Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 17, Issue 4

Issues

Intraspecific polymorphism of ribosomal DNA loci number and morphology in Brachypodium pinnatum and Brachypodium sylvaticum

Ewa Breda / Elzbieta Wolny / Robert Hasterok
Published Online: 2012-09-23 | DOI: https://doi.org/10.2478/s11658-012-0025-4

Abstract

The genus Brachypodium has become the target of extensive cytomolecular studies since one of its representatives, B. distachyon, has been accepted as a model plant for temperate cereals and forage grasses. Recent preliminary studies suggested that intraspecific rDNA polymorphism can occur in at least two members of the genus, B. sylvaticum and B. pinnatum, so the aim of this study was to further analyse this phenomenon. FISH with 25S rDNA and 5S rDNA probes was performed on somatic metaphase chromosomes, supplemented by the silver staining technique which distinguishes transcriptionally active from inactive 18S-5.8S-25S rDNA loci. The number, size and chromosomal distribution of 5S rDNA loci were very constant: two loci were invariably observed in all studied diploid accessions of both species, while four 5S rDNA loci were present in the tetraploid B. pinnatum. In contrast to 5S rDNA loci, those of the 35S rDNA were more variable. Two or three loci were observed in the diploid B. pinnatum and four in tetraploid accessions. In chromosome complements of B. sylvaticum accessions from two to six 35S rDNA sites were detected. Regardless of total rDNA locus number, only two were transcriptionally active in diploid accessions of both species, while two or four were active in the tetraploid B. pinnatum. Additionally, the fluorescent CMA/DAPI banding method was used to identify the relation between rDNA sites and CMA+ bands. It was revealed that the number and chromosomal distribution of CMA+ bands are in congruence only with 35S rDNA loci which gave strong FISH signals.

Keywords: Brachypodium; Chromomycin A3; DAPI; FISH; NOR; Polymorphism; rDNA; rRNA genes

  • [1] Weider, L.J., Elser, J.J., Crease, T.J., Mateos, M., Cotner, J.B. and Markow, T.A. The functional significance of ribosomal (r)DNA variation: impacts on the evolutionary ecology of organisms. Annu. Rev. Ecol. Evol. Syst. 36 (2005) 171–184. http://dx.doi.org/10.1146/annurev.ecolsys.36.102003.152620CrossrefGoogle Scholar

  • [2] Sone, T., Fujisawa, M., Takenaka, M., Nakagawa, S., Yamaoka, S., Sakaida, M., Nishiyama, R., Yamato, K.T., Ohmido, N., Fukui, K., Fukuzawa, H. and Ohyama, K. Bryophyte 5S rDNA was inserted into 45S rDNA repeat units after the divergence from higher land plants. Plant. Mol. Biol. 41 (1999) 679–685. http://dx.doi.org/10.1023/A:1006398419556CrossrefGoogle Scholar

  • [3] Adams, S.P., Leitch, I.J., Bennett, M.D., Chase, M.W. and Leitch, A.R. Ribosomal DNA evolution and phylogeny in Aloe (Asphodelaceae). Am. J. Bot. 87 (2000) 1578–1583. http://dx.doi.org/10.2307/2656733CrossrefGoogle Scholar

  • [4] Dhar, M.K., Friebe, B., Kaul, S. and Gill, B.S. Characterization and physical mapping of ribosomal RNA gene families in Plantago. Ann. Bot. 97 (2006) 541–548. http://dx.doi.org/10.1093/aob/mcl017CrossrefGoogle Scholar

  • [5] Dubouzet, J.G. and Shinoda, K. Phylogenetic analysis of the internal transcribed spacer region of Japanese Lilium species. Theor. Appl. Genet. 98 (1999) 954–960. http://dx.doi.org/10.1007/s001220051155CrossrefGoogle Scholar

  • [6] Catalan, P., Muller, J., Hasterok, R., Jenkins, G., Mur, L.A., Langdon, T., Betekhtin, A., Siwinska, D., Pimentel, M. and Lopez-Alvarez, D. Evolution and taxonomic split of the model grass Brachypodium distachyon. Ann. Bot. 109 (2012) 385–405. http://dx.doi.org/10.1093/aob/mcr294CrossrefGoogle Scholar

