Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 17, Issue 1

Issues

Developmental expression of P5 ATPase mRNA in the mouse

Lisa Weingarten / Hardi Dave / Hongyan Li / Dorota Crawford
Published Online: 2011-12-31 | DOI: https://doi.org/10.2478/s11658-011-0039-3

Abstract

P5 ATPases (ATP13A1 through ATP13A5) are found in all eukaryotes. They are currently poorly characterized and have unknown substrate specificity. Recent evidence has linked two P5 ATPases to diseases of the nervous system, suggesting possible importance of these proteins within the nervous system. In this study we determined the relative expression of mouse P5 ATPases in development using quantitative real time PCR. We have shown that ATP13A1 and ATP13A2 were both expressed similarly during development, with the highest expression levels at the peak of neurogenesis. ATP13A3 was expressed highly during organogenesis with one of its isoforms playing a more predominant role during the period of neuronal development. ATP13A5 was expressed most highly in the adult mouse brain. We also assessed the expression of these genes in various regions of the adult mouse brain. ATP13A1 to ATP13A4 were expressed differentially in the cerebral cortex, hippocampus, brainstem and cerebellum while levels of ATP13A5 were fairly constant between these brain regions. Moreover, we demonstrated expression of the ATP13A4 protein in the corresponding brain regions using immunohistochemistry. In summary, this study furthers our knowledge of P5-type ATPases and their potentially important role in the nervous system.

Keywords: P5-type ATPases; mRNA expression; Neurogenesis; Parkinson’s disease; Autism spectrum disorders; Real-time PCR; Immunohistochemistry

  • [1] Lutsenko, S. and Kaplan, J.H. Organization of P-type ATPases: significance of structural diversity. Biochemistry (N.Y.) 48 (1995) 15607–15613. http://dx.doi.org/10.1021/bi00048a001CrossrefGoogle Scholar

  • [2] Axelsen, K.B. and Palmgren, M.G. Evolution of substrate specificities in the P-type ATPase superfamily. J. Mol. Evol. 1 (1998) 84–101. http://dx.doi.org/10.1007/PL00006286CrossrefGoogle Scholar

  • [3] Kuhlbrandt, W. Biology, structure and mechanism of P-type ATPases. Nat. Rev. Mol. Cell Biol. 4 (2004) 282–295. http://dx.doi.org/10.1038/nrm1354CrossrefGoogle Scholar

  • [4] Paulusma, C.C. and Oude Elferink, R.P. The type 4 subfamily of P-type ATPases, putative aminophospholipid translocases with a role in human disease. Biochim. Biophys. Acta 1–2 (2005) 11–24. Google Scholar

  • [5] Folmer, D.E., Elferink, R.P. and Paulusma, C.C. P4 ATPases — lipid flippases and their role in disease. Biochim. Biophys. Acta 7 (2009) 628–635. Web of ScienceCrossrefGoogle Scholar

  • [6] Cronin, S.R., Khoury, A., Ferry, D.K. and Hampton, R.Y. Regulation of HMG-CoA reductase degradation requires the P-type ATPase Cod1p/Spf1p. J. Cell Biol. 5 (2000) 915–924. http://dx.doi.org/10.1083/jcb.148.5.915Google Scholar

  • [7] Cronin, S.R., Rao, R. and Hampton, R.Y. Cod1p/Spf1p is a P-type ATPase involved in ER function and Ca2+ homeostasis. J. Cell Biol. 6 (2002) 1017–1028. http://dx.doi.org/10.1083/jcb.200203052Google Scholar

  • [8] Vallipuram, J., Grenville, J. and Crawford, D.A. The E646D-ATP13A4 mutation associated with autism reveals a defect in calcium regulation. Cell. Mol. Neurobiol. 30 (2010) 233–246. http://dx.doi.org/10.1007/s10571-009-9445-8Google Scholar

  • [9] Suzuki, C. and Shimma, Y.I. P-type ATPase spf1 mutants show a novel resistance mechanism for the killer toxin SMKT. Mol. Microbiol. 4 (1999) 813–823. http://dx.doi.org/10.1046/j.1365-2958.1999.01400.xGoogle Scholar

  • [10] Vashist, S., Frank, C.G., Jakob, C.A. and Ng, D.T. Two distinctly localized p-type ATPases collaborate to maintain organelle homeostasis required for glycoprotein processing and quality control. Mol. Biol. Cell 11 (2002) 3955–3966. http://dx.doi.org/10.1091/mbc.02-06-0090CrossrefGoogle Scholar

