Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Cellular and Molecular Biology Letters

Editor-in-Chief: /


IMPACT FACTOR increased in 2015: 1.753

SCImago Journal Rank (SJR) 2015: 0.788
Source Normalized Impact per Paper (SNIP) 2015: 0.645
Impact per Publication (IPP) 2015: 1.748

Online
ISSN
1689-1392
See all formats and pricing
In This Section
Volume 17, Issue 2 (Jun 2012)

Deficiency in TR4 nuclear receptor abrogates Gadd45a expression and increases cytotoxicity induced by ionizing radiation

Shian-Jang Yan
  • University of Rochester Medical Center
  • Email:
/ Yi-Fen Lee
  • University of Rochester Medical Center
  • Email:
/ Huei-Ju Ting
  • University of Rochester Medical Center
  • Email:
/ Ning-Chun Liu
  • University of Rochester Medical Center
  • Email:
/ Su Liu
  • University of Rochester Medical Center
  • Email:
/ Shin-Jen Lin
  • University of Rochester Medical Center
  • Email:
/ Shauh-Der Yeh
  • Taipei Medical University
  • Email:
/ Gonghui Li
  • University of Rochester Medical Center
  • Email:
/ Chawnshang Chang
  • University of Rochester Medical Center
  • China Medical University/Hospital
  • Email:
Published Online: 2012-04-24 | DOI: https://doi.org/10.2478/s11658-012-0012-9

Abstract

The testicular receptor 4 (TR4) is a member of the nuclear receptor superfamily that controls various biological activities. A protective role of TR4 against oxidative stress has recently been discovered. We here examined the protective role of TR4 against ionizing radiation (IR) and found that small hairpin RNA mediated TR4 knockdown cells were highly sensitive to IR-induced cell death. IR exposure increased the expression of TR4 in scramble control small hairpin RNA expressing cells but not in TR4 knockdown cells. Examination of IR-responsive molecules found that the expression of Gadd45a, the growth arrest and DNA damage response gene, was dramatically decreased in Tr4 deficient (TR4KO) mice tissues and could not respond to IR stimulation in TR4KO mouse embryonic fibroblast cells. This TR4 regulation of GADD45A was at the transcriptional level. Promoter analysis identified four potential TR4 response elements located in intron 3 and exon 4 of the GADD45A gene. Reporter and chromatin immunoprecipitation (ChIP) assays provided evidence indicating that TR4 regulated the GADD45A expression through TR4 response elements located in intron 3 of the GADD45A gene. Together, we find that TR4 is essential in protecting cells from IR stress. Upon IR challenges, TR4 expression is increased, thereafter inducing GADD45A through transcriptional regulation. As GADD45A is directly involved in the DNA repair pathway, this suggests that TR4 senses genotoxic stress and up-regulates GADD45A expression to protect cells from IR-induced genotoxicity.

Keywords: TR4; GADD45A; Ionizing radiation; Mouse embryonic fibroblast; Genotoxic stress; TR4 response element

  • [1] Chang, C., Da Silva, S.L., Ideta, R., Lee, Y., Yeh, S. and Burbach, J.P. Human and rat TR4 orphan receptors specify a subclass of the steroid receptor superfamily. Proc. Natl. Acad. Sci. USA 91 (1994) 6040–6044. http://dx.doi.org/10.1073/pnas.91.13.6040 [Crossref]

  • [2] Xie, S., Lee, Y.F., Kim, E., Chen, L.M., Ni, J., Fang, L.Y., Liu, S., Lin, S.J., Abe, J., Berk, B., Ho, F.M. and Chang, C. TR4 nuclear receptor functions as a fatty acid sensor to modulate CD36 expression and foam cell formation. Proc. Natl. Acad. Sci. USA 106 (2009) 13353–13358. http://dx.doi.org/10.1073/pnas.0905724106 [Crossref]

  • [3] Tsai, N.P., Huq, M., Gupta, P., Yamamoto, K., Kagechika, H. and Wei, L.N. Activation of testicular orphan receptor 4 by fatty acids. Biochim. Biophys. Acta 1789 (2009) 734–740. [Web of Science]

  • [4] Lee, Y.F., Lee, H.J. and Chang, C. Recent advances in the TR2 and TR4 orphan receptors of the nuclear receptor superfamily. J. Steroid Biochem. Mol. Biol. 81 (2002) 291–308. http://dx.doi.org/10.1016/S0960-0760(02)00118-8 [Crossref]

  • [5] Young, W.J., Lee, Y.F., Smith, S.M. and Chang, C. A bidirectional regulation between the TR2/TR4 orphan receptors (TR2/TR4) and the ciliary neurotrophic factor (CNTF) signaling pathway. J. Biol. Chem. 273 (1998) 20877–20885. http://dx.doi.org/10.1074/jbc.273.33.20877 [Crossref]