  • [7] Fransz, P., Armstrong, S., Alonso-Blanco, C., Fischer, T.C., Torres-Ruiz, R.A. and Jones, G. Cytogenetics for the model system Arabidopsis thaliana. Plant J. 13 (1998) 867–876. http://dx.doi.org/10.1046/j.1365-313X.1998.00086.xCrossrefGoogle Scholar

  • [8] Taketa, S., Harrison, G.E. and Heslop-Harrison, J.S. Comparative physical mapping of the 5S and 18S-25S rDNA in nine wild Hordeum species and cytotypes. Theor. Appl. Genet. 98 (1999) 1–9. http://dx.doi.org/10.1007/s001220051033CrossrefGoogle Scholar

  • [9] Golczyk, H., Hasterok, R. and Joachimiak, A.J. FISH-aimed karyotyping and characterization of Renner complexes in permanent heterozygote Rhoeo spathacea. Genome 48 (2005) 145–153. http://dx.doi.org/10.1139/g04-093CrossrefGoogle Scholar

  • [10] Golczyk, H., Hasterok, R. and Szklarczyk, M. Ribosomal DNA, tri- and bipartite pericentromeres in the permanent translocation heterozygote Rhoeo spathacea. Cell. Mol. Biol. Lett. 15 (2010) 651–664. http://dx.doi.org/10.2478/s11658-010-0034-0CrossrefGoogle Scholar

  • [11] de Moraes, A.P., dos Santos Soares Filho, W. and Guerra, M. Karyotype diversity and the origin of grapefruit. Chromosome Res. 15 (2007) 115–121. http://dx.doi.org/10.1007/s10577-006-1101-2CrossrefGoogle Scholar

  • [12] Siljak-Yakovlev, S., Peccenini, S., Muratovic, E., Zoldos, V., Robin, O. and Valles, J. Chromosomal differentiation and genome size in three European mountain Lilium species. Plant Syst. Evol. 236 (2003) 165–173. http://dx.doi.org/10.1007/s00606-002-0240-yCrossrefGoogle Scholar

  • [13] Hizume, M., Shibata, F., Matsusaki, Y. and Garajova, Z. Chromosome identification and comparative karyotypic analyses of four Pinus species. Theor. Appl. Genet. 105 (2002) 491–497. http://dx.doi.org/10.1007/s00122-002-0975-4CrossrefGoogle Scholar

  • [14] Hasterok, R., Wolny, E., Hosiawa, M., Kowalczyk, M., Kulak-Ksiazczyk, S., Ksiazczyk, T., Heneen, W.K. and Maluszynska, J. Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Ann. Bot. 97 (2006) 205–216. http://dx.doi.org/10.1093/aob/mcj031CrossrefGoogle Scholar

  • [15] Liu, Z.-L., Zhang, D., Hong, D.-Y. and Wang, X.-R. Chromosomal localization of 5S and 18S-5.8S-25S ribosomal DNA sites in five Asian pines using fluorescence in situ hybridization. Theor. Appl. Genet. 106 (2003) 198–204. Google Scholar

  • [16] Mishima, M., Ohmido, N., Fukui, K. and Yahara, T. Trends in site-number change of rDNA loci during polyploid evolution in Sanguisorba (Rosaceae). Chromosoma 110 (2002) 550–558. http://dx.doi.org/10.1007/s00412-001-0175-zCrossrefGoogle Scholar

  • [17] Hasterok, R., Jenkins, G. and Draper, J. Laying the cytotaxonomic foundations of a new model grass, Brachypodium distachyon (L.) Beauv. Chromosome Res. 12 (2004) 397–403. http://dx.doi.org/10.1023/B:CHRO.0000034130.35983.99CrossrefGoogle Scholar

