Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Editor-in-Chief: /


IMPACT FACTOR 2016: 1.260
5-year IMPACT FACTOR: 1.506

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.615
Source Normalized Impact per Paper (SNIP) 2016: 0.470

Online
ISSN
1689-1392
See all formats and pricing
More options …
Volume 16, Issue 4 (Dec 2011)

Generalized stern models of the electric double layer considering the spatial variation of permittvity and finite size of ions in saturation regime

Ekaterina Gongadze / Ursula Rienen / Aleš Iglič
Published Online: 2011-09-29 | DOI: https://doi.org/10.2478/s11658-011-0024-x

Abstract

The interaction between a charged metal implant surface and a surrounding body fluid (electrolyte solution) leads to ion redistribution and thus to formation of an electrical double layer (EDL). The physical properties of the EDL contribute essentially to the formation of the complex implant-biosystem interface. Study of the EDL began in 1879 by Hermann von Helmholtz and still today remains a scientific challenge. The present mini review is focused on introducing the generalized Stern theory of an EDL, which takes into account the orientational ordering of water molecules. To ascertain the plausibility of the generalized Stern models described, we follow the classical model of Stern and introduce two Langevin models for spatial variation of the relative permittivity for point-like and finite sized ions. We attempt to uncover the subtle interplay between water ordering and finite sized ions and their impact on the electric potential near the charged implant surface. Two complementary effects appear to account for the spatial dependency of the relative permittivity near the charged implant surface — the dipole moment vectors of water molecules are predominantly oriented towards the surface and water molecules are depleted due to the accumulation of counterions. At the end the expressions for relative permittivity in both Langevin models were generalized by also taking into account the cavity and reaction field.

Keywords: Spatial variation of permittivity; Generalized Stern models; Water dipoles; Charged implant surface; Osteoblasts; Cell-implant interactions; Langevin model; Langevin-Bikerman model; Booth model; Gongadze-Iglič model

  • [1] Helmholtz, H. Studien über elektrische Grenzschichten. Ann. Phys. 7 (1879) 337–382. CrossrefGoogle Scholar

  • [2] Gouy, M.G. Sur la constitution de la charge electrique à la surface d’un electrolyte. J. Physique (France) 9 (1910) 457–468. Google Scholar

  • [3] Chapman, D.L. A contribution to the theory of electrocapillarity. Philos. Mag. 25 (1913) 475–481. CrossrefGoogle Scholar

  • [4] Stern, O. Zur Theorie der elektrolytischen Doppelschicht. Z. Elektrochemie 30 (1924) 508–516. Google Scholar

  • [5] Manciu, M. and Ruckenstein, E. The polarization model for hydration/double layer interactions: the role of the electrolyte ions. Adv. Coll. Int. Sci. 112 (2004) 109–128. http://dx.doi.org/10.1016/j.cis.2004.09.001CrossrefGoogle Scholar

  • [6] Gongadze, E., Bohinc, K., van Rienen, U., Kralj-Iglič, V. and Iglič, A. Spatial variation of permittivity near a charged membrane in contact with electrolyte solution, in: Advances in planar lipid bilayers and liposomes (Iglič, A. Ed.) 11th volume, Elsevier, 2010, 101–126. Google Scholar

  • [7] Gongadze, E., van Rienen, U., Kralj-Iglič, V. and Iglič, A. Langevin Poisson-Boltzmann equation: point-like ions and water dipoles near charged membrane surface. Gen. Physiol. Biophys. 30 (2011) 130–137. http://dx.doi.org/10.4149/gpb_2011_02_130Web of ScienceCrossrefGoogle Scholar

  • [8] Outhwaite CW. Towards a mean electrostatic potential treatment of an iondipole mixture or a dipolar system next to a plane wall. Mol. Phys. 48 (1983) 599–614. http://dx.doi.org/10.1080/00268978300100431CrossrefGoogle Scholar

  • [9] Bazant, M.Z., Kilic, M.S., Storey, B. and Ajdari, A. Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Adv Coll. Int. Sci. 152 (2009) 48–88. http://dx.doi.org/10.1016/j.cis.2009.10.001CrossrefGoogle Scholar

  • [10] Jackson, J.D. Classical electrodynamics. 3rd edition, Wiley and Son Inc., 1998. Google Scholar

  • [11] Butt, H. J., Graf, K. and Kappl, M. Physics and chemistry of interfaces. 1st edition, Wiley-VCH Verlag, 2003. Google Scholar

  • [12] McLaughlin, S. The electrostatic properties of membranes. Ann. Rev. Biophys. Chem. 18 (1989) 113–136. http://dx.doi.org/10.1146/annurev.bb.18.060189.000553CrossrefGoogle Scholar

  • [13] Bikerman, J.J. Structure and capacity of the electrical double layer. Phil. Mag. 33 (1942) 384–397. CrossrefGoogle Scholar

  • [14] Kralj-Iglič, V. Free energy of the electric double layer within the approximation of high electrolyte concentration. Electrotechnical Rev. 62 (1995) 104–108. Google Scholar

