Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 17, Issue 3


Cannabinoid-like anti-inflammatory compounds from flax fiber

Monika Styrczewska / Anna Kulma / Katarzyna Ratajczak / Ryszard Amarowicz / Jan Szopa
Published Online: 2012-06-17 | DOI: https://doi.org/10.2478/s11658-012-0023-6


Flax is a valuable source of fibers, linseed and oil. The compounds of the latter two products have already been widely examined and have been proven to possess many health-beneficial properties. In the course of analysis of fibers extract from previously generated transgenic plants overproducing phenylpropanoids a new terpenoid compound was discovered.

The UV spectra and the retention time in UPLC analysis of this new compound reveal similarity to a cannabinoid-like compound, probably cannabidiol (CBD). This was confirmed by finding two ions at m/z 174.1 and 231.2 in mass spectra analysis. Further confirmation of the nature of the compound was based on a biological activity assay. It was found that the compound affects the expression of genes involved in inflammatory processes in mouse and human fibroblasts and likely the CBD from Cannabis sativa activates the specific peripheral cannabinoid receptor 2 (CB2) gene expression. Besides fibers, the compound was also found in all other flax tissues. It should be pointed out that the industrial process of fabric production does not affect CBD activity.

The presented data suggest for the first time that flax products can be a source of biologically active cannabinoid-like compounds that are able to influence the cell immunological response. These findings might open up many new applications for medical flax products, especially for the fabric as a material for wound dressing with anti-inflammatory properties.

Keywords: Flax; Linum usitatissimum; Linen; Cannabinoid; Inflammation; Terpenoids; Flax fibers; Cannabinoid signaling

  • [1] Prasad, K. Flaxseed and cardiovascular health. J. Cardiovasc. Pharmacol. 54 (2009) 369–377. http://dx.doi.org/10.1097/FJC.0b013e3181af04e5CrossrefGoogle Scholar

  • [2] Prasad, K. Hydroxyl radical-scavenging property of secoisolariciresinol diglucoside (SDG) isolated from flax-seed. Mol. Cell. Biochem. 168 (1997) 117–123. http://dx.doi.org/10.1023/A:1006847310741CrossrefGoogle Scholar

  • [3] Wang, L., Chen, J. and Thompson, L.U. The inhibitory effect of flaxseed on the growth and metastasis of estrogen receptor negative human breast cancer xenograftsis attributed to both its lignan and oil components, Int. J. Cancer 116 (2005) 793–798. http://dx.doi.org/10.1002/ijc.21067CrossrefGoogle Scholar

  • [4] Muir, A.D. and Westcott, N.D. Flax, the genus Linum, Saskatchewan: T.F. Group, 2003. Google Scholar

  • [5] Huwiler, A. and Pfeilschifter, J. Lipids as targets for novel antiinflammatory therapies. Pharmacol. Ther. 124 (2009) 96–112. http://dx.doi.org/10.1016/j.pharmthera.2009.06.008Web of ScienceCrossrefGoogle Scholar

  • [6] Russo, G.L. Dietary n-6 and n-3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention. Biochem. Pharmacol. 77 (2009) 937–946. http://dx.doi.org/10.1016/j.bcp.2008.10.020CrossrefWeb of ScienceGoogle Scholar

  • [7] Skorkowska-Telichowska, K., Zuk, M., Kulma, A., Bugajska-Prusak, A., Ratajczak, K., Gasiorowski, K. and Szopa, J. New dressing materials derived from transgenic flax products to treat long-standing venous ulcersa pilot study. Wound. Repair. Regen. 18 (2010) 168–719. http://dx.doi.org/10.1111/j.1524-475X.2010.00578.xCrossrefWeb of ScienceGoogle Scholar

  • [8] Lorenc-Kukula, K., Amarowicz, R., Oszmianski, J., Doermann, P., Starzycki, M., Skala, J., Zuk, M., Kulma, A. and Szopa, J. Pleiotropic effect of phenolic compounds content increases in transgenic flax plant. J. Agric. Food Chem. 53 (2005) 3685–3692. http://dx.doi.org/10.1021/jf047987zCrossrefGoogle Scholar

