Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Editor-in-Chief: /


IMPACT FACTOR 2016: 1.260
5-year IMPACT FACTOR: 1.506

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.615
Source Normalized Impact per Paper (SNIP) 2016: 0.470

Online
ISSN
1689-1392
See all formats and pricing
More options …
Volume 17, Issue 3 (Sep 2012)

Alterations of the Hsp70/Hsp90 chaperone and the HOP/CHIP co-chaperone system in cancer

Eva Ruckova / Petr Muller / Rudolf Nenutil / Borivoj Vojtesek
Published Online: 2012-06-17 | DOI: https://doi.org/10.2478/s11658-012-0021-8

Abstract

Activation of the Hsp90 chaperone system is a characteristic of cancer cells. The regulation of chaperone activities involves their interaction with cochaperones; therefore we investigated the expression of Hsp70 and Hsp90 and their specific co-chaperones HOP and CHIP in cancer cell lines and primary cancers. Inhibition of Hsp90 by 17AAG increased the levels of Hsp70, Hsp90 and HOP but not CHIP mRNA in cancer cells. These changes are linked to activation of the HSF1 transcription factor and we show that the HOP promoter contains HSF1 binding sites, and that HSF1 binding to the HOP promoter is increased following 17AAG. The lack of alteration in the co-chaperone CHIP is explained by a lack of HSF response elements in the CHIP promoter. Non-proliferating cells expressed higher levels of CHIP and lower HOP, Hsp70 and Hsp90 levels compared to proliferating cells. Decreased expression of CHIP in proliferating cancer cells is in keeping with its proposed tumor suppressor properties, while over-expression of HOP in proliferating cells may contribute to excessive Hsp90 activity and stabilization of client proteins in tumors. In a panel of colorectal cancer samples, increased expression of Hsp70 and an increased ratio of HOP to CHIP were found, and were associated with decreased median survival. These data indicate that multiple changes occur in the chaperone/co-chaperone system in cancer that impact patient survival. It is likely that the ability to identify individual alterations to this system will be beneficial for treatment strategy decisions, particularly those that employ chaperone inhibitors.

Keywords: Chaperone; Co-chaperone; Cancer; Hsp90; Hsp70; HOP; CHIP; HSF1; 17AAG

  • [1] Ciocca, D.R. and Calderwood, S.K. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10 (2005) 86–103. http://dx.doi.org/10.1379/CSC-99r.1CrossrefGoogle Scholar

  • [2] Workman, P. Altered states: selectively drugging the Hsp90 cancer chaperone. Trends Mol. Med. 10 (2004) 47–51. http://dx.doi.org/10.1016/j.molmed.2003.12.005CrossrefGoogle Scholar

  • [3] Hernandez, M.P., Sullivan, W.P. and Toft, D.O. The assembly and intermolecular properties of the hsp70-Hop-hsp90 molecular chaperone complex. J. Biol. Chem. 277 (2002) 38294–38304. http://dx.doi.org/10.1074/jbc.M206566200CrossrefGoogle Scholar

  • [4] Kubota, H., Yamamoto, S., Itoh, E., Abe, Y., Nakamura, A., Izumi, Y., Okada, H., Iida, M., Nanjo, H., Itoh, H. and Yamamoto, Y. Increased expression of co-chaperone HOP with HSP90 and HSC70 and complex formation in human colonic carcinoma. Cell Stress Chaperones 15 (2010) 1003–1011. http://dx.doi.org/10.1007/s12192-010-0211-0Web of ScienceCrossrefGoogle Scholar

  • [5] Sun, W., Xing, B., Sun, Y., Du, X., Lu, M., Hao, C., Lu, Z., Mi, W., Wu, S., Wei, H., Gao, X., Zhu, Y., Jiang, Y., Qian, X. and He, F. Proteome analysis of hepatocellular carcinoma by two-dimensional difference gel electrophoresis: novel protein markers in hepatocellular carcinoma tissues. Mol. Cell. Proteomics 6 (2007) 1798–1808. http://dx.doi.org/10.1074/mcp.M600449-MCP200Web of ScienceCrossrefGoogle Scholar

  • [6] Erlich, R.B., Kahn, S.A., Lima, F.R., Muras, A.G., Martins, R.A., Linden, R., Chiarini, L.B., Martins, V.R. and Moura Neto, V. STI1 promotes glioma proliferation through MAPK and PI3K pathways. Glia 55 (2007) 1690–1698. http://dx.doi.org/10.1002/glia.20579Web of ScienceCrossrefGoogle Scholar

