Jump to ContentJump to Main Navigation
Show Summary Details

Cellular and Molecular Biology Letters

Editor-in-Chief: /


IMPACT FACTOR increased in 2015: 1.753

SCImago Journal Rank (SJR) 2015: 0.788
Source Normalized Impact per Paper (SNIP) 2015: 0.645
Impact per Publication (IPP) 2015: 1.748

Online
ISSN
1689-1392
See all formats and pricing
Volume 17, Issue 2 (Jun 2012)

Analysis of the role of the integrin signaling pathway in hepatocytes during rat liver regeneration

Cunshuan Xu
  • Henan Normal University
  • Key Laboratory for Cell Differentiation Regulation
  • Email:
/ Yanjie Yang
  • Henan Normal University
  • Key Laboratory for Cell Differentiation Regulation
  • Email:
/ Junying Yang
  • Key Laboratory for Cell Differentiation Regulation
  • Email:
/ Xiaoguang Chen
  • Key Laboratory for Cell Differentiation Regulation
  • Email:
/ Gaiping Wang
  • Key Laboratory for Cell Differentiation Regulation
  • Email:
Published Online: 2012-04-24 | DOI: https://doi.org/10.2478/s11658-012-0011-x

Abstract

To explore the role of the integrin signaling pathway in hepatocytes during rat liver regeneration, the integrin signaling pathway-related gene expression profile in hepatocytes of regenerative liver was detected using Rat Genome 230 2.0 array. The chip data showed that 265 genes of the integrin signaling pathway were included by Rat Genome 230 2.0 array and 132 genes showed significant expression changes in hepatocytes of regenerative liver. The numbers of up-, down- and up/down-regulated genes were 110, 15 and 7 respectively. In addition, bioinformatics and systems biology methods were used to analyze the role of the integrin signaling pathway in hepatocytes. The analysis of gene synergy value indicated that paths 1, 8, 12, and 15 promoted hepatocyte proliferation at the priming phase of liver regeneration; paths 1, 3, 8, and 12–15 enhanced hepatocyte proliferation at the progressing phase; paths 11 and 14 promoted hepatocyte proliferation, while paths 12 and 13 reduced hepatocyte proliferation at the terminal phase. Additionally, the other 8 paths (2, 4, 5–7, 9–10, and 16) were not found to be related to liver regeneration. In conclusion, 132 genes and 8 cascades of the integrin signaling pathway participated in regulating hepatocyte proliferation during rat liver regeneration.

Keywords: Integrin signaling pathway; Rat; Liver regeneration; Partial hepatectomy; Immunochemistry; Hepatocyte proliferation; Rat Genome 230 2.0 array; RT-PCR; Gene expression profile; Gene synergy value

  • [1] Yokoyama, Y., Nagino, M. and Nimura, Y. Mechanisms of hepatic regeneration following portal vein embolization and partial hepatectomy: a review. World J. Surg. 31 (2007) 367–374. http://dx.doi.org/10.1007/s00268-006-0526-2 [Crossref] [Web of Science]

  • [2] Michalopoulos, G.K. Liver regeneration. J. Cell Physiol. 213 (2007) 286–300. http://dx.doi.org/10.1002/jcp.21172 [Crossref]

  • [3] Vondran, F.W., Katenz, E., Schwartlander, R., Morgul, R.S., Haluk, M., Raschzok, N., Gong, X.B., Cheng, X.D., Kehr, D. and Sauer, I.M. Isolation of primary human hepatocytes after partial hepatectomy: criteria for identification of the most promising liver specimen. Artif. Organs 32 (2008) 205–213. http://dx.doi.org/10.1111/j.1525-1594.2007.00524.x [Web of Science] [Crossref]

  • [4] Estes, M.D., Do J. and Ahn, C.H. On chip cell separator using magnetic bead-based enrichment and depletion of various surface markers. Biomed. Microdevices 11 (2009) 509–515. http://dx.doi.org/10.1007/s10544-008-9257-5 [Web of Science] [Crossref]