  • [6] Young, W.J., Smith, S.M. and Chang, C. Induction of the intronic enhancer of the human ciliary neurotrophic factor receptor (CNTFRalpha) gene by the TR4 orphan receptor. A member of steroid receptor superfamily. J. Biol. Chem. 272 (1997) 3109–3116. http://dx.doi.org/10.1074/jbc.272.18.12116 [Crossref]

  • [7] Lee, Y.F., Young, W.J., Burbach, J.P. and Chang, C. Negative feedback control of the retinoid-retinoic acid/retinoid X receptor pathway by the human TR4 orphan receptor, a member of the steroid receptor superfamily. J. Biol. Chem. 273 (1998) 13437–13443. http://dx.doi.org/10.1074/jbc.273.22.13437 [Crossref]

  • [8] Lee, Y.F., Young, W.J., Lin, W.J., Shyr, C.R. and Chang, C. Differential regulation of direct repeat 3 vitamin D3 and direct repeat 4 thyroid hormone signaling pathways by the human TR4 orphan receptor. J. Biol. Chem. 274 (1999) 16198–16205. http://dx.doi.org/10.1074/jbc.274.23.16198

  • [9] Lee, Y.F., Shyr, C.R., Thin, T.H., Lin, W.J. and Chang, C. Convergence of two repressors through heterodimer formation of androgen receptor and testicular orphan receptor-4: a unique signaling pathway in the steroid receptor superfamily. Proc. Natl. Acad. Sci. USA 96 (1999) 14724–14729. http://dx.doi.org/10.1073/pnas.96.26.14724 [Crossref]

  • [10] Shyr, C.R., Hu, Y.C., Kim, E. and Chang, C. Modulation of estrogen receptor-mediated transactivation by orphan receptor TR4 in MCF-7 cells. J. Biol. Chem. 277 (2002) 14622–14628. http://dx.doi.org/10.1074/jbc.M110051200 [Crossref]

  • [11] Lee, H.J., Lee, Y., Burbach, J.P. and Chang, C. Suppression of gene expression on the simian virus 40 major late promoter by human TR4 orphan receptor. A member of the steroid receptor superfamily. J. Biol. Chem. 270 (1995) 30129–30133. http://dx.doi.org/10.1074/jbc.270.50.30129 [Crossref]

  • [12] Collins, L.L., Lee, Y.F., Heinlein, C.A., Liu, N.C., Chen, Y.T., Shyr, C.R., Meshul, C.K., Uno, H., Platt, K.A. and Chang, C. Growth retardation and abnormal maternal behavior in mice lacking testicular orphan nuclear receptor 4. Proc. Natl. Acad. Sci. USA 101 (2004) 15058–15063. http://dx.doi.org/10.1073/pnas.0405700101 [Crossref]

  • [13] Chen, L.M., Wang, R.S., Lee, Y.F., Liu, N.C., Chang, Y.J., Wu, C.C., Xie, S., Hung, Y.C. and Chang, C. Subfertility with defective folliculogenesis in female mice lacking testicular orphan nuclear receptor 4. Mol. Endocrinol. 22 (2008) 858–867. http://dx.doi.org/10.1210/me.2007-0181 [Crossref] [Web of Science]

  • [14] Mu, X., Lee, Y.F., Liu, N.C., Chen, Y.T., Kim, E., Shyr, C.R. and Chang, C. Targeted inactivation of testicular nuclear orphan receptor 4 delays and disrupts late meiotic prophase and subsequent meiotic divisions of spermatogenesis. Mol. Cell Biol. 24 (2004) 5887–5899. http://dx.doi.org/10.1128/MCB.24.13.5887-5899.2004 [Crossref]

  • [15] Kim, E., Xie, S., Yeh, S.D., Lee, Y.F., Collins, L.L., Hu, Y.C., Shyr, C.R., Mu, X.M., Liu, N.C., Chen, Y.T., Wang, P.H. and Chang, C. Disruption of TR4 orphan nuclear receptor reduces the expression of liver apolipoprotein E/C-I/C-II gene cluster. J. Biol. Chem. 278 (2003) 46919–46926. http://dx.doi.org/10.1074/jbc.M304088200 [Crossref]

  • [16] Kim, E., Yang, Z., Liu, N.C. and Chang, C. Induction of apolipoprotein E expression by TR4 orphan nuclear receptor via 5′ proximal promoter region. Biochem. Biophys. Res. Commun. 328 (2005) 85–90. http://dx.doi.org/10.1016/j.bbrc.2004.12.146 [Crossref]