  • [11] Jakobsen, M.K., Poulsen, L.R., Schulz, A., Fleurat-Lessard, P., Moller, A., Husted, S., Schiott, M., Amtmann, A. and Palmgren, M.G. Pollen development and fertilization in Arabidopsis is dependent on the MALE GAMETOGENESIS IMPAIRED ANTHERS gene encoding a type V P-type ATPase. Genes Dev. 22 (2005) 2757–2769. http://dx.doi.org/10.1101/gad.357305CrossrefGoogle Scholar

  • [12] Suzuki, C. Immunochemical and mutational analyses of P-type ATPase Spf1p involved in the yeast secretory pathway. Biosci. Biotechnol. Biochem. 11 (2001) 2405–2411. http://dx.doi.org/10.1271/bbb.65.2405Google Scholar

  • [13] Rand, J.D. and Grant, C.M. The thioredoxin system protects ribosomes against stress-induced aggregation. Mol. Biol. Cell 1 (2006) 387–401. Google Scholar

  • [14] Moller, A.B., Asp, T., Holm, P.B. and Palmgren, M.G. Phylogenetic analysis of P5 P-type ATPases, a eukaryotic lineage of secretory pathway pumps. Mol. Phylogenet. Evol. 2 (2008) 619–634. http://dx.doi.org/10.1016/j.ympev.2007.10.023Web of ScienceCrossrefGoogle Scholar

  • [15] Kwasnicka-Crawford, D.A., Carson, A.R., Roberts, W., Summers, A.M., Rehnstrom, K., Jarvela, I. and Scherer, S.W. Characterization of a novel cation transporter ATPase gene (ATP13A4) interrupted by 3q25-q29 inversion in an individual with language delay. Genomics 2 (2005) 182–194. http://dx.doi.org/10.1016/j.ygeno.2005.04.002CrossrefGoogle Scholar

  • [16] Schultheis, P.J., Hagen, T.T., O’Toole, K.K., Tachibana, A., Burke, C.R., McGill, D.L., Okunade, G.W. and Shull, G.E. Characterization of the P5 subfamily of P-type transport ATPases in mice. Biochem. Biophys. Res. Commun. 3 (2004) 731–738. http://dx.doi.org/10.1016/j.bbrc.2004.08.156CrossrefGoogle Scholar

  • [17] Ramirez, A., Heimbach, A., Grundemann, J., Stiller, B., Hampshire, D., Cid, L.P., Goebel, I., Mubaidin, A.F., Wriekat, A.L., Roeper, J., Al-Din, A., Hillmer, A.M., Karsak, M., Liss, B., Woods, C.G., Behrens, M.I. and Kubisch, C. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 10 (2006) 1184–1191. http://dx.doi.org/10.1038/ng1884CrossrefGoogle Scholar

  • [18] Di Fonzo, A., Chien, H.F., Socal, M., Giraudo, S., Tassorelli, C., Iliceto, G., Fabbrini, G., Marconi, R., Fincati, E., Abbruzzese, G., Marini, P., Squitieri, F., Horstink, M.W., Montagna, P., Libera, A.D., Stocchi, F., Goldwurm, S., Ferreira, J.J., Meco, G., Martignoni, E., Lopiano, L., Jardim, L.B., Oostra, B.A., Barbosa, E.R. and Bonifati, V. ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology 19 (2007) 1557–1562. http://dx.doi.org/10.1212/01.wnl.0000260963.08711.08CrossrefGoogle Scholar

  • [19] Lin, C.H., Tan, E.K., Chen, M.L., Tan, L.C., Lim, H.Q., Chen, G.S. and Wu, R.M. Novel ATP13A2 variant associated with Parkinson disease in Taiwan and Singapore. Neurology 21 (2008) 1727–1732. http://dx.doi.org/10.1212/01.wnl.0000335167.72412.68CrossrefGoogle Scholar

  • [20] Rakovic, A., Stiller, B., Djarmati, A., Flaquer, A., Freudenberg, J., Toliat, M.R., Linnebank, M., Kostic, V., Lohmann, K., Paus, S., Nurnberg, P., Kubisch, C., Klein, C., Wullner, U. and Ramirez, A. Genetic association study of the P-type ATPase ATP13A2 in late-onset Parkinson’s disease. Mov. Disord. 3 (2009) 429–433. http://dx.doi.org/10.1002/mds.22399CrossrefGoogle Scholar

