Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 17, Issue 2

Issues

Analysis of the role of the integrin signaling pathway in hepatocytes during rat liver regeneration

Cunshuan Xu / Yanjie Yang / Junying Yang / Xiaoguang Chen / Gaiping Wang
Published Online: 2012-04-24 | DOI: https://doi.org/10.2478/s11658-012-0011-x

Abstract

To explore the role of the integrin signaling pathway in hepatocytes during rat liver regeneration, the integrin signaling pathway-related gene expression profile in hepatocytes of regenerative liver was detected using Rat Genome 230 2.0 array. The chip data showed that 265 genes of the integrin signaling pathway were included by Rat Genome 230 2.0 array and 132 genes showed significant expression changes in hepatocytes of regenerative liver. The numbers of up-, down- and up/down-regulated genes were 110, 15 and 7 respectively. In addition, bioinformatics and systems biology methods were used to analyze the role of the integrin signaling pathway in hepatocytes. The analysis of gene synergy value indicated that paths 1, 8, 12, and 15 promoted hepatocyte proliferation at the priming phase of liver regeneration; paths 1, 3, 8, and 12–15 enhanced hepatocyte proliferation at the progressing phase; paths 11 and 14 promoted hepatocyte proliferation, while paths 12 and 13 reduced hepatocyte proliferation at the terminal phase. Additionally, the other 8 paths (2, 4, 5–7, 9–10, and 16) were not found to be related to liver regeneration. In conclusion, 132 genes and 8 cascades of the integrin signaling pathway participated in regulating hepatocyte proliferation during rat liver regeneration.

Keywords: Integrin signaling pathway; Rat; Liver regeneration; Partial hepatectomy; Immunochemistry; Hepatocyte proliferation; Rat Genome 230 2.0 array; RT-PCR; Gene expression profile; Gene synergy value

  • [1] Yokoyama, Y., Nagino, M. and Nimura, Y. Mechanisms of hepatic regeneration following portal vein embolization and partial hepatectomy: a review. World J. Surg. 31 (2007) 367–374. http://dx.doi.org/10.1007/s00268-006-0526-2CrossrefWeb of ScienceGoogle Scholar

  • [2] Michalopoulos, G.K. Liver regeneration. J. Cell Physiol. 213 (2007) 286–300. http://dx.doi.org/10.1002/jcp.21172CrossrefGoogle Scholar

  • [3] Vondran, F.W., Katenz, E., Schwartlander, R., Morgul, R.S., Haluk, M., Raschzok, N., Gong, X.B., Cheng, X.D., Kehr, D. and Sauer, I.M. Isolation of primary human hepatocytes after partial hepatectomy: criteria for identification of the most promising liver specimen. Artif. Organs 32 (2008) 205–213. http://dx.doi.org/10.1111/j.1525-1594.2007.00524.xWeb of ScienceCrossrefGoogle Scholar

  • [4] Estes, M.D., Do J. and Ahn, C.H. On chip cell separator using magnetic bead-based enrichment and depletion of various surface markers. Biomed. Microdevices 11 (2009) 509–515. http://dx.doi.org/10.1007/s10544-008-9257-5Web of ScienceCrossrefGoogle Scholar

  • [5] Xu, C.S., Chen, X.G., Chang, C.F., Wang, G.P., Wang, W.B. and Zhang, L.X. Transcriptome analysis of hepatocytes after partial hepatectomy in rats. Dev. Genes. Evol. 220 (2010) 263–274. http://dx.doi.org/10.1007/s00427-010-0345-1Web of ScienceCrossrefGoogle Scholar

  • [6] Hehlgans, S., Haase, M., and Cordes, N. Signalling via integrins: implications for cell survival and anticancer strategies. Biochim. Biophys. Acta. 1775 (2007) 163–180. Web of ScienceGoogle Scholar

  • [7] Donthamsetty, S., Bowen, W., Mars, W., Bhave, V., Luo, J.H., Wu, C., Hurd, J., Orr, A., Bell, A. and Michalopoulos, G.K. Liver-specific ablation of integrin-linked kinase in mice results in enhanced and prolonged cell proliferation and hepatomegaly after phenobarbital administration. Toxicol. Sci. 113 (2010) 358–366. http://dx.doi.org/10.1093/toxsci/kfp281Web of ScienceCrossrefGoogle Scholar