  • [5] Xu, C.S., Chen, X.G., Chang, C.F., Wang, G.P., Wang, W.B. and Zhang, L.X. Transcriptome analysis of hepatocytes after partial hepatectomy in rats. Dev. Genes. Evol. 220 (2010) 263–274. http://dx.doi.org/10.1007/s00427-010-0345-1 [Web of Science] [Crossref]

  • [6] Hehlgans, S., Haase, M., and Cordes, N. Signalling via integrins: implications for cell survival and anticancer strategies. Biochim. Biophys. Acta. 1775 (2007) 163–180. [Web of Science]

  • [7] Donthamsetty, S., Bowen, W., Mars, W., Bhave, V., Luo, J.H., Wu, C., Hurd, J., Orr, A., Bell, A. and Michalopoulos, G.K. Liver-specific ablation of integrin-linked kinase in mice results in enhanced and prolonged cell proliferation and hepatomegaly after phenobarbital administration. Toxicol. Sci. 113 (2010) 358–366. http://dx.doi.org/10.1093/toxsci/kfp281 [Web of Science] [Crossref]

  • [8] Mayoral, R., Fernández-Martínez, A., Roy, R., Boscá, L. and Martín-Sanz, P. Dispensability and dynamics of caveolin-1 during liver regeneration and in isolated hepatic cells. Hepatology 46 (2007) 813–822. http://dx.doi.org/10.1002/hep.21746 [Web of Science] [Crossref]

  • [9] Zouq, N.K., Keeble, J.A., Lindsay, J., Valentijn, A.J., Zhang, L., Mills, D., Turner, C.E., Streuli, C.H. and Gilmore, A.P. FAK engages multiple pathways to maintain survival of fibroblasts and epithelia: differential roles for paxillin and p130Cas. J. Cell Sci. 122 (2009) 357–367. http://dx.doi.org/10.1242/jcs.030478 [Crossref] [Web of Science]

  • [10] Tabe, Y., Jin, L., Tsutsumi-Ishii, Y., Xu, Y., McQueen, T., Priebe, W., Mills, G.B., Ohsaka, A., Nagaoka, I., Andreeff, M. and Konopleva, M. Activation of integrin-linked kinase is a critical prosurvival pathway induced in leukemiccells by bone marrow-derived stromal cells. Cancer Res. 67 (2007) 684–694. http://dx.doi.org/10.1158/0008-5472.CAN-06-3166 [Web of Science] [Crossref]

  • [11] Lemons, M.L. and Condic, M.L. Integrin signaling is integral to regeneration. Exp. Neurol. 209 (2008) 343–352. http://dx.doi.org/10.1016/j.expneurol.2007.05.027 [Web of Science] [Crossref]

  • [12] Zhang, X., Li, C., Gao, H., Nabeka, H., Shimokawa, T., Wakisaka, H., Matsuda, S. and Kobayashi, N. Rho kinase inhibitors stimulate the migration of human cultured osteoblastic cells by regulating actmyosin activity. Cell. Mol. Biol. Lett. 16 (2011) 279–295. http://dx.doi.org/10.2478/s11658-011-0006-z [Web of Science] [Crossref]

  • [13] Auriemma, C., Viscardi, M., Tafuri, S., Pavone, L.M., Capuano, F., Rinaldi, L., Della Morte, R., Iovane, G. and Staiano, N. Integrin receptors play a role in the integrin β-dependent entry of Listeria monocytogenes into host cells. Cell. Mol. Biol. Lett. 15 (2010) 496–506. http://dx.doi.org/10.2478/s11658-010-0019-z [Crossref] [Web of Science]

  • [14] Brown, E.J. and Frazier, W.A. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 11 (2001) 130–135. http://dx.doi.org/10.1016/S0962-8924(00)01906-1 [Crossref]

  • [15] Higgins, G.M. and Anderson, R.M. Experimental pathology of the liver: Restoration of the liver of the white rat following partial surgical removal. Arch. Pathol. 12 (1931) 186–202.

  • [16] Grisham, J.W. Cell types in rat liver cultures: their identification and isolation. Mol. Cell. Biochem. 54 (2008) 23–33.

