Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 17, Issue 1

Issues

The cytotoxic effect of diphtheria toxin on the actin cytoskeleton

Başak Varol / Muhammet Bektaş / Rüstem Nurten / Engin Bermek
Published Online: 2011-12-31 | DOI: https://doi.org/10.2478/s11658-011-0036-6

Abstract

Diphtheria toxin (DT) and its N-terminal fragment A (FA) catalyse the transfer of the ADP-ribose moiety of nicotinamide adenine dinucleotide (NAD) into a covalent linkage with eukaryotic elongation factor 2 (eEF2). DT-induced cytotoxicity is versatile, and it includes DNA cleavage and the depolymerisation of actin filaments. The inhibition of the ADP-ribosyltransferase (ADPrT) activity of FA did not affect the deoxyribonuclease activity of FA or its interaction with actin. The toxin entry rate into cells (HUVEC) was determined by measuring the ADP-ribosyltransferase activity. DT uptake was nearly 80% after 30 min. The efficiency was determined as Km = 2.2 nM; Vmax = 0.25 pmol.min−1. The nuclease activity was tested with hyperchromicity experiments, and it was concluded that G-actin has an inhibitory effect on DT nuclease activity. In thepresence of DT and mutant of diphtheria toxin (CRM197), F-actin depolymerisation was determined with gel filtration, WB and fluorescence techniques. In the presence of DT and CRM197, 60–65% F-actin depolymerisation was observed. An in vitro FA-actin interaction and F-actin depolymerisation were reported in our previous paper. The present study thus confirms the depolymerisation of actin cytoskeleton in vivo.

Keywords: ADP-ribosylation; Diphtheria toxin; Eukaryotic elongation factor-2; F-actin; Fragment A

  • [1] Collier, R.J. Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. Toxicon 39 (2001) 1793–1803. http://dx.doi.org/10.1016/S0041-0101(01)00165-9CrossrefGoogle Scholar

  • [2] Choe, S., Bennett, M.J., Fujii, G., Curmi, P.M., Kantardjieff, K.A., Collier, R.J. and Eisenberg, D. The crystal structure of diphtheria toxin. Nature 357 (1994) 216–222. http://dx.doi.org/10.1038/357216a0CrossrefGoogle Scholar

  • [3] Kageyama, T., Ohishi, M., Miyamoto, S., Mizushima, H., Iwamoto, R. and Mekada, E. Diphtheria toxin mutant CRM197 possesses weak EF2-ADPribosyl activity that potentiates its anti-tumorigenic activity. J. Biochem. 142 (2007) 95–104. http://dx.doi.org/10.1093/jb/mvm116CrossrefWeb of ScienceGoogle Scholar

  • [4] Rönnberg, B.J. and Middlebrook, J.L. Cellular regulation of diphtheria toxin cell surface receptors. Toxicon 27 (1989) 1377–1388. http://dx.doi.org/10.1016/0041-0101(89)90069-XCrossrefGoogle Scholar

  • [5] Van Ness, B.G., Howard, J.B. and Bodley, J.W. ADP-ribosylation of elongation factor 2 by diphtheria toxin. NMR spectra and proposed structures of ribosyl-diphthamide and its hydrolysis products. J. Biochem. 255 (1980) 10710–10716. Google Scholar

  • [6] Collier, R.J. Effect of diphtheria toxin on protein synthesis: inactivation of one of the transfer factors. J. Mol. Biol. 25 (1967) 83–98. http://dx.doi.org/10.1016/0022-2836(67)90280-XCrossrefGoogle Scholar

  • [7] Draper, R.K. and Simon, M.I. The entry of diphtheria toxin into the mammalian cell cytoplasm: evidence for lysosomal involvement. J. Cell Biol. 87 (1980) 849–854. http://dx.doi.org/10.1083/jcb.87.3.849CrossrefGoogle Scholar

  • [8] Kaul, P., Silverman, J., Shen, W. H., Blanke, S.R., Huynh, P.D., Finkelstein, A. and Collier, J. Roles of Glu 349 and Asp 352 in membrane insertion and translocation by diphtheria toxin. Protein Sci. 5 (1996) 687–697. http://dx.doi.org/10.1002/pro.5560050413CrossrefGoogle Scholar

  • [9] D’silva, P.R. and Lala, A.K. Organisation of diphtheria toxin in membranes. A hydrophobic photolabeling study. J. Biol. Chem. 275 (1998) 11771–11777. http://dx.doi.org/10.1074/jbc.275.16.11771CrossrefGoogle Scholar