  • [21] Santos, A.R. and Duarte, C.B. Validation of internal control genes for expression studies: effects of the neurotrophin BDNF on hippocampal neurons. J. Neurosci. Res. 16 (2008) 3684–3692. http://dx.doi.org/10.1002/jnr.21796CrossrefGoogle Scholar

  • [22] de Kok, J.B., Roelofs, R.W., Giesendorf, B.A., Pennings, J.L., Waas, E.T., Feuth, T., Swinkels, D.W. and Span, P.N. Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab. Invest. 1 (2005) 154–159. CrossrefGoogle Scholar

  • [23] Thal, S.C., Wyschkon, S., Pieter, D., Engelhard, K. and Werner, C. Selection of endogenous control genes for normalization of gene expression analysis after experimental brain trauma in mice. J. Neurotrauma 7 (2008) 785–794. http://dx.doi.org/10.1089/neu.2007.0497CrossrefWeb of ScienceGoogle Scholar

  • [24] Mwacharo, J., Dunachie, S.J., Kai, O., Hill, A.V., Bejon, P. and Fletcher, H.A. Quantitative PCR evaluation of cellular immune responses in Kenyan children vaccinated with a candidate malaria vaccine. PloS One 12 (2009) e8434. http://dx.doi.org/10.1371/journal.pone.0008434CrossrefGoogle Scholar

  • [25] Xing, W., Deng, M., Zhang, J., Huang, H., Dirsch, O. and Dahmen, U. Quantitative evaluation and selection of reference genes in a rat model of extended liver resection. J. Biomol. Tech. 2 (2009) 109–115. Google Scholar

  • [26] Boda, E., Pini, A., Hoxha, E., Parolisi, R. and Tempia, F. Selection of reference genes for quantitative real-time RT-PCR studies in mouse brain. J. Mol. Neurosci. 3 (2009) 238–253. http://dx.doi.org/10.1007/s12031-008-9128-9CrossrefWeb of ScienceGoogle Scholar

  • [27] Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. and Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3 (2002) RESEARCH0034. http://dx.doi.org/10.1186/gb-2002-3-7-research0034CrossrefGoogle Scholar

  • [28] Daston, G., Faustman, E., Ginsberg, G., Fenner-Crisp, P., Olin, S., Sonawane, B., Bruckner, J., Breslin, W. and McLaughlin, T.J. A framework for assessing risks to children from exposure to environmental agents. Environ. Health Perspect. 2 (2004) 238–256. Google Scholar

  • [29] Rodier, P.M. Chronology of neuron development: animal studies and their clinical implications. Dev. Med. Child Neurol. 4 (1980) 525–545. Google Scholar

  • [30] Angevine, J.B.,Jr. Time of neuron origin in the diencephalon of the mouse. An autoradiographic study. J. Comp. Neurol. 2 (1970) 129–187. http://dx.doi.org/10.1002/cne.901390202CrossrefGoogle Scholar

  • [31] Gerfen, C.R., Baimbridge, K.G. and Thibault, J. The neostriatal mosaic: III. Biochemical and developmental dissociation of patch-matrix mesostriatal systems. J. Neurosci. 12 (1987) 3935–3944. Google Scholar

  • [32] Bayer, S.A., Wills, K.V., Triarhou, L.C. and Ghetti, B. Time of neuron origin and gradients of neurogenesis in midbrain dopaminergic neurons in the mouse. Exp. Brain Res. 2 (1995) 191–199. Google Scholar

  • [33] Kawano, H., Ohyama, K., Kawamura, K. and Nagatsu, I. Migration of dopaminergic neurons in the embryonic mesencephalon of mice. Brain Res. Dev. Brain Res. 1–2 (1995) 101–113. http://dx.doi.org/10.1016/0165-3806(95)00018-9CrossrefGoogle Scholar

  • [34] Carper, R.A., Moses, P., Tigue, Z.D. and Courchesne, E. Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage 4 (2002) 1038–1051. http://dx.doi.org/10.1006/nimg.2002.1099CrossrefGoogle Scholar

  • [35] Carper, R.A. and Courchesne, E. Localized enlargement of the frontal cortex in early autism. Biol. Psychiatry 2 (2005) 126–133. http://dx.doi.org/10.1016/j.biopsych.2004.11.005CrossrefGoogle Scholar