  • [17] Liu, N.C., Lin, W.J., Kim, E., Collins, L.L., Lin, H.Y., Yu, I.C., Sparks, J.D., Chen, L.M., Lee, Y.F. and Chang, C. Loss of TR4 orphan nuclear receptor reduces phosphoenolpyruvate carboxykinase-mediated gluconeogenesis. Diabetes 56 (2007) 2901–2909. http://dx.doi.org/10.2337/db07-0359 [Web of Science] [Crossref]

  • [18] Chen, Y.T., Collins, L.L., Uno, H. and Chang, C. Deficits in motor coordination with aberrant cerebellar development in mice lacking testicular orphan nuclear receptor 4. Mol. Cell Biol. 25 (2005) 2722–2732. http://dx.doi.org/10.1128/MCB.25.7.2722-2732.2005 [Crossref]

  • [19] Lee, Y.F., Liu, S., Liu, N.C., Wang, R.S., Chen, L.M., Lin, W.J., Ting, H.J., Ho, H.C., Li, G., Puzas, E.J., Wu, Q. and Chang, C. Premature aging with impaired oxidative stress defense in mice lacking TR4. Am. J. Physiol. Endocrinol. Metab. 301 (2011) E91–98. http://dx.doi.org/10.1152/ajpendo.00701.2010 [Crossref]

  • [20] Li, G., Lee, Y.F., Liu, S., Cai, Y., Xie, S., Liu, N.C., Bao, B.Y., Chen, Z. and Chang, C. Oxidative stress stimulates testicular orphan receptor 4 through forkhead transcription factor forkhead box O3a. Endocrinology 149 (2008) 3490–3499. http://dx.doi.org/10.1210/en.2008-0121 [Web of Science] [Crossref]

  • [21] Liu, S., Yan, S.J., Lee, Y.F., Liu, N.C., Ting, H.J., Li, G., Wu, Q., Chen, L.M. and Chang, C. Testicular nuclear receptor 4 (TR4) regulates UV light-induced responses via Cockayne syndrome B protein-mediated transcription-coupled DNA repair. J. Biol. Chem. 286 (2011) 38103–38108. http://dx.doi.org/10.1074/jbc.M111.259523 [Crossref] [Web of Science]

  • [22] Fornace, A.J., Jr., Jackman, J., Hollander, M.C., Hoffman-Liebermann, B. and Liebermann, D.A. Genotoxic-stress-response genes and growth-arrest genes. gadd, MyD, and other genes induced by treatments eliciting growth arrest. Ann. N. Y. Acad. Sci. 663 (1992) 139–153. http://dx.doi.org/10.1111/j.1749-6632.1992.tb38657.x [Crossref]

  • [23] Papathanasiou, M.A., Kerr, N.C., Robbins, J.H., McBride, O.W., Alamo, I., Jr., Barrett, S.F., Hickson, I.D. and Fornace, A.J., Jr. Induction by ionizing radiation of the gadd45 gene in cultured human cells: lack of mediation by protein kinase C. Mol. Cell Biol. 11 (1991) 1009–1016.

  • [24] Tran, H., Brunet, A., Grenier, J.M., Datta, S.R., Fornace, A.J., Jr., DiStefano, P.S., Chiang, L.W. and Greenberg, M.E. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296 (2002) 530–534. http://dx.doi.org/10.1126/science.1068712 [Crossref]

  • [25] Jiang, F., Li, P., Fornace, A.J., Jr., Nicosia, S.V. and Bai, W. G2/M arrest by 1,25-dihydroxyvitamin D3 in ovarian cancer cells mediated through the induction of GADD45 via an exonic enhancer. J. Biol. Chem. 278 (2003) 48030–48040. http://dx.doi.org/10.1074/jbc.M308430200 [Crossref]

  • [26] Jiang, M., Fernandez, S., Jerome, W.G., He, Y., Yu, X., Cai, H., Boone, B., Yi, Y., Magnuson, M.A., Roy-Burman, P., Matusik, R.J., Shappell, S.B. and Hayward, S.W. Disruption of PPARgamma signaling results in mouse prostatic intraepithelial neoplasia involving active autophagy. Cell Death Differ. 17 (2010) 469–481. http://dx.doi.org/10.1038/cdd.2009.148 [Web of Science] [Crossref]

  • [27] Shang, Y., Hu, X., DiRenzo, J., Lazar, M.A. and Brown, M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103 (2000) 843–852. http://dx.doi.org/10.1016/S0092-8674(00)00188-4 [Crossref]

  • [28] Kumala, S., Niemiec, P., Widel, M., Hancock, R. and Rzeszowska-Wolny, J. Apoptosis and clonogenic survival in three tumour cell lines exposed to gamma rays or chemical genotoxic agents. Cell. Mol. Biol. Lett. 8 (2003) 655–665.