  • [9] Raharjo, T.J., Chang, W.-T., Choi, Y.H., Peltenburg-Looman, A.M.G. and Verpoorte, R. Olivetol as product of a polyketide synthase in Cannabis sativa L. Plant Sci. 166 (2004) 381–385. http://dx.doi.org/10.1016/j.plantsci.2003.09.027CrossrefGoogle Scholar

  • [10] Sirikantaramas, S., Taura, F., Morimoto, S. and Shoyama, Y. Recent advances in Cannabis sativa research: biosynthetic studies and its potential in biotechnology. Curr. Pharm. Biotechnol. 8 (2007) 237–243. http://dx.doi.org/10.2174/138920107781387456CrossrefGoogle Scholar

  • [11] Mechoulam, R., Peters, M., Murillo-Rodriguez, E. and Hanus, L.O. Cannabidiol-recent advances. Chem. Biodivers. 4 (2007) 1678–1692. http://dx.doi.org/10.1002/cbdv.200790147CrossrefGoogle Scholar

  • [12] Alexander, A., Smith, P.F. and Rosengren, R.J. Cannabinoids in the treatment of cancer. Cancer Lett. 285 (2009) 6–12. http://dx.doi.org/10.1016/j.canlet.2009.04.005CrossrefGoogle Scholar

  • [13] Ligresti, A., Petrosino, S. and Di Marzo, V. From endocannabinoid profiling to ‘endocannabinoid therapeutics’. Curr. Opin. Chem. Biol. 13 (2009) 321–331. http://dx.doi.org/10.1016/j.cbpa.2009.04.615Web of ScienceCrossrefGoogle Scholar

  • [14] Pacher, P., Batkai, S. and Kunos, G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev. 58 (2006) 389–462. http://dx.doi.org/10.1124/pr.58.3.2CrossrefGoogle Scholar

  • [15] Zoratti, C., Kipmen-Korgun, D., Osibow, K., Malli, R. and Graier, W.F. Anandamide initiates Ca(2+) signaling via CB2 receptor linked to phospholipase C in calf pulmonary endothelial cells. Br. J. Pharmacol. 140 (2003) 1351–1362. http://dx.doi.org/10.1038/sj.bjp.0705529CrossrefGoogle Scholar

  • [16] Rajesh, M., Mukhopadhyay, P., Batkai, S., Hasko, G., Liaudet, L., Huffman, J.W., Csiszar, A., Ungvari, Z., Mackie, K., Chatterjee, S. and Pacher, P. CB2-receptor stimulation attenuates TNF-alpha-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyteendothelial adhesion. Am. J. Physiol. Heart Circ. Physiol. 293 (2007) H2210–H2218. http://dx.doi.org/10.1152/ajpheart.00688.2007Web of ScienceCrossrefGoogle Scholar

  • [17] Schatz, A.R., Lee, M., Condie, R.B., Pulaski, J.T. and Kaminski, N.E. Cannabinoid receptors CB1 and CB2: a characterization of expression and adenylate cyclase modulation within the immune system, Toxicol. Appl. Pharmacol. 142 (1997) 278–287. http://dx.doi.org/10.1006/taap.1996.8034CrossrefGoogle Scholar

  • [18] Klein, T.W. Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat. Rev. Immunol. 5 (2005) 400–411. http://dx.doi.org/10.1038/nri1602CrossrefGoogle Scholar

  • [19] Klein, T.W., Lane, B., Newton, C.A. and Friedman, H. The cannabinoid system and cytokine network. Proc. Soc. Exp. Biol. Med. 225 (2000) 1–8. http://dx.doi.org/10.1046/j.1525-1373.2000.22501.xCrossrefGoogle Scholar