  • [17] Qin, Y. and Tian, Y.P. A microarray gene analysis of peripheral whole blood in normal adult male ratsafter long-term GH gene therapy. Cell. Mol. Biol. Lett. 15 (2010) 177–195. http://dx.doi.org/10.2478/s11658-010-0001-9 [Web of Science] [Crossref]

  • [18] Twigger, S.N., Smith J., Zuniga-Meyer, A. and Bromberg, S.K. Exploring phenotypic data at the rat genome database. Curr. Protoc. Bioinformatics (2006) Chapter 1, Unit 1.14.

  • [19] Wang, J.Z., Du, Z., Payattakool, R., Yu, P.S. and Chen, C.F. A new method to measure the semantic similarity of GO terms. Bioinformatics 23 (2007) 1274–1281. http://dx.doi.org/10.1093/bioinformatics/btm087 [Crossref] [Web of Science]

  • [20] Guo, W., Cai, C., Wang, C., Zhao, L., Wang, L. and Zhang, T. A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genomics 9 (2008) 314. http://dx.doi.org/10.1186/1471-2164-9-314 [Web of Science] [Crossref]

  • [21] Wang, G.P. and Xu, C.S. Reference gene selection for real-time RT-PCR in eight kinds of rat regenerating hepatic cells. Mol. Biotechnol. 46 (2010) 49–57. http://dx.doi.org/10.1007/s12033-010-9274-5 [Crossref]

  • [22] Hynes, R.O. A reevaluation of integrins as regulators of angiogenesis. Nat. Med. 8 (2002) 918–921. http://dx.doi.org/10.1038/nm0902-918 [Crossref]

  • [23] Katz, B.Z., Romer, L., Miyamoto, S., Volberg, T., Matsumoto, K., Cukierman, E., Geiger, B. and Yamada, K.M. Targeting membrane-localized focal adhesion kinase to focal adhesion: roles of tyrosinephosphorylation and SRC family kinases. J. Biol. Chem. 278 (2003) 29115–29120. http://dx.doi.org/10.1074/jbc.M212396200 [Crossref]

  • [24] Lee, J.W. and Juliano, R. Mitogenic signal transduction by integrin- and growth factor receptor-mediated pathways. Mol. Cells 17 (2004) 188–202.

  • [25] Wang, W.B., Fan, J.M., Zhang, X.L., Xu, J. and Yao, W. Serial expression analysis of liver regeneration-related genes in rat regenerating liver. Mol. Biotechnol. 43 (2009) 221–231. http://dx.doi.org/10.1007/s12033-009-9199-z [Crossref]

  • [26] Tong, H. On a threshold model, pattern recognition and signal processing, In: NATO ASI series E: Applied Sc No. 29.(Chen, C.H. Ed.) Alphen aan den Rijn, The Netherland: Sijthoff & Noordhoff, 1978.

  • [27] Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Nat. Acad. Sci. USA 95 (1998) 14863–14868. http://dx.doi.org/10.1073/pnas.95.25.14863 [Crossref]

  • [28] Li, H., Chen, X.G, Zhang, F.C., Ma, J. and Xu, C.S. Expression patterns of the cell junction-associated genes during rat liver regeneration. J. Genet. Genomics 34 (2007) 892–908. http://dx.doi.org/10.1016/S1673-8527(07)60101-5 [Crossref]

  • [29] Nguyen, L.N., Furuya, M.H., Wolfraim, L.A., Nguyen, A.P., Holdren, M.S., Campbell, J.S., Knight, B., Yeoh, G.C., Fausto, N. and Parks, W.T. Transforming growth factor-beta differentially regulates oval cell and hepatocyte proliferation. Hepatology 45 (2007) 31–41. http://dx.doi.org/10.1002/hep.21466 [Web of Science] [Crossref]

  • [30] Fausto, N., Campbell, J.S. and Riehle, K.J. Liver regeneration. Hepatology 43 (2006) S45–53. http://dx.doi.org/10.1002/hep.20969 [Crossref]

  • [31] Frank, P.G. and Lisanti, M.P. Caveolin-1 and liver regeneration: role in proliferation and lipogenesis. Cell Cycle 6 (2007) 115–116. http://dx.doi.org/10.4161/cc.6.2.3722 [Crossref] [Web of Science]