  • [8] Mayoral, R., Fernández-Martínez, A., Roy, R., Boscá, L. and Martín-Sanz, P. Dispensability and dynamics of caveolin-1 during liver regeneration and in isolated hepatic cells. Hepatology 46 (2007) 813–822. http://dx.doi.org/10.1002/hep.21746Web of ScienceCrossrefGoogle Scholar

  • [9] Zouq, N.K., Keeble, J.A., Lindsay, J., Valentijn, A.J., Zhang, L., Mills, D., Turner, C.E., Streuli, C.H. and Gilmore, A.P. FAK engages multiple pathways to maintain survival of fibroblasts and epithelia: differential roles for paxillin and p130Cas. J. Cell Sci. 122 (2009) 357–367. http://dx.doi.org/10.1242/jcs.030478CrossrefWeb of ScienceGoogle Scholar

  • [10] Tabe, Y., Jin, L., Tsutsumi-Ishii, Y., Xu, Y., McQueen, T., Priebe, W., Mills, G.B., Ohsaka, A., Nagaoka, I., Andreeff, M. and Konopleva, M. Activation of integrin-linked kinase is a critical prosurvival pathway induced in leukemiccells by bone marrow-derived stromal cells. Cancer Res. 67 (2007) 684–694. http://dx.doi.org/10.1158/0008-5472.CAN-06-3166Web of ScienceCrossrefGoogle Scholar

  • [11] Lemons, M.L. and Condic, M.L. Integrin signaling is integral to regeneration. Exp. Neurol. 209 (2008) 343–352. http://dx.doi.org/10.1016/j.expneurol.2007.05.027Web of ScienceCrossrefGoogle Scholar

  • [12] Zhang, X., Li, C., Gao, H., Nabeka, H., Shimokawa, T., Wakisaka, H., Matsuda, S. and Kobayashi, N. Rho kinase inhibitors stimulate the migration of human cultured osteoblastic cells by regulating actmyosin activity. Cell. Mol. Biol. Lett. 16 (2011) 279–295. http://dx.doi.org/10.2478/s11658-011-0006-zWeb of ScienceCrossrefGoogle Scholar

  • [13] Auriemma, C., Viscardi, M., Tafuri, S., Pavone, L.M., Capuano, F., Rinaldi, L., Della Morte, R., Iovane, G. and Staiano, N. Integrin receptors play a role in the integrin β-dependent entry of Listeria monocytogenes into host cells. Cell. Mol. Biol. Lett. 15 (2010) 496–506. http://dx.doi.org/10.2478/s11658-010-0019-zCrossrefWeb of ScienceGoogle Scholar

  • [14] Brown, E.J. and Frazier, W.A. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 11 (2001) 130–135. http://dx.doi.org/10.1016/S0962-8924(00)01906-1CrossrefGoogle Scholar

  • [15] Higgins, G.M. and Anderson, R.M. Experimental pathology of the liver: Restoration of the liver of the white rat following partial surgical removal. Arch. Pathol. 12 (1931) 186–202. Google Scholar

  • [16] Grisham, J.W. Cell types in rat liver cultures: their identification and isolation. Mol. Cell. Biochem. 54 (2008) 23–33. Google Scholar

  • [17] Qin, Y. and Tian, Y.P. A microarray gene analysis of peripheral whole blood in normal adult male ratsafter long-term GH gene therapy. Cell. Mol. Biol. Lett. 15 (2010) 177–195. http://dx.doi.org/10.2478/s11658-010-0001-9Web of ScienceCrossrefGoogle Scholar

  • [18] Twigger, S.N., Smith J., Zuniga-Meyer, A. and Bromberg, S.K. Exploring phenotypic data at the rat genome database. Curr. Protoc. Bioinformatics (2006) Chapter 1, Unit 1.14. Google Scholar

  • [19] Wang, J.Z., Du, Z., Payattakool, R., Yu, P.S. and Chen, C.F. A new method to measure the semantic similarity of GO terms. Bioinformatics 23 (2007) 1274–1281. http://dx.doi.org/10.1093/bioinformatics/btm087CrossrefWeb of ScienceGoogle Scholar

  • [20] Guo, W., Cai, C., Wang, C., Zhao, L., Wang, L. and Zhang, T. A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genomics 9 (2008) 314. http://dx.doi.org/10.1186/1471-2164-9-314Web of ScienceCrossrefGoogle Scholar

