Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 16, Issue 4

Issues

DU-145 prostate carcinoma cells that selectively transmigrate narrow obstacles express elevated levels of Cx43

Katarzyna Szpak / Ewa Wybieralska / Ewa Niedziałkowska / Monika Rak / Iga Bechyne / Marta Michalik / Zbigniew Madeja / Jarosław Czyż
Published Online: 2011-09-29 | DOI: https://doi.org/10.2478/s11658-011-0027-7

Abstract

The formation of aqueous intercellular channels mediating gap junctional intercellular coupling (GJIC) is a canonical function of connexins (Cx). In contrast, mechanisms of GJIC-independent involvement of connexins in cancer formation and metastasis remain a matter of debate. Because of the role of Cx43 in the determination of carcinoma cell invasive potential, we addressed the problem of the possible Cx43 involvement in early prostate cancer invasion. For this purpose, we analysed Cx43-positive DU-145 cell subsets established from the progenies of the cells most readily transmigrating microporous membranes. These progenies displayed motile activity similar to the control DU-145 cells but were characterized by elevated Cx43 expression levels and GJIC intensity. Thus, apparent links exist between Cx43 expression and transmigration potential of DU-145 cells. Moreover, Cx43 expression profiles in the analysed DU-145 subsets were not affected by intercellular contacts and chemical inhibition of GJIC during the transmigration. Our observations indicate that neither cell motility nor GJIC determines the transmigration efficiency of DU-145 cells. However, we postulate that selective transmigration of prostate cancer cells expressing elevated levels of Cx43 expression may be crucial for the “leading front” formation during cancer invasion.

Keywords: Cancer invasion; Cell heterogeneity; Cell motility; Cx43; Gap junctions; Metastasis; Prostate cancer; Transmigration

  • [1] Sohl, G. and Willecke, K. Gap junctions and the connexin protein family. Cardiovasc. Res. 62 (2004) 228–232. http://dx.doi.org/10.1016/j.cardiores.2003.11.013CrossrefGoogle Scholar

  • [2] Zhang, Y.W., Kaneda, M. and Morita, I. The gap junction-independent tumor-suppressing effect of connexin 43. J. Biol. Chem. 278 (2003) 44852–44856. http://dx.doi.org/10.1074/jbc.M305072200CrossrefGoogle Scholar

  • [3] Omori, Y., Li, Q., Nishikawa, Y., Yoshioka, T., Yoshida, M., Nishimura, T. and Enomoto, K. Pathological significance of intracytoplasmic connexin proteins: implication in tumor progression. J. Membr. Biol. 218 (2007) 73–77. http://dx.doi.org/10.1007/s00232-007-9048-6Web of ScienceCrossrefGoogle Scholar

  • [4] Cronier, L., Crespin, S., Strale, P.O., Defamie, N. and Mesnil, M. Gap junctions and cancer: new functions for an old story. Antioxid. Redox. Signal. 11 (2009) 323–338. http://dx.doi.org/10.1089/ars.2008.2153Web of ScienceCrossrefGoogle Scholar

  • [5] Ionta, M., Ferreira, R.A., Pfister, S.C. and Machado-Santelli, G.M. Exogenous Cx43 expression decrease cell proliferation rate in rat hepatocarcinoma cells independently of functional gap junction. Cancer Cell Int. 9 (2009) 22. http://dx.doi.org/10.1186/1475-2867-9-22CrossrefWeb of ScienceGoogle Scholar

  • [6] Elias, L.A., Wang, D.D. and Kriegstein, A.R. Gap junction adhesion is necessary for radial migration in the neocortex. Nature 448 (2007) 901–907. http://dx.doi.org/10.1038/nature06063CrossrefWeb of ScienceGoogle Scholar

  • [7] Wiencken-Barger, A.E., Djukic, B., Casper, K.B. and McCarthy, K.D. A role for Connexin43 during neurodevelopment. Glia 55 (2007) 675–686. http://dx.doi.org/10.1002/glia.20484Web of ScienceCrossrefGoogle Scholar

  • [8] Lin, J.H., Yang, J., Liu, S., Takano, T., Wang, X., Gao, Q., Willecke, K. and Nedergaard, M. Connexin mediates gap junction-independent resistance to cellular injury. J. Neurosci. 23 (2003) 430–441. Google Scholar