  • [32] Williams, T.M. and Listanti, M.P. Caveolin-1 in oncogeic transformation, cancer, and metastasis. Am. J. Physiol. Cell Physiol. 288 (2005) C494–506. http://dx.doi.org/10.1152/ajpcell.00458.2004 [Crossref]

  • [33] Martin, K.H., Slack, J.K., Boemer, S.A., Martin, C.C. and Parsons, J.T. Integrin connections map: to infinity and beyond. Science 296 (2002) l652–l653. http://dx.doi.org/10.1126/science.296.5573.1652 [Crossref]

  • [34] Gilmore, A.P. and Romer, L.H. Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Mol. Cell. Biol. 7 (1997) 1209–1224.

  • [35] Gohbovskaya, V., Kaur, A. and Cance, W. Cloning and characterization of the promoter region of human focal adhesion kinase gene: nuclear factor kappa B and p53 binding sites. Biochim. Biophys. Acta 1678 (2004) 11–25.

  • [36] Post, G.R. and Brown, J.H. G protein-coupled receptors and signaling pathways regulating growth responses. FASEB J. 10 (1996) 741–749.

  • [37] Fukuhara, Y., Hirasawa, A., Li, X.K., Kawasaki, M., Fujino, M. and Funeshima, N. Gene expression profile in the regenerating rat liver after partial hepatectomy. J. Hepatol. 38 (2003) 784–792. http://dx.doi.org/10.1016/S0168-8278(03)00077-1 [Crossref]

  • [38] Reissig, D., Clement, J., Sänger, J., Berndt, A., Kosmehl, H. and Böhmer, F.D. Elevated activity and expression of Src-family kinases in human breast carcinoma tissue versus matched no tumor tissue. J. Cancer Res. Clin. Oncol. 127 (2001) 226–230. http://dx.doi.org/10.1007/s004320000197 [Crossref]

  • [39] Biscardi, J.S., Ishizawar, R.C., Silva, C.M. and Parsons, S.J. Tyrosine kinase signaling in breast cancer: epidermal growth f actor receptor and c- Src interactions in breast cancer. Breast Cancer Res. 2 (2002) 203–210. http://dx.doi.org/10.1186/bcr55 [Crossref]

  • [40] Xu, C.S., Chang, C.F., Yuan, J.Y., Li, W.Q., Han, H.P. and Yang, K.J. Expressed genes in regenerating rat liver after partial hepatectomy. World J. Gastroenterol. 11 (2005) 2932–2940. [Crossref]

  • [41] Michalopoulos, G.K. and DeFrances, M. Liver regeneration. Adv. Biochem. Eng. Biotechnol. 93 (2005) 101–134.

About the article

Published Online: 2012-04-24

Published in Print: 2012-06-01


Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-012-0011-x. Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jihong Zhang, Yajuan Yang, Tingting He, Yunqing Liu, Yun Zhou, Yongkang Chen, and Cunshuan Xu
Cellular and Molecular Biology Letters, 2014, Volume 19, Number 3
[2]
Tobias Speicher, Beat Siegenthaler, Roman L. Bogorad, Raphael Ruppert, Tobias Petzold, Susagna Padrissa-Altes, Marc Bachofner, Daniel G. Anderson, Victor Koteliansky, Reinhard Fässler, and Sabine Werner
Nature Communications, 2014, Volume 5
[3]
Liang-I. Kang, Wendy Mars, and George Michalopoulos
Cells, 2012, Volume 1, Number 4, Page 1261
[4]
Menghua Li, Xiaochun Zhou, Jinxin Mei, Xiaofang Geng, Yun Zhou, Weimin Zhang, and Cunshuan Xu
Cellular and Molecular Biology Letters, 2014, Volume 19, Number 2
[5]
Jihong Zhang, Chengkai Ma, Yunqing Liu, Gang Yang, Yun Jiang, and Cunshuan Xu
Gene, 2014, Volume 537, Number 2, Page 230
[6]
Yuuki Nishida and Akiyoshi Taniguchi
In Vitro Cellular & Developmental Biology - Animal, 2013, Volume 49, Number 6, Page 400

Comments (0)

Please log in or register to comment.
Log in