage. Mol. Cancer Ther. 8 (2009) 864–872. http://dx.doi.org/10.1158/1535-7163.MCT-08-0695CrossrefGoogle Scholar

  • [71] Cicchillitti, L., Di Michele, M., Urbani, A., Ferlini, C., Donat, M.B., Scambia, G. and Rotilio, D. Comparative proteomic analysis of paclitaxel sensitive A2780 epithelial ovarian cancer cell line and its resistant counterpart A2780TC1 by 2D-DIGE: the role of ERp57. J. Proteome Res. 8 (2009) 1902–1912. http://dx.doi.org/10.1021/pr800856bCrossrefGoogle Scholar

  • [72] Cicchillitti, L., Della Corte, A., Di Michele, M., Donati, M.B., Rotilio, D. and Scambia, G. Characterisation of a multimeric protein complex associated with ERp57 within the nucleus in paclitaxel-sensitive and -resistant epithelial ovarian cancer cells: the involvement of specific conformational states of beta-actin. Int. J. Oncol. 37 (2010) 445–454. http://dx.doi.org/10.3892/ijo_00000693CrossrefGoogle Scholar

  • [73] Ferraro, A., Altieri, F., Coppari, S., Eufemi, M., Chichiarelli, S. and Turano, C. Binding of the protein disulfide isomerase isoform ERp60 to the nuclear matrix-associated regions of DNA. J. Cell. Biochem. 72 (1999) 528–539. http://dx.doi.org/10.1002/(SICI)1097-4644(19990315)72:4<528::AID-JCB8>3.0.CO;2-VCrossrefGoogle Scholar

  • [74] Grillo, C., Coppari, S., Turano, C. and Altieri, F. The DNA-binding activity of protein disulfide isomerase ERp57 is associated with the a(′) domain. Biochem. Biophys. Res. Commun. 295 (2002) 67–73. http://dx.doi.org/10.1016/S0006-291X(02)00634-4CrossrefGoogle Scholar

  • [75] Chichiarelli, S., Ferraro, A., Altieri, F., Eufemi, M., Coppari, S., Grillo, C., Arcangeli, V. and Turano, C. The stress protein ERp57/GRP58 binds specific DNA sequences in HeLa cells. J. Cell. Physiol. 210 (2007) 343–351. http://dx.doi.org/10.1002/jcp.20824CrossrefGoogle Scholar

  • [76] Schultz-Norton, J.R., McDonald, W.H., Yates, J.R. and Nardulli, A.M. Protein disulfide isomerase serves as a molecular chaperone to maintain estrogen receptor alpha structure and function. Mol. Endocrinol. 20 (2006) 1982–1995. http://dx.doi.org/10.1210/me.2006-0006CrossrefGoogle Scholar

  • [77] Coe, H., Jung, J., Groenendyk, J., Prins, D. and Michalak, M. ERp57 modulates STAT3 signaling from the lumen of the endoplasmic reticulum. J. Biol. Chem. 285 (2010) 6725–6738. http://dx.doi.org/10.1074/jbc.M109.054015CrossrefGoogle Scholar

  • [78] Sehgal, P.B. Plasma membrane rafts and chaperones in cytokine/STAT signaling. Acta Biochim. Pol. 50 (2003) 583–594. Google Scholar

  • [79] Markus, M. and Benezra, R. Two isoforms of protein disulfide isomerase alter the dimerization status of E2A proteins by a redox mechanism. J. Biol. Chem. 274 (1999) 1040–1049. http://dx.doi.org/10.1074/jbc.274.2.1040CrossrefGoogle Scholar

  • [80] Ozaki, T., Yamashita, T. and Ishiguro, S. ERp57-associated mitochondrial micro-calpain truncates apoptosis-inducing factor. Biochim. Biophys. Acta 1783 (2008) 1955–1963. http://dx.doi.org/10.1016/j.bbamcr.2008.05.011CrossrefGoogle Scholar

  • [81] Murray, J.I., Whitfield, M.L., Trinklein, N.D., Myers, R.M., Brown, P.O. and Botstein, D. Diverse and specific gene expression responses to stresses in cultured human cells. Mol. Biol. Cell 15 (2004) 2361–2374. http://dx.doi.org/10.1091/mbc.E03-11-0799CrossrefGoogle Scholar

  • [82] Rohe, B., Safford, S.E., Nemere, I., Farach-Carson, M.C. Regulation of expression of 1,25D3-MARRS/ERp57/PDIA3 in rat IEC-6 cells by TGF beta and 1,25(OH)2D3. Steroids 72 (2007) 144–150. http://dx.doi.org/10.1016/j.steroids.2006.11.013Google Scholar