  • [9] Xu, X., Francis, R., Wei, C.J., Linask, K.L. and Lo, C.W. Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells. Development 133 (2006) 3629–3639. http://dx.doi.org/10.1242/dev.02543CrossrefGoogle Scholar

  • [10] Olk, S., Zoidl, G. and Dermietzel, R. Connexins, cell motility, and the cytoskeleton. Cell Motil. Cytoskeleton 66 (2009) 1000–1016. http://dx.doi.org/10.1002/cm.20404CrossrefWeb of ScienceGoogle Scholar

  • [11] Laird, D.W. Life cycle of connexins in health and disease. Biochem. J. 394 (2006) 527–543. http://dx.doi.org/10.1042/BJ20051922CrossrefGoogle Scholar

  • [12] Trosko, J.E. Gap junctional intercellular communication as a biological “Rosetta stone” in understanding, in a systems biological manner, stem cell behavior, mechanisms of epigenetic toxicology, chemoprevention and chemotherapy. J. Membr. Biol. 218 (2007) 93–100. http://dx.doi.org/10.1007/s00232-007-9072-6CrossrefGoogle Scholar

  • [13] Miekus, K., Czernik, M., Sroka, J., Czyz, J. and Madeja, Z. Contact stimulation of prostate cancer cell migration: the role of gap junctional coupling and migration stimulated by heterotypic cell-to-cell contacts in determination of the metastatic phenotype of Dunning rat prostate cancer cells. Biol. Cell 97 (2005) 893–903. http://dx.doi.org/10.1042/BC20040129CrossrefGoogle Scholar

  • [14] Bates, D.C., Sin, W.C., Aftab, Q. and Naus, C.C. Connexin43 enhances glioma invasion by a mechanism involving the carboxy terminus. Glia 55 (2007) 1554–1564. http://dx.doi.org/10.1002/glia.20569CrossrefWeb of ScienceGoogle Scholar

  • [15] Czyz, J. The stage-specific function of gap junctions during tumourigenesis. Cell Mol. Biol. Lett. 13 (2008) 92–102. http://dx.doi.org/10.2478/s11658-007-0039-5CrossrefWeb of ScienceGoogle Scholar

  • [16] Zhang, W., DeMattia, J.A., Song, H. and Couldwell, W.T. Communication between malignant glioma cells and vascular endothelial cells through gap junctions. J. Neurosurg. 98 (2003) 846–853. http://dx.doi.org/10.3171/jns.2003.98.4.0846CrossrefGoogle Scholar

  • [17] Pollmann, M.A., Shao, Q., Laird, D.W. and Sandig, M. Connexin 43 mediated gap junctional communication enhances breast tumor cell diapedesis in culture. Breast Cancer Res. 7 (2005) R522–R534. http://dx.doi.org/10.1186/bcr1042CrossrefGoogle Scholar

  • [18] Prochnow, N. and Dermietzel, R. Connexons and cell adhesion: a romantic phase. Histochem. Cell Biol. 130 (2008) 71–77. http://dx.doi.org/10.1007/s00418-008-0434-7CrossrefWeb of ScienceGoogle Scholar

  • [19] Boiko, A.D., Razorenova, O.V., van de, R.M., Swetter, S.M., Johnson, D.L., Ly, D.P., Butler, P.D., Yang, G.P., Joshua, B., Kaplan, M.J., Longaker, M.T. and Weissman, I.L. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466 (2010) 133–137. http://dx.doi.org/10.1038/nature09161CrossrefWeb of ScienceGoogle Scholar

  • [20] Visvader, J.E. Cells of origin in cancer. Nature 469 (2011) 314–322. http://dx.doi.org/10.1038/nature09781CrossrefGoogle Scholar

  • [21] Wysoczynski, M., Miekus, K., Jankowski, K., Wanzeck, J., Bertolone, S., Janowska-Wieczorek, A., Ratajczak, J. and Ratajczak, M. Z. Leukemia inhibitory factor: a newly identified metastatic factor in rhabdomyosarcomas. Cancer Res. 67 (2007) 2131–2140. http://dx.doi.org/10.1158/0008-5472.CAN-06-1021Web of ScienceCrossrefGoogle Scholar