  • [36] Courchesne, E., Saitoh, O., Yeung-Courchesne, R., Press, G.A., Lincoln, A.J., Haas, R.H. and Schreibman, L. Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic subgroups with MR imaging. AJR Am. J. Roentgenol. 1 (1994) 123–130. CrossrefGoogle Scholar

  • [37] Hashimoto, T., Tayama, M., Murakawa, K., Yoshimoto, T., Miyazaki, M., Harada, M. and Kuroda, Y. Development of the brainstem and cerebellum in autistic patients. J. Autism Dev. Disord. 1 (1995) 1–18. http://dx.doi.org/10.1007/BF02178163CrossrefGoogle Scholar

About the article

Published Online: 2011-12-31

Published in Print: 2012-03-01


Citation Information: Cellular and Molecular Biology Letters, Volume 17, Issue 1, Pages 153–170, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-011-0039-3.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jiacai Zhang, Yanan Wang, Cong Zhang, Mingxin Xiong, Shahid Ali Rajput, Yun Liu, and Desheng Qi
BMC Genomics, 2019, Volume 20, Number 1
[2]
Andrew S. Gibbons, Laura M. Bell, Madhara Udawela, and Brian Dean
The World Journal of Biological Psychiatry, 2018, Page 1
[3]
[4]
Ravneet Rai-Bhogal, Christine Wong, Ashby Kissoondoyal, Jennilee Davidson, Hongyan Li, and Dorota A. Crawford
Biochemistry and Biophysics Reports, 2018, Volume 14, Page 43
[5]
Danny Mollerup Sørensen, Tine Holemans, Sarah van Veen, Shaun Martin, Tugce Arslan, Ida Winther Haagendahl, Henrik Waldal Holen, Norin Nabil Hamouda, Jan Eggermont, Michael Palmgren, Peter Vangheluwe, and Darren J. Moore
PLOS ONE, 2018, Volume 13, Number 3, Page e0193228
[6]
Yifat Cohen, Márton Megyeri, Oscar C. W. Chen, Giuseppe Condomitti, Isabelle Riezman, Ursula Loizides-Mangold, Alaa Abdul-Sada, Nitzan Rimon, Howard Riezman, Frances M. Platt, Anthony H. Futerman, Maya Schuldiner, and Stephen W. Michnick
PLoS ONE, 2013, Volume 8, Number 12, Page e85519
[7]
Ding Liu, Yumiao Zhang, Yu Wang, Chanjuan Chen, Xin Li, Jinxia Zhou, Zhi Song, Bo Xiao, Kevin Rasco, Feng Zhang, Shu Wen, and Guoliang Li
Scientific Reports, 2016, Volume 6, Number 1
[8]
Elisa Biamino, Eleonora Di Gregorio, Elga Fabia Belligni, Roberto Keller, Evelise Riberi, Marina Gandione, Alessandro Calcia, Cecilia Mancini, Elisa Giorgio, Simona Cavalieri, Patrizia Pappi, Flavia Talarico, Antonio M. Fea, Silvia De Rubeis, Margherita Cirillo Silengo, Giovanni Battista Ferrero, and Alfredo Brusco
American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, Volume 171, Number 2, Page 290
[9]
Valentina Guida, Lorenzo Sinibaldi, Mario Pagnoni, Laura Bernardini, Sara Loddo, Katia Margiotti, Maria Cristina Digilio, Maria Teresa Fadda, Bruno Dallapiccola, Giorgio Iannetti, and De Luca Alessandro
American Journal of Medical Genetics Part A, 2015, Volume 167, Number 4, Page 797
[10]
Cora Sin, Hongyan Li, and Dorota A. Crawford
Journal of Molecular Neuroscience, 2015, Volume 55, Number 2, Page 437
[11]
Sarah van Veen, Danny M. Sørensen, Tine Holemans, Henrik W. Holen, Michael G. Palmgren, and Peter Vangheluwe
Frontiers in Molecular Neuroscience, 2014, Volume 7
[12]
Tomás Lopes da Fonseca, Ana Correia, Wiebren Hasselaar, Herma C. van der Linde, Rob Willemsen, and Tiago Fleming Outeiro
Brain Research Bulletin, 2013, Volume 90, Page 118
[13]
Jason P. Covy, Elisa A. Waxman, and Benoit I. Giasson
Journal of Neuroscience Research, 2012, Volume 90, Number 12, Page 2306

Comments (0)

Please log in or register to comment.
Log in