  • [83] Corazzari, M., Lovat, P.E., Armstrong, J.L., Fimia, G.M., Hill, D.S., Birch-Machin, M., Redfern, C.P. and Piacentini, M. Targeting homeostatic mechanisms of endoplasmic reticulum stress to increase susceptibility of cancer cells to fenretinide-induced apoptosis: the role of stress proteins ERdj5 and ERp57. Br. J. Cancer 96 (2007) 1062–1071. http://dx.doi.org/10.1038/sj.bjc.6603672CrossrefGoogle Scholar

  • [84] Lovat, P.E., Corazzari, M., Armstrong, J.L., Martin, S., Pagliarini, V., Hill, D., Brown, A.M., Piacentini, M., Birch-Machin, M.A. and Redfern, C.P. Increasing melanoma cell death using inhibitors of protein disulfide isomerases to abrogate survival responses to endoplasmic reticulum stress. Cancer Res. 68 (2008) 5363–5369. http://dx.doi.org/10.1158/0008-5472.CAN-08-0035CrossrefGoogle Scholar

  • [85] Hetz, C., Russelakis-Carneiro, M., Wälchli, S., Carboni, S., Vial-Knecht, E., Maundrell, K., Castilla, J. and Soto, C. The disulfide isomerase Grp58 is a protective factor against prion neurotoxicity. J. Neurosci. 25 (2005) 2793–2802. http://dx.doi.org/10.1523/JNEUROSCI.4090-04.2005CrossrefGoogle Scholar

  • [86] Erickson, R.R., Dunning, L.M., Olson, D.A., Cohen, S.J., Davis, A.T., Wood, W.G., Kratzke, R.A. and Holtzman, J.L. In cerebrospinal fluid ER chaperones ERp57 and calreticulin bind beta-amyloid. Biochem. Biophys. Res. Commun. 332 (2005) 50–57. http://dx.doi.org/10.1016/j.bbrc.2005.04.090CrossrefGoogle Scholar

  • [87] Xu, D., Perez, R.E., Rezaiekhaligh, M.H., Bourdi, M. and Truog, W.E. Knockdown of ERp57 increases BiP/GRP78 induction and protects against hyperoxia and tunicamycin-induced apoptosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 297 (2009) L44–51. http://dx.doi.org/10.1152/ajplung.90626.2008CrossrefGoogle Scholar

  • [88] Dukes, A.A., Van Laar, V.S., Cascio, M. and Hastings, T.G. Changes in endoplasmic reticulum stress proteins and aldolase A in cells exposed to dopamine. J. Neurochem. 106 (2008) 333–346. http://dx.doi.org/10.1111/j.1471-4159.2008.05392.xCrossrefGoogle Scholar

  • [89] Kim-Han, J.S. and O’Malley, K.L. Cell stress induced by the parkinsonian mimetic, 6-hydroxydopamine, is concurrent with oxidation of the chaperone, ERp57, and aggresome formation. Antioxid. Redox Signal. 9 (2007) 2255–2264. http://dx.doi.org/10.1089/ars.2007.1791CrossrefGoogle Scholar

  • [90] Akazawa, Y.O., Saito, Y., Nishio, K., Horie, M., Kinumi, T., Masuo, Y., Yoshida, Y., Ashida, H. and Niki, E. Proteomic characterization of the striatum and midbrain treated with 6-hydroxydopamine: alteration of 58-kDa glucose-regulated protein and C/EBP homologous protein. Free Radic. Res. 44 (2010) 410–421. http://dx.doi.org/10.3109/10715760903536349CrossrefGoogle Scholar