  • [20] Derocq, J.M., Jbilo, O., Bouaboula, M., Segui, M., Clere, C. and Casellas, P. Genomic and functional changes induced by the activation of the peripheral cannabinoid receptor CB2 in the promyelocytic cells HL-60. Possible involvement of the CB2 receptor in cell differentiation. J. Biol. Chem. 275 (2000) 15621–15628. http://dx.doi.org/10.1074/jbc.275.21.15621CrossrefGoogle Scholar

  • [21] Wrobel-Kwiatkowska, M., Zebrowski, J., Starzycki, M., Oszmianski, J. and Szopa, J. Engineering of PHB synthesis causes improved elastic properties of flax fibers. Biotechnol. Prog. 23 (2007) 269–277. http://dx.doi.org/10.1021/bp0601948CrossrefGoogle Scholar

  • [22] Lorenc-Kukula, K., Wrobel-Kwiatkowska, M., Starzycki, M. and Szopa, J. Engineering flax with increased flavonoid content and thus Fusarium resistance. Physiol. Mol. Plant P. 70 (2007) 38–48. http://dx.doi.org/10.1016/j.pmpp.2007.05.005CrossrefWeb of ScienceGoogle Scholar

  • [23] Boba, A., Kulma, A., Kostyn, K., Starzycki, M., Starzycka, E. and Szopa, J. The influence of carotenoid biosynthesis modification on the Fusarium culmorum and Fusarium oxysporum resistance in flax. Physiol. Mol. Plant P. 76 (2011) 39–47. http://dx.doi.org/10.1016/j.pmpp.2011.06.002Web of ScienceCrossrefGoogle Scholar

  • [24] Hazekamp, A., Peltenburg, A., Verpoorte, R. and Giroud, C. Chromatographic and Spectroscopic Data of Cannabinoids from Cannabis sativa L. J. Liq. Chromatog. R.T. 28 (2005) 2361–2382. http://dx.doi.org/10.1080/10826070500187558CrossrefGoogle Scholar

  • [25] Gredes, T., Kunert-Keil, C., Dominiak, M., Gedrange, T., Wrobel-Kwiatkowska, M. and Szopa, J. The influence of biocomposites containing genetically modified flax fibers on gene expression in rat skeletal muscle. Biomed. Tech. (Berl). 55 323–329. Web of ScienceGoogle Scholar

  • [26] Klein, T.W., Newton, C., Larsen, K., Lu, L., Perkins, I., Nong, L. and Friedman, H. The cannabinoid system and immune modulation. J. Leukoc. Biol. 74 (2003) 486–496. http://dx.doi.org/10.1189/jlb.0303101CrossrefGoogle Scholar

  • [27] Klegeris, A., Bissonnette, C.J. and McGeer, P.L. Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor. Br. J. Pharmacol. 139 (2003) 775–786. http://dx.doi.org/10.1038/sj.bjp.0705304CrossrefGoogle Scholar

  • [28] Matsuda, L.A., Lolait, S.J., Brownstein, M.J., Young, A.C. and Bonner, T.I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346 (1990) 561–564. http://dx.doi.org/10.1038/346561a0CrossrefGoogle Scholar

  • [29] Munro, S., Thomas, K.L. and Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365 (1993) 61–65. http://dx.doi.org/10.1038/365061a0CrossrefGoogle Scholar

  • [30] McAllister, S.D. and Glass, M. CB1 and CB2 receptor-mediated signalling: a focus on endocannabinoids. Prostag. Leukotr. Ess. 66 (2002) 161–171. http://dx.doi.org/10.1054/plef.2001.0344CrossrefGoogle Scholar

  • [31] Howlett, A.C. Cannabinoid receptor signaling. Handb. Exp. Pharmacol. (2005) 53–79. CrossrefGoogle Scholar

  • [32] Doyle, S.L. and O’Neill, L.A.J. Toll-like receptors: From the discovery of NF[kappa]B to new insights into transcriptional regulations in innate immunity. Biochem. Pharmacol. 72 (2006) 1102–1113. http://dx.doi.org/10.1016/j.bcp.2006.07.010CrossrefGoogle Scholar

