Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Editor-in-Chief: /


IMPACT FACTOR 2016: 1.260
5-year IMPACT FACTOR: 1.506

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.615
Source Normalized Impact per Paper (SNIP) 2016: 0.470

Online
ISSN
1689-1392
See all formats and pricing
More options …
Volume 17, Issue 3 (Sep 2012)

Phylogenetic origin and transcriptional regulation at the post-diauxic phase of SPI1, in Saccharomyces cerevisiae

Fernando Cardona / Marcel.Lí Olmo / Agustín Aranda
Published Online: 2012-06-17 | DOI: https://doi.org/10.2478/s11658-012-0017-4

Abstract

The gene SPI1, of Saccharomyces cerevisiae, encodes a cell wall protein that is induced in several stress conditions, particularly in the postdiauxic and stationary phases of growth. It has a paralogue, SED1, which shows some common features in expression regulation and in the null mutant phenotype. In this work we have identified homologues in other species of yeasts and filamentous fungi, and we have also elucidated some aspects of the origin of SPI1, by duplication and diversification of SED1. In terms of regulation, we have found that the expression in the post-diauxic phase is regulated by genes related to the PKA pathway and stress response (MSN2/4, YAK1, POP2, SOK2, PHD1, and PHO84) and by genes involved in the PKC pathway (WSC2, PKC1, and MPK1).

Keywords: SPI1; Phylogenetic origin; Transcriptional regulation; Post-diauxic; Nutrient starvation; PKA; PKC

  • [1] Ruis, H. and Schuller, C. Stress signaling in yeast. Bioessays, 17 (1995) 959–965. http://dx.doi.org/10.1002/bies.950171109CrossrefGoogle Scholar

  • [2] Werner-Washburne, M., Braun, E.L., Crawford, M.E. and Peck, V.M. Stationary phase in Saccharomyces cerevisiae. Mol. Microbiol. 19 (1996) 1159–1166. http://dx.doi.org/10.1111/j.1365-2958.1996.tb02461.xCrossrefGoogle Scholar

  • [3] Wei, M., Fabrizio, P., Hu, J., Ge, H., Cheng, C., Li, L. and Longo, V.D. Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet. 4 (2008) e13. http://dx.doi.org/10.1371/journal.pgen.0040013Web of ScienceCrossrefGoogle Scholar

  • [4] Kapteyn, J.C., ter Riet, B., Vink, E., Blad, S., De Nobel, H., Van Den Ende, H. and Klis, F M. Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae, cell wall. Mol. Microbiol. 39 (2001) 469–479. http://dx.doi.org/10.1046/j.1365-2958.2001.02242.xCrossrefGoogle Scholar

  • [5] Simoes, T., Teixeira, M.C., Fernandes, A.R. and Sa-Correia, I. Adaptation of Saccharomyces cerevisiae, to the herbicide 2,4-dichlorophenoxyacetic acid, mediated by Msn2p- and Msn4p-regulated genes: important role of SPI1. Appl. Environ. Microbiol. 69 (2003) 4019–4028. http://dx.doi.org/10.1128/AEM.69.7.4019-4028.2003CrossrefGoogle Scholar

  • [6] Simoes, T., Mira, N.P., Fernandes, A.R. and Sa-Correia, I. The SPI1, gene, encoding a glycosylphosphatidylinositol-anchored cell wall protein, plays a prominent role in the development of yeast resistance to lipophilic weakacid food preservatives. Appl. Environ. Microbiol. 72 (2006) 7168–7175. http://dx.doi.org/10.1128/AEM.01476-06CrossrefGoogle Scholar

  • [7] Jin, R., Dobry, C.J., McCown, P.J. and Kumar, A. Large-scale analysis of yeast filamentous growth by systematic gene disruption and overexpression. Mol. Biol. Cell. 19 (2008) 284–296. http://dx.doi.org/10.1091/mbc.E07-05-0519Web of ScienceCrossrefGoogle Scholar

  • [8] Alexander, M.R., Tyers, M., Perret, M., Craig, B.M., Fang, K.S. and Gustin, M.C. Regulation of cell cycle progression by Swe1p and Hog1p following hypertonic stress. Mol. Biol. Cell. 12 (2001) 53–62. CrossrefGoogle Scholar