  • [18] Wolny, E. and Hasterok, R. Comparative cytogenetic analysis of the genomes of the model grass Brachypodium distachyon and its close relatives. Ann. Bot. 104 (2009) 873–881. http://dx.doi.org/10.1093/aob/mcp179CrossrefGoogle Scholar

  • [19] Catalan, P. and Olmstead, R.G. Phylogenetc reconstruction of the genus Brachypodium P. Beauv. (Poaceae) from combined sequences of chloroplast ndhF gene and nuclear ITS. Plant Syst. Evol. 220 (2000) 1–19. http://dx.doi.org/10.1007/BF00985367CrossrefGoogle Scholar

  • [20] Shi, Y., Draper, J. and Stace, C. Ribosomal DNA variation and its phylogenetic implication in the genus Brachypodium (Poaceae). Plant Syst. Evol. 188 (1993) 125–138. http://dx.doi.org/10.1007/BF00937726CrossrefGoogle Scholar

  • [21] Catalan, P., Shi, Y., Armstrong, L., Draper, J. and Stace, C.A. Molecular phylogeny of the grass genus Brachypodium P. Beauv. based on RFLP and RAPD analysis. Bot. J. Linn. Soc. 117 (1995) 263–280. Google Scholar

  • [22] Catalan, P., Kellogg, E.A. and Olmstead, R.G. Phylogeny of Poaceae subfamily Pooideae based on chloroplast ndhF gene sequences. Mol. Phylogenet. Evol. 8 (1997) 150–166. http://dx.doi.org/10.1006/mpev.1997.0416CrossrefGoogle Scholar

  • [23] Draper, J., Mur, L.A., Jenkins, G., Ghosh-Biswas, G.C., Bablak, P., Hasterok, R. and Routledge, A.P. Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol. 127 (2001) 1539–1555. http://dx.doi.org/10.1104/pp.010196CrossrefGoogle Scholar

  • [24] Garvin, D.F., Gu, Y.Q., Hasterok, R., Hazen, S.P., Jenkins, G., Mockler, T.C., Mur, L.A. and Vogel, J.P. Development of genetic and genomic research resources for Brachypodium distachyon, a new model system for grass crop research. Crop Sci. — The Plant Genome 48 (2008) 69–84. Google Scholar

  • [25] International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463 (2010) 763–768. http://dx.doi.org/10.1038/nature08747CrossrefGoogle Scholar

  • [26] Robertson, I.H. Chromosome numbers in Brachypodium Beauv. (Gramineae). Genetica 56 (1981) 55–60. http://dx.doi.org/10.1007/BF00126930CrossrefGoogle Scholar

  • [27] Hasterok, R., Dulawa, J., Jenkins, G., Leggett, M. and Langdon, T. Multisubstrate chromosome preparations for high throughput comparative FISH. BMC Biotechnol. 6 (2006) 20. http://dx.doi.org/10.1186/1472-6750-6-20CrossrefGoogle Scholar

  • [28] Schweizer, D. Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58 (1976) 307–324. http://dx.doi.org/10.1007/BF00292840CrossrefGoogle Scholar

  • [29] Hizume, M., Sato, S. and Tanaka, A. A highly reproducible method of nucleolus organizing regions staining in plants. Stain Technol. 55 (1980) 87–90. Google Scholar

  • [30] Gerlach, W.L. and Dyer, T.A. Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res. 8 (1980) 4851–4865. http://dx.doi.org/10.1093/nar/8.21.4851CrossrefGoogle Scholar

  • [31] Unfried, I. and Gruendler, P. Nucleotide sequence of the 5.8S and 25S rRNA genes and of the internal transcribed spacers from Arabidopsis thaliana. Nucleic Acids Res. 18 (1990) 4011. http://dx.doi.org/10.1093/nar/18.13.4011CrossrefGoogle Scholar

  • [32] Hasterok, R., Langdon, T., Taylor, S. and Jenkins, G. Combinatorial labelling of DNA probes enables multicolour fluorescence in situ hybridisation in plants. Folia Histochem. Cytobiol. 40 (2002) 319–323. Google Scholar