  • [22] Sroka, J., Kaminski, R., Michalik, M., Madeja, Z., Przestalski, S. and Korohoda, W. The effect of triethyllead on the motile activity of walker 256 carcinosarcoma cells. Cell Mol. Biol. Lett. 9 (2004) 15–30. Google Scholar

  • [23] Sroka, J., Antosik, A., Czyz, J., Nalvarte, I., Olsson, J.M., Spyrou, G. and Madeja, Z. Overexpression of thioredoxin reductase 1 inhibits migration of HEK-293 cells. Biol. Cell 99 (2007) 677–687. http://dx.doi.org/10.1042/BC20070024CrossrefGoogle Scholar

  • [24] Czyz, J., Guan, K., Zeng, Q., and Wobus, A.M. Loss of beta1 integrin function results in upregulation of connexin expression in embryonic stem cell-derived cardiomyocytes. Int. J. Dev. Biol. 49 (2005) 33–41. http://dx.doi.org/10.1387/ijdb.041835jcCrossrefGoogle Scholar

  • [25] Daniel-Wojcik, A., Misztal, K., Bechyne, I., Sroka, J., Miekus, K., Madeja, Z. and Czyz, J. Cell motility affects the intensity of gap junctional coupling in prostate carcinoma and melanoma cell populations. Int. J. Oncol. 33 (2008) 309–315. Google Scholar

  • [26] Czyz, J., Irmer, U., Schulz, G., Mindermann, A. and Hulser, D.F. Gap-junctional coupling measured by flow cytometry. Exp. Cell Res. 255 (2000) 40–46. http://dx.doi.org/10.1006/excr.1999.4760CrossrefGoogle Scholar

  • [27] Sottoriva, A., Verhoeff, J.J., Borovski, T., McWeeney, S.K., Naumov, L., Medema, J.P., Sloot, P.M. and Vermeulen, L. Cancer stem cell tumor model reveals invasive morphology and increased phenotypical heterogeneity. Cancer Res. 70 (2010) 46–56. http://dx.doi.org/10.1158/0008-5472.CAN-09-3663Web of ScienceCrossrefGoogle Scholar

  • [28] Baran, B., Bechyne, I., Siedlar, M., Szpak, K., Mytar, B., Sroka, J., Laczna, E., Madeja, Z., Zembala, M. and Czyz, J. Blood monocytes stimulate migration of human pancreatic carcinoma cells in vitro: the role of tumour necrosis factor — alpha. Eur. J. Cell Biol. 88 (2009) 743–752. http://dx.doi.org/10.1016/j.ejcb.2009.08.002CrossrefWeb of ScienceGoogle Scholar

  • [29] Kumar, S. and Weaver, V.M. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28 (2009) 113–127. http://dx.doi.org/10.1007/s10555-008-9173-4Web of ScienceCrossrefGoogle Scholar

  • [30] Friedl, P. and Wolf, K. Plasticity of cell migration: a multiscale tuning model. J. Exp. Med. 207 (2010) 11–19. http://dx.doi.org/10.1084/JEM2071OIA4CrossrefGoogle Scholar

  • [31] Gupta, G.P. and Massague, J. Cancer metastasis: building a framework. Cell 127 (2006) 679–695. http://dx.doi.org/10.1016/j.cell.2006.11.001CrossrefGoogle Scholar

  • [32] Langley, R.R. and Fidler, I.J. Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr. Rev. 28 (2007) 297–321. http://dx.doi.org/10.1210/er.2006-0027CrossrefWeb of ScienceGoogle Scholar

  • [33] Watanabe, N., Dickinson, D.A., Krzywanski, D.M., Iles, K.E., Zhang, H., Venglarik, C.J., and Forman, H.J. A549 subclones demonstrate heterogeneity in toxicological sensitivity and antioxidant profile. Am. J. Physiol Lung Cell Mol. Physiol 283 (2002) L726–L736. Google Scholar

  • [34] Blick, T., Widodo, E., Hugo, H., Waltham, M., Lenburg, M.E., Neve, R.M. and Thompson, E.W. Epithelial mesenchymal transition traits in human breast cancer cell lines. Clin. Exp. Metastasis 25 (2008) 629–642. http://dx.doi.org/10.1007/s10585-008-9170-6CrossrefGoogle Scholar