About the article

Published Online: 2011-09-29

Published in Print: 2011-12-01


Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-011-0022-z.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Mauricio Torres, Danilo B. Medinas, José Manuel Matamala, Ute Woehlbier, Víctor Hugo Cornejo, Tatiana Solda, Catherine Andreu, Pablo Rozas, Soledad Matus, Natalia Muñoz, Carmen Vergara, Luis Cartier, Claudio Soto, Maurizio Molinari, and Claudio Hetz
Journal of Biological Chemistry, 2015, Volume 290, Number 39, Page 23631
[2]
Adam Brymora, Iain G. Duggin, Leise A. Berven, Ellen M. van Dam, Basil D. Roufogalis, Phillip J. Robinson, and Srinivasa M. Srinivasula
PLoS ONE, 2012, Volume 7, Number 11, Page e50879
[3]
Michela Colombo, Davide Priori, Paolo Trevisi, Paolo Bosi, and Yvette Tache
PLoS ONE, 2014, Volume 9, Number 10, Page e111447
[4]
Nabonita Sengupta, Sourish Ghosh, Suhas V. Vasaikar, James Gomes, Anirban Basu, and Karin E. Peterson
PLoS ONE, 2014, Volume 9, Number 3, Page e90211
[5]
Xue-qun Zhang, Yue Pan, Chao-hui Yu, Cheng-fu Xu, Lei Xu, You-ming Li, Wei-xing Chen, and Anna Alisi
PLOS ONE, 2015, Volume 10, Number 7, Page e0133882
[6]
Anamika Basu, Christina K. Cajigas-Du Ross, Leslimar Rios-Colon, Melanie Mediavilla-Varela, Tracy R. Daniels-Wells, Lai Sum Leoh, Heather Rojas, Hiya Banerjee, Shannalee R. Martinez, Stephanny Acevedo-Martinez, Carlos A. Casiano, and Mohammad Saleem
PLOS ONE, 2016, Volume 11, Number 1, Page e0146549
[7]
Jian Shen, Weizhi Wang, Jindao Wu, Bing Feng, Wen Chen, Meng Wang, Jincao Tang, Fuqiang Wang, Feng Cheng, Liyong Pu, Qiyun Tang, Xuehao Wang, Xiangcheng Li, and Jason Mulvenna
PLoS ONE, 2012, Volume 7, Number 10, Page e47476
[8]
Alba Cortés, Javier Sotillo, Carla Muñoz-Antoli, Bernard Fried, J. Guillermo Esteban, Rafael Toledo, and John Pius Dalton
PLOS Neglected Tropical Diseases, 2015, Volume 9, Number 9, Page e0004082
[9]
Flavia Giamogante, Ilaria Marrocco, Donatella Romaniello, Margherita Eufemi, Silvia Chichiarelli, and Fabio Altieri
Oxidative Medicine and Cellular Longevity, 2016, Volume 2016, Page 1
[10]
Elisa Gaucci, Domenico Raimondo, Caterina Grillo, Laura Cervoni, Fabio Altieri, Giulio Nittari, Margherita Eufemi, and Silvia Chichiarelli
Scientific Reports, 2016, Volume 6, Number 1
[11]
Ying Zhu, Liqiong Cai, Jing Guo, Na Chen, Xiaoqing Yi, Yong Zhao, Jing Cai, and Zehua Wang
Tumor Biology, 2016, Volume 37, Number 10, Page 14009
[12]
A. M. Schorr-Lenz, J. Alves, N. A. C. Henckes, P. M. Seibel, A. M. Benham, and I. C. Bustamante-Filho
Andrology, 2016, Volume 4, Number 5, Page 957
[13]
María José de Miguel-Luken, Manuel Chaves-Conde, and Amancio Carnero
Cell Cycle, 2016, Volume 15, Number 9, Page 1202
[14]
Ching-Wu Hsia, Ming-Yi Ho, Hao-Ai Shui, Chong-Bin Tsai, and Min-Jen Tseng
International Journal of Molecular Sciences, 2015, Volume 16, Number 2, Page 3579
[15]
SHUZHEN ZHAO, ZHENGFANG WEN, SHANSHAN LIU, YING LIU, XIAORUI LI, YANNA GE, and SHAORU LI
Molecular Medicine Reports, 2015, Volume 12, Number 3, Page 3923
[16]
Bong-Kyu Kim, Hye-In Yoo, Keonwoo Choi, and Sungjoo Kim Yoon
FEBS Journal, 2015, Volume 282, Number 24, Page 4692
[17]
Sidra M. Hoffman, David G. Chapman, Karolyn G. Lahue, Jonathon M. Cahoon, Gurkiranjit K. Rattu, Nirav Daphtary, Minara Aliyeva, Karen A. Fortner, Serpil C. Erzurum, Suzy A.A. Comhair, Prescott G. Woodruff, Nirav Bhakta, Anne E. Dixon, Charles G. Irvin, Yvonne M.W. Janssen-Heininger, Matthew E. Poynter, and Vikas Anathy
Journal of Allergy and Clinical Immunology, 2016, Volume 137, Number 3, Page 822
[18]
Yuling Meng, Qiang Zhang, Meixiang Zhang, Biao Gu, Guiyan Huang, Qinhu Wang, and Weixing Shan