  • [10] Lemichez, E., Bomsel, M., Devilliers, G., Vander Spek, J., Murphy, J.R., Lukianov, E.V., Olsnes, S. and Bouquet, P. Membrane translocation of diphtheria toxin fragment A exploits early to late endosome trafficking machinery. Mol. Microbiol. 23 (1997) 445–457. CrossrefGoogle Scholar

  • [11] Burch, G.E., Sun, S.C., Sohal, R.S., Chu, K.C and Colcolough, H.L. Diphtheritic myocarditis. A histochemical and electron microscopic study. Am. J. Cardiol. 21 (1968) 261–268. http://dx.doi.org/10.1016/0002-9149(68)90328-7CrossrefGoogle Scholar

  • [12] Bektaş, M., Günçer, B., Güven, C., Nurten, R. and Bermek, E. Actin-an inhibitor of eukaryotic elongation factor activities. Biochem. Biophys. Res. Commun. 317 (2004) 1061–1066. http://dx.doi.org/10.1016/j.bbrc.2004.03.153CrossrefGoogle Scholar

  • [13] Bektaş, M., Varol, B., Nurten, R. and Bermek, E. Interaction of diphtheria toxin (fragment A) with actin. Cell Biochem. Funct. 27 (2009) 430–439. http://dx.doi.org/10.1002/cbf.1590Web of ScienceCrossrefGoogle Scholar

  • [14] Bektaş, M., Hacıosmanoğlu, E., Özerman, B., Varol, B., Nurten, R. and Bermek, E. The effect of cytochalasin D and the involvement of actin filaments and eukaryotic elongation factor 2 in the release of diphtheria toxin fragment a into the cytosol. Int. J. Biochem. Cell Biol. 43 (2011) 1365–1372. http://dx.doi.org/10.1016/j.biocel.2011.05.017CrossrefWeb of ScienceGoogle Scholar

  • [15] Bektaş, M., Nurten, R., Ergen, K. and Bermek, E. Endogenous ADPribosylation for eukaryotic elongation factor 2: evidence of two different sites and reactions. Cell Biochem. Funct. 24 (2006) 369–380. http://dx.doi.org/10.1002/cbf.1265CrossrefGoogle Scholar

  • [16] Bektaş., M., Nurten., R., Gürel., Z., Sayers, Z. and Bermek, E. Interactions of eukaryotic elongation factor 2 with actin: a possible link between protein synthetic machinery and cytoskeleton. FEBS Lett. 356 (1994) 89–93. http://dx.doi.org/10.1016/0014-5793(94)01239-3CrossrefGoogle Scholar

  • [17] Bektaş, M., Nurten, R., Sayers, Z. and Bermek, E. Interactions of eukaryotic elongation factor 2 with the cytoskeleton interference with DNase I binding to actin. Eur. J. Biochem. 256 (1998) 142–147. http://dx.doi.org/10.1046/j.1432-1327.1998.2560142.xCrossrefGoogle Scholar

  • [18] Engvall, E. Enzyme immunoassay ELISA and EMIT. Meth. Enzymol. 70 (1980) 419–439. http://dx.doi.org/10.1016/S0076-6879(80)70067-8CrossrefGoogle Scholar

  • [19] Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 (1970) 680–685. http://dx.doi.org/10.1038/227680a0CrossrefGoogle Scholar

  • [20] Dharmawardhane, S., Warren, V., Hall, A.L. and Condeelis, J. Changes in the assosication of actin binding proteins with the actin cytoskeleton during chemotactic stimulation of Dictiyostelium discoideum. Cell Motil. Cytoskeleton 13 (1989) 57–63. http://dx.doi.org/10.1002/cm.970130107CrossrefGoogle Scholar

  • [21] Tu, Y., Wu, S., Shi, X., Chen, K. and Wu, C. Migfilin and Mig-2 ling focal adhesions to filamin and the actin cytoskeleton and function in cell shape modulation. Cell 113 (2003) 37–47. http://dx.doi.org/10.1016/S0092-8674(03)00163-6CrossrefGoogle Scholar

  • [22] Gibert, M., Marvaud, J.C., Pereira, Y., Hale, M.L., Stiles, B.G., Boquet, P., Lamaze, C. and Popoff. M.R. Differential requirement for the translocation of clostridial binary toxins: Iota toxin requires a membrane potential gradient. FEBS Lett. 581 (2007) 1287–1296. http://dx.doi.org/10.1016/j.febslet.2007.02.041Web of ScienceCrossrefGoogle Scholar