  • [7] Kajiro, M., Hirota, R., Nakajima, Y., Kawanowa, K., So-ma, K., Ito, I., Yamaguchi, Y., Ohie, S.H., Kobayashi, Y., Seino, Y., Kawano, M., Kawabe, Y., Takei, H., Hayashi, S., Kurosumi, M., Murayama, A., Kimura, K. and Yanagisawa, J. The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways. Nat. Cell. Biol. 11 (2009) 312–319. http://dx.doi.org/10.1038/ncb1839Web of ScienceCrossrefGoogle Scholar

  • [8] Kundrat, L. and Regan, L. Balance between folding and degradation for Hsp90-dependent client proteins: a key role for CHIP. Biochemistry 49 (2010) 7428–7438. http://dx.doi.org/10.1021/bi100386wCrossrefGoogle Scholar

  • [9] Scheufler, C., Brinker, A., Bourenkov, G., Pegoraro, S., Moroder, L., Bartunik, H., Hartl, F.U. and Moarefi, I. Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101 (2000) 199–210. http://dx.doi.org/10.1016/S0092-8674(00)80830-2CrossrefGoogle Scholar

  • [10] Muller, P., Hrstka, R., Coomber, D., Lane, D.P. and Vojtesek, B. Chaperone-dependent stabilization and degradation of p53 mutants. Oncogene 27 (2008) 3371–3383. http://dx.doi.org/10.1038/sj.onc.1211010CrossrefWeb of ScienceGoogle Scholar

  • [11] Banks, L., Matlashewski, G. and Crawford, L. Isolation of human-p53-specific monoclonal antibodies and their use in the studies of human p53 expression. Eur. J. Biochem. 159 (1986) 529–534. http://dx.doi.org/10.1111/j.1432-1033.1986.tb09919.xCrossrefGoogle Scholar

  • [12] Trepel, J., Mollapour, M., Giaccone, G. and Neckers, L. Targeting the dynamic HSP90 complex in cancer. Nat. Rev. Cancer 10 (2010) 537–549. http://dx.doi.org/10.1038/nrc2887Web of ScienceCrossrefGoogle Scholar

  • [13] Pick, E., Kluger, Y., Giltnane, J.M., Moeder, C., Camp, R.L., Rimm, D.L. and Kluger, H.M. High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res. 67 (2007) 2932–2937. http://dx.doi.org/10.1158/0008-5472.CAN-06-4511CrossrefGoogle Scholar

  • [14] Li, C.F., Huang, W.W., Wu, J.M., Yu, S.C., Hu, T.H., Uen, Y.H., Tian, Y.F., Lin, C.N., Lu, D., Fang, F.M. and Huang, H.Y. Heat shock protein 90 overexpression independently predicts inferior disease-free survival with differential expression of the alpha and beta isoforms in gastrointestinal stromal tumors. Clin. Cancer Res. 14 (2008) 7822–7831. http://dx.doi.org/10.1158/1078-0432.CCR-08-1369CrossrefWeb of ScienceGoogle Scholar

  • [15] Kang, G.H., Lee, E.J., Jang, K.T., Kim, K.M., Park, C.K., Lee, C.S., Kang, D.Y., Lee, S.H., Sohn, T.S. and Kim, S. Expression of HSP90 in gastrointestinal stromal tumours and mesenchymal tumours. Histopathology 56 (2010) 694–701. http://dx.doi.org/10.1111/j.1365-2559.2010.03550.xCrossrefWeb of ScienceGoogle Scholar

  • [16] Stankiewicz, M., Nikolay, R., Rybin, V. and Mayer, M.P. CHIP participates in protein triage decisions by preferentially ubiquitinating Hsp70-bound substrates. FEBS J. 277 (2010) 3353–3367. http://dx.doi.org/10.1111/j.1742-4658.2010.07737.xCrossrefWeb of ScienceGoogle Scholar

  • [17] Santagata, S., Hu, R., Lin, N.U., Mendillo, M.L., Collins, L.C., Hankinson, S.E., Schnitt, S.J., Whitesell, L., Tamimi, R.M., Lindquist, S. and Ince, T.A. High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer. Proc. Natl. Acad. Sci. USA 108 (2011) 18378–18383. http://dx.doi.org/10.1073/pnas.1115031108CrossrefGoogle Scholar

  • [18] Dai, C., Whitesell, L., Rogers, A.B. and Lindquist, S. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130 (2007) 1005–1018. http://dx.doi.org/10.1016/j.cell.2007.07.020Web of ScienceGoogle Scholar