  • [33] Jenkins, G. and Hasterok, R. BAC ‘landing’ on chromosomes of Brachypodium distachyon for comparative genome alignment. Nat. Protoc. 2 (2007) 88–98. http://dx.doi.org/10.1038/nprot.2006.490CrossrefGoogle Scholar

  • [34] Wolny, E., Lesniewska, K., Hasterok, R. and Langdon, T. Compact genomes and complex evolution in the genus Brachypodium. Chromosoma 120 (2010) 199–212. http://dx.doi.org/10.1007/s00412-010-0303-8CrossrefGoogle Scholar

  • [35] Chung, M.C., Lee, Y.I., Cheng, Y.Y., Chou, Y.J. and Lu, C.F. Chromosomal polymorphism of ribosomal genes in the genus Oryza. Theor. Appl. Genet. 116 (2008) 745–753. http://dx.doi.org/10.1007/s00122-007-0705-zCrossrefGoogle Scholar

  • [36] Dydak, M., Kolano, B., Nowak, T., Siwinska, D. and Maluszynska, J. Cytogenetic studies of three European species of Centaurea L. (Asteraceae). Hereditas 146 (2009) 152–161. http://dx.doi.org/10.1111/j.1601-5223.2009.02113.xCrossrefGoogle Scholar

  • [37] Pedrosa, A., Vallejos, C., Bachmair, A. and Schweizer, D. Integration of common bean (Phaseolus vulgaris L.) linkage and chromosomal maps. Theor. Appl. Genet. 106 (2003) 205–212. Google Scholar

  • [38] Lan, T. and Albert, V.A. Dynamic distribution patterns of ribosomal DNA and chromosomal evolution in Paphiopedilum, a lady’s slipper orchid. BMC Plant Biol. 11 (2011) 126. http://dx.doi.org/10.1186/1471-2229-11-126CrossrefGoogle Scholar

  • [39] Singh, R.J., Kim, H.H. and Hymowitz, T. Distribution of rDNA loci in the genus Glycine Willd. Theor. Appl. Genet. 103 (2001) 212–218. http://dx.doi.org/10.1007/s001220100591CrossrefGoogle Scholar

  • [40] Benabdelmouna, A., Abirached-Darmency, M. and Darmency, H. Phylogenetic and genomic relationships in Setaria italica and its close relatives based on the molecular diversity and chromosomal organization of 5S and 18S-5.8S-25S rDNA genes. Theor. Appl. Genet. 103 (2001) 668–677. http://dx.doi.org/10.1007/s001220100596CrossrefGoogle Scholar

  • [41] Shishido, R., Sano, Y. and Fukui, K. Ribosomal DNAs: an exception to the conservation of gene order in rice genomes. Mol. Gen. Genet. 263 (2000) 586–591. http://dx.doi.org/10.1007/s004380051205CrossrefGoogle Scholar

  • [42] Lim, K.Y., Kovarik, A., Matyasek, R., Bezdek, M., Lichtenstein, C.P. and Leitch, A.R. Gene conversion of ribosomal DNA in Nicotiana tabacum is associated with undermethylated, decondensed and probably active gene units. Chromosoma 109 (2000) 161–172. http://dx.doi.org/10.1007/s004120000074CrossrefGoogle Scholar

  • [43] Raskina, O., Belyayev, A. and Nevo, E. Quantum speciation in Aegilops: molecular cytogenetic evidence from rDNA cluster variability in natural populations. Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 14818–14823. http://dx.doi.org/10.1073/pnas.0405817101CrossrefGoogle Scholar

  • [44] Leitch, I.J. and Heslop-Harrison, J.S. Physical mapping of the 18S-5.8S-26S rRNA genes in barley by in situ hybridization. Genome 35 (1992) 1013–1018. http://dx.doi.org/10.1139/g92-155CrossrefGoogle Scholar