  • [15] Kralj-Iglič, V. and Iglič A. A simple statistical mechanical approach to the free energy of the electric double layer including the excluded volume effect. J. Phys. II 6 (1996) 477–491. http://dx.doi.org/10.1051/jp2:1996193CrossrefGoogle Scholar

  • [16] Lamperski, S. and Outhwaite, C.W. Exclusion volume term in the inhomogeneous Poisson-Boltzmann theory for high surface charge. Langmuir 18 (2002) 3423–3424. http://dx.doi.org/10.1021/la011852vCrossrefGoogle Scholar

  • [17] Iglič, A., Gongadze, E. and Bohinc, K. Excluded volume effect and orientational ordering near charged surface in solution of ions and Langevin dipoles. Bioelectrochemistry 79 (2010) 223–227. http://dx.doi.org/10.1016/j.bioelechem.2010.05.003CrossrefWeb of ScienceGoogle Scholar

  • [18] Adams, D.J. Theory of the dielectric constant of ice. Nature 293 (1981) 447–449. http://dx.doi.org/10.1038/293447a0CrossrefGoogle Scholar

  • [19] Dill, K.A. and Bromberg S. Molecular driving forces. Garland Science, 2003. Google Scholar

  • [20] Fröhlich, H. Theory of dielectrics. Clarendon Press, 1964. Google Scholar

  • [21] Franks, F. Water. A comprehensive treatise, vol. 1, The physics and physical chemistry of water, Plenum Press, 1972 Google Scholar

  • [22] Onsager, L. Electric moments of molecules in liquids. J. Am. Chem. Soc. 58 (1936) 1486–1493. http://dx.doi.org/10.1021/ja01299a050CrossrefGoogle Scholar

  • [23] Kirkwood, J.G. The dielectric polarization of polar liquids. J. Chem. Phys. 7 (1939) 911–919. http://dx.doi.org/10.1063/1.1750343CrossrefGoogle Scholar

  • [24] Booth, F. The dielectric constant of water and the saturation effect. J. Chem. Phys. 19 (1951) 391–394. http://dx.doi.org/10.1063/1.1748233CrossrefGoogle Scholar

  • [25] Urbanija, J., Bohinc, K., Bellen, A., Maset, S., Iglič, A., Kralj-Iglič, V. and Kumar, P.B.S. Attraction between negatively charged surfaces mediated by spherical counterions with quadrupolar charge distribution. J. Chem. Phys. 129 (2008) 105101. http://dx.doi.org/10.1063/1.2972980CrossrefWeb of ScienceGoogle Scholar

  • [26] Frank, M., Sodin-Šemrl, S., Rozman, B., Potočnik, M. and Kralj-Iglič, V. Effects of low-molecular-weight heparin on adhesion and vesiculation of phospholipid membranes — a possible mechanism for the treatment of hypercoagulability in antiphospholipid syndrome. Ann. N. Y. Acad. Sci. 1173 (2009) 874–886. http://dx.doi.org/10.1111/j.1749-6632.2009.04745.xWeb of ScienceCrossrefGoogle Scholar

  • [27] Zelko, J., Iglič, A., Kralj-Iglič, V. and Kumar, P.B.S. Effects of counterion size on the attraction between similarly charged surfaces. J. Chem. Phys. 133 (2010) 204901. http://dx.doi.org/10.1063/1.3506896Web of ScienceCrossrefGoogle Scholar

  • [28] Kabaso, D., Gongadze, E., Perutkova, Š., Kralj-Iglič, V., Matschegewski, C., Beck, U., van Rienen, U. and Iglič, A. Mechanics and electrostatics of the interactions between osteoblasts and titanium surface. Comput. Meth. Biomech. Biomed. Eng. 14 (2011) 469–482. http://dx.doi.org/10.1080/10255842.2010.534986CrossrefGoogle Scholar

  • [29] Smeets, R., Kolk, A., Gerressen, M., Driemel, O., Maciejewski, O., Hermanns-Sachweh, B., Riediger, D. and Stein J. A new biphasic osteoinductive calcium composite material with a negative zeta potential for bone augmentation. Head Face Med. (2009) Available from: 5: 13 doi: 10.1186/1746-160X-5-13. CrossrefGoogle Scholar

  • [30] Heath, M.D., Henderson, B. and Perkin S. Ion-specific effects on the interaction between fibronectin and negatively charged mica surfaces. Langmuir 26 (2010) 5304–5308. http://dx.doi.org/10.1021/la100678nWeb of ScienceCrossrefGoogle Scholar

  • [31] Teng, N.C., Nakamura, S., Takagi, Y., Yamashita, Y., Ohgaki, M. and Yamashita K. A new approach to enhancement of bone formation by electrically polarized hydroxyapatite. J. Dent. Res. 80 (2000) 1925–1929. Google Scholar