  • [29] Kastan, M.B., Zhan, Q., el-Deiry, W.S., Carrier, F., Jacks, T., Walsh, W.V., Plunkett, B.S., Vogelstein, B. and Fornace, A.J., Jr. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxiatelangiectasia. Cell 71 (1992) 587–597. http://dx.doi.org/10.1016/0092-8674(92)90593-2

  • [30] Tachiiri, S., Katagiri, T., Tsunoda, T., Oya, N., Hiraoka, M. and Nakamura, Y. Analysis of gene-expression profiles after gamma irradiation of normal human fibroblasts. Int. J. Radiat. Oncol. Biol. Phys. 64 (2006) 272–279. http://dx.doi.org/10.1016/j.ijrobp.2005.08.030 [Crossref]

  • [31] Hollander, M.C. and Fornace, A.J., Jr. Genomic instability, centrosome amplification, cell cycle checkpoints and Gadd45a. Oncogene 21 (2002) 6228–6233. http://dx.doi.org/10.1038/sj.onc.1205774 [Crossref]

  • [32] Jung, H.J., Kim, E.H., Mun, J.Y., Park, S., Smith, M.L., Han, S.S. and Seo, Y.R. Base excision DNA repair defect in Gadd45a-deficient cells. Oncogene 26 (2007) 7517–7525. http://dx.doi.org/10.1038/sj.onc.1210557 [Web of Science] [Crossref]

  • [33] Rai, K., Huggins, I.J., James, S.R., Karpf, A.R., Jones, D.A. and Cairns, B.R. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135 (2008) 1201–1212. http://dx.doi.org/10.1016/j.cell.2008.11.042 [Crossref] [Web of Science]

  • [34] Barreto, G., Schafer, A., Marhold, J., Stach, D., Swaminathan, S.K., Handa, V., Doderlein, G., Maltry, N., Wu, W., Lyko, F. and Niehrs, C. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445 (2007) 671–675. http://dx.doi.org/10.1038/nature05515 [Web of Science] [Crossref]

  • [35] Jin, S.G., Guo, C. and Pfeifer, G.P. GADD45A does not promote DNA demethylation. PLoS Genet. 4 (2008) e1000013. http://dx.doi.org/10.1371/journal.pgen.1000013 [Crossref] [Web of Science]

  • [36] Hollander, M.C., Sheikh, M.S., Bulavin, D.V., Lundgren, K., Augeri-Henmueller, L., Shehee, R., Molinaro, T.A., Kim, K.E., Tolosa, E., Ashwell, J.D., Rosenberg, M.P., Zhan, Q., Fernandez-Salguero, P.M., Morgan, W.F., Deng, C.X. and Fornace, A.J., Jr. Genomic instability in Gadd45a-deficient mice. Nat. Genet. 23 (1999) 176–184. http://dx.doi.org/10.1038/13802 [Crossref]

  • [37] Gupta, M., Gupta, S.K., Balliet, A.G., Hollander, M.C., Fornace, A.J., Hoffman, B. and Liebermann, D.A. Hematopoietic cells from Gadd45a- and Gadd45b-deficient mice are sensitized to genotoxic-stress-induced apoptosis. Oncogene 24 (2005) 7170–7179. http://dx.doi.org/10.1038/sj.onc.1208847 [Crossref]

About the article

Published Online: 2012-04-24

Published in Print: 2012-06-01



Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-012-0012-9. Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Xiaoyong Zhi, X. Edward Zhou, Karsten Melcher, and H. Eric Xu
The Journal of Steroid Biochemistry and Molecular Biology, 2015
[2]
B Chen, S Yu, X Ding, C Jing, L Xia, M Wang, E Matro, F Rehman, Y Niu, G Li, and C Chang
Cancer Gene Therapy, 2014, Volume 21, Number 10, Page 411
[3]
Xianfan Ding, Dong-Rong Yang, Soo Ok Lee, Ya-Ling Chen, Liqun Xia, Shin-Jen Lin, Shicheng Yu, Yuan-Jie Niu, Gonghui Li, and Chawnshang Chang
International Journal of Cancer, 2015, Volume 136, Number 4, Page 955
[4]
Xian-fan Ding, Shi-cheng Yu, Bi-de Chen, Shin-jen Lin, Chawnshang Chang, and Gong-hui Li
Journal of Zhejiang University SCIENCE B, 2013, Volume 14, Number 3, Page 171
[5]
Paul Jennings, Alice Limonciel, Luca Felice, and Martin O. Leonard
Archives of Toxicology, 2013, Volume 87, Number 1, Page 49

Comments (0)

Please log in or register to comment.
Log in