  • [19] Zou, J., Guo, Y., Guettouche, T., Smith, D.F. and Voellmy, R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94 (1998) 471–480. http://dx.doi.org/10.1016/S0092-8674(00)81588-3CrossrefGoogle Scholar

About the article

Published Online: 2012-06-17

Published in Print: 2012-09-01


Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-012-0021-8.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Huan-Tian Zhang, Jie Yang, Gui-Hong Liang, Xue-Juan Gao, Yuan Sang, Tao Gui, Zu-Jian Liang, Man-Seng Tam, and Zhen-Gang Zha
Journal of Cellular Biochemistry, 2017
[2]
Rebeca Piatniczka Iglesia, Mariana Brandão Prado, Lilian Cruz, Vilma Regina Martins, Tiago Góss Santos, and Marilene Hohmuth Lopes
Stem Cell Research & Therapy, 2017, Volume 8, Number 1
[3]
Meng Xiao, Ming Yan, Jianjun Zhang, Qin Xu, Shengcai Qi, Xu Wang, and Wantao Chen
Experimental Cell Research, 2017, Volume 353, Number 1, Page 46
[4]
Wei Wen, Wuxin Liu, Yongfeng Shao, and Liang Chen
Experimental Biology and Medicine, 2014, Volume 239, Number 5, Page 638
[5]
Zhe Cao, Jianwei Xu, Hua Huang, Peng Shen, Lei You, Li Zhou, Lianfang Zheng, Taiping Zhang, Yupei Zhao, and Jose G. Trevino
PLOS ONE, 2015, Volume 10, Number 1, Page e0116934
[6]
Stacey A Mattison, Gregory L Blatch, and Adrienne L Edkins
Cell Stress and Chaperones, 2017, Volume 22, Number 2, Page 213
[7]
Tonielli Cristina Sousa de Lacerda, Bruno Costa-Silva, Fernanda Salgueiredo Giudice, Marcos Vinicios Salles Dias, Gabriela Pintar de Oliveira, Bianca Luise Teixeira, Tiago Goss dos Santos, and Vilma Regina Martins
Clinical & Experimental Metastasis, 2016, Volume 33, Number 5, Page 441
[8]
Ana Paula Lappas Gimenez, Larissa Morato Luciani Richter, Mariana Campos Atherino, Breno Castello Branco Beirão, Celso Fávaro, Michele Dietrich Moura Costa, Silvio Marques Zanata, Bettina Malnic, and Adriana Frohlich Mercadante
Prion, 2015, Volume 9, Number 5, Page 355
[9]
Abbey D. Zuehlke, Kristin Beebe, Len Neckers, and Thomas Prince
Gene, 2015, Volume 570, Number 1, Page 8
[10]
Indranil Paul and Mrinal K. Ghosh
The International Journal of Biochemistry & Cell Biology, 2015, Volume 58, Page 37
[11]
Tony Taldone, Stefan O. Ochiana, Pallav D. Patel, and Gabriela Chiosis
Trends in Pharmacological Sciences, 2014, Volume 35, Number 11, Page 592
[12]
M H Lopes, T G Santos, B R Rodrigues, N Queiroz-Hazarbassanov, I W Cunha, A P Wasilewska-Sampaio, B Costa-Silva, F A Marchi, L F Bleggi-Torres, P I Sanematsu, S H Suzuki, S M Oba-Shinjo, S K N Marie, E Toulmin, A F Hill, and V R Martins
Oncogene, 2015, Volume 34, Number 25, Page 3305
[13]
Johannes Linxweiler, Laxmikanth Kollipara, René P. Zahedi, Pavel Lampel, Richard Zimmermann, and Markus Greiner
EuPA Open Proteomics, 2014, Volume 4, Page 25
[14]
Indranil Paul and Mrinal K. Ghosh
BioMed Research International, 2014, Volume 2014, Page 1
[15]
Jeanette R. McConnell, Leslie A. Alexander, and Shelli R. McAlpine
Bioorganic & Medicinal Chemistry Letters, 2014, Volume 24, Number 2, Page 661
[16]
Min Zheng, Jian Jiang, Ya-ling Tang, and Xin-hua Liang
Future Oncology, 2013, Volume 9, Number 4, Page 561
[17]
Tarryn Willmer, Lara Contu, Gregory L. Blatch, and Adrienne L. Edkins
Cancer Letters, 2013, Volume 328, Number 2, Page 252

Comments (0)

Please log in or register to comment.
Log in