  • [32] Oghaki, M., Kizuki, T., Katsura, M. and Yamashita K. Manipulation of selective cell adhesion and growth by surface charges of electrically polarized hydroxyapatite. J. Biomed. Mater. Res. 57 (2001) 366–373. http://dx.doi.org/10.1002/1097-4636(20011205)57:3<366::AID-JBM1179>3.0.CO;2-XCrossrefGoogle Scholar

  • [33] Park, J., Bauer, S., Schlegel, K., Neukam, F., Mark, K. and Schmuki, P. TiO2 nanotube surfaces: 15 nm — an optimal length scale of surface topography for cell adhesion and differentiation. Small 5 (2009) 666–671. http://dx.doi.org/10.1002/smll.200801476CrossrefWeb of ScienceGoogle Scholar

  • [34] Puckett, S., Pareta, R. and Webster T. Nano rough micron patterned titanium for directing osteoblast morphology and adhesion. Int. J. Nanomedicine 3 (2008) 229–241. Google Scholar

  • [35] Gongadze, E., Kabaso, D., Bauer, S., Slivnik, T., Schmuki, P., van Rienen, U., Iglič, A. Adhesion of osteoblasts to a nanorough titanium implant surface. Int. J. Nanomedicine 6 (2011) in press Web of ScienceGoogle Scholar

  • [36] Schara, K., Janša, V., Šuštar, V., Dolinar, D., Pavlič, J.I., Lokar, M., Kralj-Iglič, V., Veranič, P., Iglič, A. Mechanisms for the formation of membranous nanostructures in cell-to-cell communication. Cell. Mol. Biol. Lett. 14 (2009) 636–656. http://dx.doi.org/10.2478/s11658-009-0018-0Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2011-09-29

Published in Print: 2011-12-01


Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-011-0024-x.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Xi Zhao, Shuo Xu, and Jing Liu
Frontiers in Energy, 2017
[2]
Serge G. Lemay, Cecilia Laborde, Christophe Renault, Andrea Cossettini, Luca Selmi, and Frans P. Widdershoven
Accounts of Chemical Research, 2016, Volume 49, Number 10, Page 2355
[3]
Shayandev Sinha, Lucas Myers, and Siddhartha Das
Microfluidics and Nanofluidics, 2016, Volume 20, Number 8
[4]
Alenka Maček Lebar, Aljaž Velikonja, Peter Kramar, and Aleš Iglič
Bioelectrochemistry, 2016, Volume 111, Page 49
[5]
Hirohisa Tamagawa and Sachi Morita
Membranes, 2014, Volume 4, Number 2, Page 257
[6]
Federico Pittino, Paolo Scarbolo, Frans Widdershoven, and Luca Selmi
IEEE Transactions on Nanotechnology, 2015, Volume 14, Number 4, Page 709
[7]
Sagardip Majumder, Jayabrata Dhar, and Suman Chakraborty
Scientific Reports, 2015, Volume 5, Number 1
[8]
Aljaž Velikonja, Poornima Santhosh, Ekaterina Gongadze, Mukta Kulkarni, Kristina Eleršič, Šarka Perutkova, Veronika Kralj-Iglič, Nataša Ulrih, and Aleš Iglič
International Journal of Molecular Sciences, 2013, Volume 14, Number 8, Page 15312
[10]
Aditya Bandopadhyay, Prakash Goswami, and Suman Chakraborty
The Journal of Chemical Physics, 2013, Volume 139, Number 22, Page 224503
[11]
Poornima Budime Santhosh, Aljaž Velikonja, Šarka Perutkova, Ekaterina Gongadze, Mukta Kulkarni, Julia Genova, Kristina Eleršič, Aleš Iglič, Veronika Kralj-Iglič, and Nataša Poklar Ulrih
Chemistry and Physics of Lipids, 2014, Volume 178, Page 52
[12]
Aditya Bandopadhyay, Jayabrata Dhar, and Suman Chakraborty
Physical Review E, 2013, Volume 88, Number 3
[13]
Ekaterina Gongadze, Aljaž Velikonja, Tomaž Slivnik, Veronika Kralj-Iglič, and Aleš Iglič
Electrochimica Acta, 2013, Volume 109, Page 656
[14]
Ekaterina Gongadze, Aljaž Velikonja, Šarka Perutkova, Peter Kramar, Alenka Maček-Lebar, Veronika Kralj-Iglič, and Aleš Iglič
Electrochimica Acta, 2014, Volume 126, Page 42
[15]
Rahul Prasanna Misra, Siddhartha Das, and Sushanta K. Mitra
The Journal of Chemical Physics, 2013, Volume 138, Number 11, Page 114703
[17]
Z. L. Mišković, P. Sharma, and F. O. Goodman
Physical Review B, 2012, Volume 86, Number 11
[18]
Siddhartha Das, Suman Chakraborty, and Sushanta K. Mitra
Physical Review E, 2012, Volume 85, Number 5
[19]
E. Gongadze, U. van Rienen, V. Kralj-Iglič, and A. Iglič
Computer Methods in Biomechanics and Biomedical Engineering, 2013, Volume 16, Number 5, Page 463

Comments (0)

Please log in or register to comment.
Log in