  • [35] Ito, A., Katoh, F., Kataoka, T.R., Okada, M., Tsubota, N., Asada, H., Yoshikawa, K., Maeda, S., Kitamura, Y., Yamasaki, H. and Nojima, H. A role for heterologous gap junctions between melanoma and endothelial cells in metastasis. J. Clin. Invest. 105 (2000) 1189–1197. http://dx.doi.org/10.1172/JCI8257CrossrefGoogle Scholar

  • [36] Huang, S. and Ingber, D.E. Cell tension, matrix mechanics, and cancer development. Cancer Cell 8 (2005) 175–176. http://dx.doi.org/10.1016/j.ccr.2005.08.009CrossrefGoogle Scholar

  • [37] Suresh, S. Biomechanics and biophysics of cancer cells. Acta Biomater. 3 (2007) 413–438. http://dx.doi.org/10.1016/j.actbio.2007.04.002CrossrefGoogle Scholar

  • [38] Kanczuga-Koda, L., Sulkowski, S., Lenczewski, A., Koda, M., Wincewicz, A., Baltaziak, M. and Sulkowska, M. Increased expression of connexins 26 and 43 in lymph node metastases of breast cancer. J. Clin. Pathol. 59 (2006) 429–433. http://dx.doi.org/10.1136/jcp.2005.029272CrossrefGoogle Scholar

  • [39] Iwasaki, H. and Suda, T. Cancer stem cells and their niche. Cancer Sci. 100 (2009) 1166–1172. http://dx.doi.org/10.1111/j.1349-7006.2009.01177.xCrossrefGoogle Scholar

  • [40] Voog, J. and Jones, D.L. Stem cells and the niche: a dynamic duo. Cell Stem Cell 6 (2010) 103–115. http://dx.doi.org/10.1016/j.stem.2010.01.011CrossrefGoogle Scholar

  • [41] Friedl, P., Hegerfeldt, Y. and Tusch, M. Collective cell migration in morphogenesis and cancer. Int. J. Dev. Biol. 48 (2004) 441–449. http://dx.doi.org/10.1387/ijdb.041821pfCrossrefGoogle Scholar

About the article

Published Online: 2011-09-29

Published in Print: 2011-12-01


Citation Information: Cellular and Molecular Biology Letters, Volume 16, Issue 4, Pages 625–637, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-011-0027-7.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Katarzyna Piwowarczyk, Edyta Kwiecień, Justyna Sośniak, Eliza Zimoląg, Emiliana Guzik, Jolanta Sroka, Zbigniew Madeja, and Jarosław Czyż
Cancers, 2018, Volume 10, Number 10, Page 363
[2]
Jonathan Boucher, Arnaud Monvoisin, Justine Vix, Marc Mesnil, Dominique Thuringer, Françoise Debiais, and Laurent Cronier
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2017
[3]
Katarzyna Piwowarczyk, Ewa Wybieralska, Jarosław Baran, Julia Borowczyk, Paulina Rybak, Milena Kosińska, Anna Julia Włodarczyk, Marta Michalik, Maciej Siedlar, Zbigniew Madeja, Jerzy Dobrucki, Krzysztof Reiss, and Jarosław Czyż
Expert Opinion on Therapeutic Targets, 2015, Volume 19, Number 2, Page 163
[4]
Damian Ryszawy, Michał Sarna, Monika Rak, Katarzyna Szpak, Sylwia Kędracka-Krok, Marta Michalik, Maciej Siedlar, Ewa Zuba-Surma, Kvetoslava Burda, Włodzimierz Korohoda, Zbigniew Madeja, and Jarosław Czyż
Carcinogenesis, 2014, Volume 35, Number 9, Page 1920
[5]
Norah Defamie, Amandine Chepied, and Marc Mesnil
FEBS Letters, 2014, Volume 588, Number 8, Page 1331
[6]
Tzu-Chien Kao, Chi-Hao Wu, and Gow-Chin Yen
Journal of Agricultural and Food Chemistry, 2014, Volume 62, Number 3, Page 542
[7]
Urszula Gawlik-Dziki, Michał Świeca, Maciej Sułkowski, Dariusz Dziki, Barbara Baraniak, and Jarosław Czyż
Food and Chemical Toxicology, 2013, Volume 57, Page 154
[8]
Jarosław Czyż, Katarzyna Szpak, and Zbigniew Madeja
Nature Reviews Urology, 2012, Volume 9, Number 5, Page 274

Comments (0)

Please log in or register to comment.
Log in