  • [21] Wang, G.P. and Xu, C.S. Reference gene selection for real-time RT-PCR in eight kinds of rat regenerating hepatic cells. Mol. Biotechnol. 46 (2010) 49–57. http://dx.doi.org/10.1007/s12033-010-9274-5CrossrefGoogle Scholar

  • [22] Hynes, R.O. A reevaluation of integrins as regulators of angiogenesis. Nat. Med. 8 (2002) 918–921. http://dx.doi.org/10.1038/nm0902-918CrossrefGoogle Scholar

  • [23] Katz, B.Z., Romer, L., Miyamoto, S., Volberg, T., Matsumoto, K., Cukierman, E., Geiger, B. and Yamada, K.M. Targeting membrane-localized focal adhesion kinase to focal adhesion: roles of tyrosinephosphorylation and SRC family kinases. J. Biol. Chem. 278 (2003) 29115–29120. http://dx.doi.org/10.1074/jbc.M212396200CrossrefGoogle Scholar

  • [24] Lee, J.W. and Juliano, R. Mitogenic signal transduction by integrin- and growth factor receptor-mediated pathways. Mol. Cells 17 (2004) 188–202. Google Scholar

  • [25] Wang, W.B., Fan, J.M., Zhang, X.L., Xu, J. and Yao, W. Serial expression analysis of liver regeneration-related genes in rat regenerating liver. Mol. Biotechnol. 43 (2009) 221–231. http://dx.doi.org/10.1007/s12033-009-9199-zCrossrefGoogle Scholar

  • [26] Tong, H. On a threshold model, pattern recognition and signal processing, In: NATO ASI series E: Applied Sc No. 29.(Chen, C.H. Ed.) Alphen aan den Rijn, The Netherland: Sijthoff & Noordhoff, 1978. Google Scholar

  • [27] Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Nat. Acad. Sci. USA 95 (1998) 14863–14868. http://dx.doi.org/10.1073/pnas.95.25.14863CrossrefGoogle Scholar

  • [28] Li, H., Chen, X.G, Zhang, F.C., Ma, J. and Xu, C.S. Expression patterns of the cell junction-associated genes during rat liver regeneration. J. Genet. Genomics 34 (2007) 892–908. http://dx.doi.org/10.1016/S1673-8527(07)60101-5CrossrefGoogle Scholar

  • [29] Nguyen, L.N., Furuya, M.H., Wolfraim, L.A., Nguyen, A.P., Holdren, M.S., Campbell, J.S., Knight, B., Yeoh, G.C., Fausto, N. and Parks, W.T. Transforming growth factor-beta differentially regulates oval cell and hepatocyte proliferation. Hepatology 45 (2007) 31–41. http://dx.doi.org/10.1002/hep.21466Web of ScienceCrossrefGoogle Scholar

  • [30] Fausto, N., Campbell, J.S. and Riehle, K.J. Liver regeneration. Hepatology 43 (2006) S45–53. http://dx.doi.org/10.1002/hep.20969CrossrefGoogle Scholar

  • [31] Frank, P.G. and Lisanti, M.P. Caveolin-1 and liver regeneration: role in proliferation and lipogenesis. Cell Cycle 6 (2007) 115–116. http://dx.doi.org/10.4161/cc.6.2.3722CrossrefWeb of ScienceGoogle Scholar

  • [32] Williams, T.M. and Listanti, M.P. Caveolin-1 in oncogeic transformation, cancer, and metastasis. Am. J. Physiol. Cell Physiol. 288 (2005) C494–506. http://dx.doi.org/10.1152/ajpcell.00458.2004CrossrefGoogle Scholar

  • [33] Martin, K.H., Slack, J.K., Boemer, S.A., Martin, C.C. and Parsons, J.T. Integrin connections map: to infinity and beyond. Science 296 (2002) l652–l653. http://dx.doi.org/10.1126/science.296.5573.1652CrossrefGoogle Scholar

  • [34] Gilmore, A.P. and Romer, L.H. Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Mol. Cell. Biol. 7 (1997) 1209–1224. Google Scholar

  • [35] Gohbovskaya, V., Kaur, A. and Cance, W. Cloning and characterization of the promoter region of human focal adhesion kinase gene: nuclear factor kappa B and p53 binding sites. Biochim. Biophys. Acta 1678 (2004) 11–25. Google Scholar