  • [45] Ansari, H.A., Ellison, N.W., Reader, S.M., Badaeva, E.D., Friebe, B., Miller, T.E. and Williams, W.M. Molecular cytogenetic organization of 5S and 18S-26S rDNA loci in white clover (Trifolium repens L.) and related species. Ann. Bot. 83 (1999) 199–206. http://dx.doi.org/10.1006/anbo.1998.0806CrossrefGoogle Scholar

  • [46] Hajdera, I., Siwinska, D., Hasterok, R. and Maluszynska, J. Molecular cytogenetic analysis of genome structure in Lupinus angustifolius and Lupinus cosentinii. Theor. Appl. Genet. 107 (2003) 988–996. http://dx.doi.org/10.1007/s00122-003-1303-3CrossrefGoogle Scholar

  • [47] Liu, B. and Davis, T.M. Conservation and loss of ribosomal RNA gene sites in diploid and polyploid Fragaria (Rosaceae). BMC Plant Biol. 11 (2011) 157. http://dx.doi.org/10.1186/1471-2229-11-157CrossrefGoogle Scholar

  • [48] Weiss-Schneeweiss, H., Stuessy, T., Siljak-Yakovlev, S., Baeza, C.M. and Parker, J. Karyotype evolution in South American species of Hypochaeris (Asteraceae, Letuceae). Plant Syst. Evol. 241 (2003) 171–184. http://dx.doi.org/10.1007/s00606-003-0026-xCrossrefGoogle Scholar

  • [49] Moscone, E.A., Klein, F., Lambrou, M., Fuchs, J. and Schweizer, D. Quantitative karyotyping and dual-color FISH mapping of 5S and 18S-25S rDNA probes in the cultivated Phaseolus species (Leguminosae). Genome 42 (1999) 1224–1233. CrossrefGoogle Scholar

  • [50] Wolny, E. [Cytogenetyczna analiza porównawcza wybranych gatunków Brachypodium]. PhD thesis, University of Silesia, Katowice, Poland. (2008). Google Scholar

  • [51] Hasterok, R. and Maluszynska, J. Cytogenetic analysis of diploid Brassica species. Acta Biol. Cracov. Ser. Bot. 42 (2000) 145–153. Google Scholar

  • [52] Idziak, D. and Hasterok, R. Cytogenetic evidence of nucleolar dominance in allotetraploid species of Brachypodium. Genome 51 (2008) 387–391. http://dx.doi.org/10.1139/G08-017CrossrefGoogle Scholar

  • [53] Cuellar, T., Belhassen, E., Fernandez-Calvin, B., Orellana, J. and Bella, J.L. Chromosomal differentiation in Helianthus annuus var. macrocarpus: heterochromatin characterization and rDNA location. Heredity 76 (1996) 586–591. http://dx.doi.org/10.1038/hdy.1996.84CrossrefGoogle Scholar

  • [54] Hasterok, R. and Maluszynska, J. Nucleolar dominance does not occur in root tip cells of allotetraploid Brassica species. Genome 43 (2000) 574–579. CrossrefGoogle Scholar

  • [55] Seo, B.B., Lee, S.H. and Mukai, Y. Physical mapping of 5S and 18S-26S ribosomal RNA gene families in Allium victorialis var. platyphyllum. J. Plant Biol. 40 (1997) 132–137. http://dx.doi.org/10.1007/BF03030246CrossrefGoogle Scholar

About the article

Published Online: 2012-09-23

Published in Print: 2012-12-01


Citation Information: Cellular and Molecular Biology Letters, Volume 17, Issue 4, Pages 526–541, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-012-0025-4.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Yanyan Zhao, Feng Yu, Ruijuan Liu, and Quanwen Dou
Molecular Cytogenetics, 2017, Volume 10, Number 1
[2]
Truong Xuan Nguyen, Sung-Il Lee, Rameshwar Rai, Nam-Soo Kim, Jong Hwa Kim, and T. Schwarzacher
Genome, 2016, Volume 59, Number 8, Page 551
[3]
Elzbieta Wolny, Wojciech Fidyk, Robert Hasterok, and G. Jenkins
Genome, 2013, Volume 56, Number 4, Page 239

Comments (0)

Please log in or register to comment.
Log in