  • [33] Kawai, T. and Akira, S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol. Med. 13 (2007) 460–469. http://dx.doi.org/10.1016/j.molmed.2007.09.002Web of ScienceCrossrefGoogle Scholar

  • [34] Libermann, T.A. and Baltimore, D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol. Cell. Biol. 10 (1990) 2327–2334. Google Scholar

  • [35] Watts, T.H. TNF/TNFR family members in costimulation of T cell responses. Annu. Rev. Immunol. 23 (2005) 23–68. http://dx.doi.org/10.1146/annurev.immunol.23.021704.115839CrossrefGoogle Scholar

  • [36] Ryo, A., Suizu, F., Yoshida, Y., Perrem, K., Liou, Y.C., Wulf, G., Rottapel, R., Yamaoka, S. and Lu, K.P. Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell 12 (2003) 1413–1426. http://dx.doi.org/10.1016/S1097-2765(03)00490-8Google Scholar

About the article

Published Online: 2012-06-17

Published in Print: 2012-09-01

Citation Information: Cellular and Molecular Biology Letters, Volume 17, Issue 3, Pages 479–499, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-012-0023-6.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Monika Styrczewska, Magdalena Zuk, Aleksandra Boba, Iwan Zalewski, and Anna Kulma
Current Pharmaceutical Design, 2019, Volume 25, Number 20, Page 2241
Kinga Tóth, Dorottya Ádám, Tamás Bíró, and Attila Oláh
Molecules, 2019, Volume 24, Number 5, Page 918
Jana De Prez, Aart Willem Van Vuure, Jan Ivens, Guido Aerts, and Ilse Van de Voorde
Biotechnology Reports, 2018, Page e00294
Carmen del Río, Estrella Millán, Víctor García, Giovanni Appendino, Jim DeMesa, and Eduardo Muñoz
Biochemical Pharmacology, 2018
Tajammul Hussain, Blue Plunkett, Mahwish Ejaz, Richard V. Espley, and Oliver Kayser
Frontiers in Plant Science, 2018, Volume 9
Melissa M. Lewis, Yi Yang, Ewa Wasilewski, Hance A. Clarke, and Lakshmi P. Kotra
ACS Omega, 2017, Volume 2, Number 9, Page 6091
Cinzia Citti, Daniela Braghiroli, Maria Angela Vandelli, and Giuseppe Cannazza
Journal of Pharmaceutical and Biomedical Analysis, 2017
Ethan B. Russo
Trends in Pharmacological Sciences, 2016, Volume 37, Number 7, Page 594
Charu Sharma, Bassem Sadek, Sameer N. Goyal, Satyesh Sinha, Mohammad Amjad Kamal, and Shreesh Ojha
Evidence-Based Complementary and Alternative Medicine, 2015, Volume 2015, Page 1
Monika Styrczewska, Anna Kostyn, Anna Kulma, Grazyna Majkowska-Skrobek, Daria Augustyniak, Anna Prescha, Tadeusz Czuj, and Jan Szopa
BioMed Research International, 2015, Volume 2015, Page 1
A. Kulma, K. Skórkowska-Telichowska, K. Kostyn, M. Szatkowski, J. Skała, Z. Drulis-Kawa, M. Preisner, M. Żuk, J. Szperlik, Y.F. Wang, and J. Szopa
Industrial Crops and Products, 2015, Volume 68, Page 80
Lucyna Dymińska, Michał Szatkowski, Magdalena Wróbel-Kwiatkowska, Magdalena Żuk, Adam Kurzawa, Wojciech Syska, Anna Gągor, Mirosław Zawadzki, Maciej Ptak, Mirosław Mączka, Jerzy Hanuza, and Jan Szopa
Journal of Biotechnology, 2013, Volume 164, Number 2, Page 292

Comments (0)

Please log in or register to comment.
Log in