  • [36] Post, G.R. and Brown, J.H. G protein-coupled receptors and signaling pathways regulating growth responses. FASEB J. 10 (1996) 741–749. Google Scholar

  • [37] Fukuhara, Y., Hirasawa, A., Li, X.K., Kawasaki, M., Fujino, M. and Funeshima, N. Gene expression profile in the regenerating rat liver after partial hepatectomy. J. Hepatol. 38 (2003) 784–792. http://dx.doi.org/10.1016/S0168-8278(03)00077-1CrossrefGoogle Scholar

  • [38] Reissig, D., Clement, J., Sänger, J., Berndt, A., Kosmehl, H. and Böhmer, F.D. Elevated activity and expression of Src-family kinases in human breast carcinoma tissue versus matched no tumor tissue. J. Cancer Res. Clin. Oncol. 127 (2001) 226–230. http://dx.doi.org/10.1007/s004320000197CrossrefGoogle Scholar

  • [39] Biscardi, J.S., Ishizawar, R.C., Silva, C.M. and Parsons, S.J. Tyrosine kinase signaling in breast cancer: epidermal growth f actor receptor and c- Src interactions in breast cancer. Breast Cancer Res. 2 (2002) 203–210. http://dx.doi.org/10.1186/bcr55CrossrefGoogle Scholar

  • [40] Xu, C.S., Chang, C.F., Yuan, J.Y., Li, W.Q., Han, H.P. and Yang, K.J. Expressed genes in regenerating rat liver after partial hepatectomy. World J. Gastroenterol. 11 (2005) 2932–2940. CrossrefGoogle Scholar

  • [41] Michalopoulos, G.K. and DeFrances, M. Liver regeneration. Adv. Biochem. Eng. Biotechnol. 93 (2005) 101–134. Google Scholar

About the article

Published Online: 2012-04-24

Published in Print: 2012-06-01


Citation Information: Cellular and Molecular Biology Letters, Volume 17, Issue 2, Pages 274–288, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-012-0011-x.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Barnali Deb, Vinuth N. Puttamallesh, Kirti Gondkar, Jean P. Thiery, Harsha Gowda, and Prashant Kumar
Journal of Clinical Medicine, 2019, Volume 8, Number 5, Page 703
[2]
Gaiping Wang, Shasha Chen, Congcong Zhao, Xiaofang Li, Ling Zhang, Weiming Zhao, Cuifang Chang, and Cunshuan Xu
Gene, 2016, Volume 576, Number 2, Page 782
[3]
Ingvild Engdal Nygård, Kim Erlend Mortensen, Jakob Hedegaard, Lene Nagstrup Conley, Christian Bendixen, Baldur Sveinbjørnsson, and Arthur Revhaug
BioMed Research International, 2015, Volume 2015, Page 1
[4]
Jihong Zhang, Yajuan Yang, Tingting He, Yunqing Liu, Yun Zhou, Yongkang Chen, and Cunshuan Xu
Cellular and Molecular Biology Letters, 2014, Volume 19, Number 3
[5]
Tobias Speicher, Beat Siegenthaler, Roman L. Bogorad, Raphael Ruppert, Tobias Petzold, Susagna Padrissa-Altes, Marc Bachofner, Daniel G. Anderson, Victor Koteliansky, Reinhard Fässler, and Sabine Werner
Nature Communications, 2014, Volume 5
[6]
Liang-I. Kang, Wendy Mars, and George Michalopoulos
Cells, 2012, Volume 1, Number 4, Page 1261
[7]
Menghua Li, Xiaochun Zhou, Jinxin Mei, Xiaofang Geng, Yun Zhou, Weimin Zhang, and Cunshuan Xu
Cellular and Molecular Biology Letters, 2014, Volume 19, Number 2
[8]
Jihong Zhang, Chengkai Ma, Yunqing Liu, Gang Yang, Yun Jiang, and Cunshuan Xu
Gene, 2014, Volume 537, Number 2, Page 230
[9]
Yuuki Nishida and Akiyoshi Taniguchi
In Vitro Cellular & Developmental Biology - Animal, 2013, Volume 49, Number 6, Page 400

Comments (0)

Please log in or register to comment.
Log in