  • [9] Causton, H.C., Ren, B., Koh, S.S., Harbison, C.T., Kanin, E., Jennings, E.G., Lee, T.I., True, H.L., Lander, E.S. and Young, R.A. Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell. 12 (2001) 323–337. CrossrefGoogle Scholar

  • [10] Puig, S. and Perez-Ortin, J.E. Stress response and expression patterns in wine fermentations of yeast genes induced at the diauxic shift. Yeast, 16 (2000) 139–148. http://dx.doi.org/10.1002/(SICI)1097-0061(20000130)16:2<139::AID-YEA512>3.0.CO;2-JCrossrefGoogle Scholar

  • [11] Cardona, F., Aranda, A. and del Olmo, M. Ubiquitin ligase Rsp5p is involved in the gene expression changes during nutrient limitation in Saccharomyces cerevisiae. Yeast, 26 (2009) 1–15. http://dx.doi.org/10.1002/yea.1645Web of ScienceCrossrefGoogle Scholar

  • [12] Cardona, F., Carrasco, P., Perez-Ortin, J. E., del Olmo, M. and Aranda, A. A novel approach for the improvement of stress resistance in wine yeasts. Int. J. Food Microbiol. 114 (2007) 83–91. http://dx.doi.org/10.1016/j.ijfoodmicro.2006.10.043Web of ScienceCrossrefGoogle Scholar

  • [13] Cardona, F., Orozco, H., Friant, S., Aranda, A. and del Olmo, M.L. The Saccharomyces cerevisiae, flavodoxin-like proteins Ycp4 and Rfs1 play a role in stress response and in the regulation of genes related to metabolism. Arch. Microbiol. 193 (2011) 515–525. http://dx.doi.org/10.1007/s00203-011-0696-7CrossrefGoogle Scholar

  • [14] Shimoi, H., Kitagaki, H., Ohmori, H., Iimura, Y. and Ito, K. Sed1p is a major cell wall protein of Saccharomyces cerevisiae, in the stationary phase and is involved in lytic enzyme resistance. J. Bacteriol. 180 (1998) 3381–3387. Google Scholar

  • [15] Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis Tools. Nucleic Acids Res. 25 (1997) 4876–4882. http://dx.doi.org/10.1093/nar/25.24.4876CrossrefGoogle Scholar

  • [16] Do, C.B., Mahabhashyam, M.S., Brudno, M. and Batzoglou, S. ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res. 15 (2005) 330–340. http://dx.doi.org/10.1101/gr.2821705CrossrefGoogle Scholar

  • [17] Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic análisis. Mol. Biol. Evol. 17 (2000) 540–552. http://dx.doi.org/10.1093/oxfordjournals.molbev.a026334CrossrefGoogle Scholar

  • [18] Tamura, K., Dudley, J., Nei, M. and Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24 (2007) 1596–1599. http://dx.doi.org/10.1093/molbev/msm092Google Scholar

  • [19] Huelsenbeck, J.P. and Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17 (2001) 754–755. http://dx.doi.org/10.1093/bioinformatics/17.8.754CrossrefGoogle Scholar

  • [20] Wolfe, K.H. Comparative genomics and genome evolution in yeasts. Philos. Trans. R. Soc. Lond. B. Biol Sci. 361 (2006) 403–412. http://dx.doi.org/10.1098/rstb.2005.1799CrossrefGoogle Scholar

  • [21] Moriya, H., Shimizu-Yoshida, Y., Omori, A., Iwashita, S., Katoh, M. and Sakai A. Yak1p, a DYRK family kinase, translocates to the nucleus and phosphorylates yeast Pop2p in response to a glucose signal. Genes Dev. 15 (2001) 1217–1228. http://dx.doi.org/10.1101/gad.884001CrossrefGoogle Scholar

  • [22] Hohmann, S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66 (2002) 300–372. http://dx.doi.org/10.1128/MMBR.66.2.300-372.2002CrossrefGoogle Scholar

  • [23] Scannell, D.R., Butler, G. and Wolfe, K.H. Yeast genome evolution-the origin of the species. Yeast, 24 (2007) 929–942. http://dx.doi.org/10.1002/yea.1515Web of ScienceCrossrefGoogle Scholar

  • [24] Brauer, M.J., Saldanha, A.J., Dolinski, K. and Botstein, D. Homeostatic adjustment and metabolic remodelling in glucose-limited yeast cultures. Mol. Biol. Cell. 16 (2005) 2503–2517. http://dx.doi.org/10.1091/mbc.E04-11-0968CrossrefGoogle Scholar