  • [23] Bruce, C., Baldvin, R.L., Lessnik, S.L. and Wisnieski, B.J. Diphtheria toxin and its ADP-ribosyltransferase-defective homologue CRM197 possess deoxyribonuclease activity. Proc. Natl. Acad. Sci. USA 87 (1990) 2995–2998. http://dx.doi.org/10.1073/pnas.87.8.2995CrossrefGoogle Scholar

  • [24] Lessnick, S.L., Lyczak, J.B., Bruce, C., Lewis, D.G., Kim, P.S., Stolowitz, M.L., Hood, L. and Wisnieski, B.J. Localization of diphtheria toxin nuclease activity to fragment A. J. Bact. 174 (1992) 2032–2038. Google Scholar

  • [25] Pappenheimer, A.M. Jr. and Gill, D.M. Diphtheria. Science 26 (1973) 353–358. http://dx.doi.org/10.1126/science.182.4110.353CrossrefGoogle Scholar

  • [26] Collier, R.J. Diphtheria toxin: mode of action and structure. Bacteriol. Rev. 39 (1975) 54–85. Google Scholar

  • [27] Morris, R.E. and Saelinger, C.E. Diphtheria toxin does not enter resistant cells by receptor-mediated endocytosis. Infect. Immun. 42 (1987) 812–817. Google Scholar

  • [28] Bras, M., Queenan, B. and Susin, A. Programmed cell death via mitochondria: different modes of dying. Biochemistry (Mosc.) 70 (2005) 231–233. http://dx.doi.org/10.1007/s10541-005-0105-4CrossrefGoogle Scholar

  • [29] Kusano, I., Kageyama, A., Tamura, T., Oda, T. and Muramatsu, T. Enhancement of diphtheria toxin-induced apoptosis in Vero cells by combination treatment with brefeldin A and okadaic acid. Cell Struct. Funct. 26 (2001) 279–288. http://dx.doi.org/10.1247/csf.26.279CrossrefGoogle Scholar

  • [30] Barth, H., Olenik, C., Sehr, P., Schmidt, G., Aktories, K. and Mayer, D.K. Neosynthesis and activation of Rho by Escherichia coli cytotoxic necrotizing factor (CNF1) reverse cytopathic effects of ADP-ribosylated Rho. J. Biol. Chem. 274 (1999) 27407–27414. http://dx.doi.org/10.1074/jbc.274.39.27407CrossrefGoogle Scholar

  • [31] Cha, J.H., Brook, J.S., Ivey, K.N. and Eidels, L. Cell surface monkey CD9 antigen is a coreceptor that increases diphtheria toxin sensitivity and diphtheria toxin receptor affinity. J. Biol Chem. 275 (2000) 6901–6907. http://dx.doi.org/10.1074/jbc.275.10.6901CrossrefGoogle Scholar

  • [32] Brooke, J.S., Cha, J.H. and Eidels, L. Diphtheria toxin receptor interaction: association, dissociation, and effect of pH. Biochem. Biophys. Res. Commun. 248 (1998) 297–302. http://dx.doi.org/10.1006/bbrc.1998.8953CrossrefGoogle Scholar

  • [33] Richard, J.F., Petit, L., Gibert, M., Marvaud, J.C., Bouchaud, C. and Popoff, M. Bacterial toxins modifying the actin cytoskeleton. Internal. Microbiol. 2 (1999) 185–194. Google Scholar

  • [34] Aktories, K. and Wegner, A. ADP-ribosylation of actin by clostridial toxins. J. Cell. Biol. 109 (1989) 1385–1387. http://dx.doi.org/10.1083/jcb.109.4.1385CrossrefGoogle Scholar

  • [35] Aktories K., Barmann, M., Ohishi, I., Tsuyama, S., Jakobs, K.H. and Haberman, E. Botulinum C2 toxin ADP-ribosylates actin. Nature 322 (1986) 390–392. http://dx.doi.org/10.1038/322390a0CrossrefGoogle Scholar

  • [36] Van den Ent, F., Amos, L.A. and Löwe, J. Prokaryotic origin of the actin cytoskeleton. Nature 413 (2001) 39–44. http://dx.doi.org/10.1038/35092500CrossrefGoogle Scholar

About the article

Published Online: 2011-12-31

Published in Print: 2012-03-01


Citation Information: Cellular and Molecular Biology Letters, Volume 17, Issue 1, Pages 49–61, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-011-0036-6.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ebru Hacıosmanoğlu, Başak Varol, Bilge Özerman Edis, and Muhammet Bektaş
Cytotechnology, 2016, Volume 68, Number 6, Page 2659

Comments (0)

Please log in or register to comment.
Log in