Frontiers in Plant Science, 2015, Volume 6
[19]
Indu Choudhary, Hyunkyoung Lee, Min-Jung Pyo, Yunwi Heo, Seong Kyeong Bae, Young Chul Kwon, Won Duk Yoon, Changkeun Kang, and Euikyung Kim
Journal of Proteomics, 2015, Volume 128, Page 123
[20]
Brad W. Porter, Christen Y.L. Yuen, and David A. Christopher
Plant Science, 2015, Volume 234, Page 174
[21]
J. Puigpinos, C. Casas, and E. Herrero
Molecular Biology of the Cell, 2015, Volume 26, Number 1, Page 104
[22]
Jean-François Landrier
Cahiers de Nutrition et de Diététique, 2014, Volume 49, Number 6, Page 245
[23]
Chia-Jung Liao, Tzu-I Wu, Ya-Hui Huang, Ting-Chang Chang, Chyong-Huey Lai, Shih-Ming Jung, Chuen Hsueh, and Kwang-Huei Lin
BMC Cancer, 2014, Volume 14, Number 1
[24]
Jean-François Landrier
OCL, 2014, Volume 21, Number 3, Page D302
[25]
Patricia Pinheiro, Michael S. Bereman, John Burd, Melissa Pals, Scott Armstrong, Kevin J. Howe, Theodore W. Thannhauser, Michael J. MacCoss, Stewart M. Gray, and Michelle Cilia
Journal of Proteome Research, 2014, Volume 13, Number 4, Page 2094
[26]
Caterina Grillo, Silvia Chichiarelli, Elisa Gaucci, Fabio Altieri, Carlo Turano, and Laura Cervoni
Chemico-Biological Interactions, 2014, Volume 213, Page 37
[27]
S. S. Shishkin, L. S. Eremina, L. I. Kovalev, and M. A. Kovaleva
Biochemistry (Moscow), 2013, Volume 78, Number 13, Page 1415
[28]
Alessio Cortelazzo, Raffaella L. Lampariello, Claudia Sticozzi, Roberto Guerranti, Cristiana Mirasole, Lello Zolla, Gianni Sacchetti, Joussef Hajek, and Giuseppe Valacchi
Journal of Ethnopharmacology, 2014, Volume 151, Number 2, Page 873
[29]
M. Halloran, S. Parakh, and J. D. Atkin
International Journal of Cell Biology, 2013, Volume 2013, Page 1
[30]
Takuto Fujii, Shun-ya Awaka, Yuji Takahashi, Kyosuke Fujita, Hiroshi Tsuji, Takahiro Shimizu, Tomoharu Gomi, Kazuhiro Tsukada, and Hideki Sakai
FEBS Letters, 2013, Volume 587, Number 24, Page 3898
[32]
Elisa Gaucci, Fabio Altieri, Carlo Turano, and Silvia Chichiarelli
Journal of Cellular Biochemistry, 2013, Volume 114, Number 11, Page 2461
[33]
Tino Prell, Janin Lautenschläger, and Julian Grosskreutz
Cell Calcium, 2013, Volume 54, Number 2, Page 132
[34]
Stefan Mikkat, Timo Kischstein, Michael Kreutzer, and Michael O. Glocker
ELECTROPHORESIS, 2013, Volume 34, Number 11, Page 1610
[35]
Cristina Aureli, Elisa Gaucci, Valentina Arcangeli, Caterina Grillo, Margherita Eufemi, and Silvia Chichiarelli
Gene, 2013, Volume 524, Number 2, Page 390
[36]
Evaldas Čiplys, Eimantas Žitkus, and Rimantas Slibinskas
Protein Expression and Purification, 2013, Volume 89, Number 2, Page 131
[37]
Kenneth B. Storey, Benjamin Lant, Obiajulu O. Anozie, and Janet M. Storey
Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2013, Volume 165, Number 4, Page 448
[38]
Lucie Trnková, Daniela Ricci, Caterina Grillo, Gianni Colotti, and Fabio Altieri
Biochimica et Biophysica Acta (BBA) - General Subjects, 2013, Volume 1830, Number 3, Page 2671
[39]
Catherine I. Andreu, Ute Woehlbier, Mauricio Torres, and Claudio Hetz
FEBS Letters, 2012, Volume 586, Number 18, Page 2826
[40]
Francesca Sciandra, Emanuela Angelucci, Fabio Altieri, Daniela Ricci, Wolfgang Hübner, Tamara C. Petrucci, Bruno Giardina, Andrea Brancaccio, and Manuela Bozzi
Experimental Cell Research, 2012, Volume 318, Number 19, Page 2460
[41]
Paulina Szyszka, Michal A Zmijewski, and Andrzej T Slominski
Expert Review of Anticancer Therapy, 2012, Volume 12, Number 5, Page 585
[42]
Andrea M. Vitello, Yanmei Du, Peter M. Buttrick, and Lori A. Walker
Biochemical and Biophysical Research Communications, 2012, Volume 421, Number 3, Page 431

Comments (0)

Please log in or register to comment.
Log in