  • [25] de Morgan, A., Brodsky, L., Ronin, Y., Nevo, E., Korol, A. and Kashi, Y. Genome-wide analysis of DNA turnover and gene expression in stationaryphase Saccharomyces cerevisiae. Microbiology, 156 (2010) 1758–1571. http://dx.doi.org/10.1099/mic.0.035519-0CrossrefGoogle Scholar

  • [26] Bell-Pedersen, D., Shinohara, M.L., Loros, J.J. and Dunlap, J.C. Circadian clock-controlled genes isolated from Neurospora crassa, are late night-to early morning-specific. Proc. Natl. Acad. Sci. USA, 93 (1996) 13096–13101. http://dx.doi.org/10.1073/pnas.93.23.13096CrossrefGoogle Scholar

  • [27] Aign, V. and Hoheisel, J.D. Analysis of nutrient-dependent transcript variations in Neurospora crassa. Fungal Genet. Biol. 40 (2003) 225–233. http://dx.doi.org/10.1016/S1087-1845(03)00106-3CrossrefGoogle Scholar

  • [28] Wolfe, K.H. and Shields, D.C. Molecular evidence for an ancient duplication of the entire yeast genome. Nature, 387 (1997) 708–713. http://dx.doi.org/10.1038/42711CrossrefGoogle Scholar

  • [29] Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X., Fasolo, J., Guo, H., Jona, G., Breitkreutz, A., Sopko, R., McCartney, R.R., Schmidt, M.C., Rachidi, N., Lee, S.J., Mah, A.S., Meng, L., Stark, M.J., Stern, D.F., De Virgilio, C., Tyers, M., Andrews, B., Gerstein, M., Schweitzer B., Predki, P.F. and Snyder M. Global analysis of protein phosphorylation in yeast. Nature, 7068 (2005) 679–684. http://dx.doi.org/10.1038/nature04187CrossrefGoogle Scholar

  • [30] Wu, Q., James, S.A., Roberts, I.N., Moulton, V. and Huber, K.T. Exploring contradictory phylogenetic relationships in yeasts. FEMS Yeast Res. 8 (2008) 641–650. http://dx.doi.org/10.1111/j.1567-1364.2008.00362.xCrossrefWeb of ScienceGoogle Scholar

  • [31] Pan, X. and Heitman, J. Sok2 regulates yeast pseudohyphal differentiation via a transcription factor cascade that regulates cell-cell adhesion. Mol. Cell. Biol. 20 (2000) 8364–8372. http://dx.doi.org/10.1128/MCB.20.22.8364-8372.2000CrossrefGoogle Scholar

  • [32] Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D. and Brown, P.O. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell. 11 (2000) 4241–4257. CrossrefGoogle Scholar

  • [33] Popova, Y., Thayumanavan, P., Lonati, E., Agrochao, M. and Thevelein, J.M. Transport and signaling through the phosphate-binding site of the yeast Pho84 phosphate transceptor. Proc. Natl. Acad. Sci. USA, 107 (2010) 2890–2895. http://dx.doi.org/10.1073/pnas.0906546107CrossrefGoogle Scholar

  • [34] Sobering, A.K., Jung, U.S., Lee, K.S. and Levin, D.E. Yeast Rpi1 is a putative transcriptional regulator that contributes to preparation for stationary phase. Eukaryot. Cell, 1 (2002) 56–65. http://dx.doi.org/10.1128/EC.1.1.56-65.2002CrossrefGoogle Scholar

  • [35] Belli, G., Molina, M.M., Garcia-Martinez, J., Perez-Ortin, J.E. and Herrero, E. Saccharomyces cerevisiae, glutaredoxin 5-deficient cells subjected to continuous oxidizing conditions are affected in the expression of specific sets of genes. J. Biol. Chem. 279 (2004) 12386–12395. http://dx.doi.org/10.1074/jbc.M311879200CrossrefGoogle Scholar

About the article

Published Online: 2012-06-17

Published in Print: 2012-09-01


Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-012-0017-4.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Cecilia Andreu and Marcel·lí del Olmo
Applied Microbiology and Biotechnology, 2017, Volume 101, Number 1, Page 287

Comments (0)

Please log in or register to comment.
Log in