Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 17, Issue 4


Puma, a critical mediator of cell death — one decade on from its discovery

Paweł Hikisz / Zofia Kiliańska
Published Online: 2012-09-23 | DOI: https://doi.org/10.2478/s11658-012-0032-5


PUMA (p53 upregulated modulator of apoptosis) is a pro-apoptotic member of the BH3-only subgroup of the Bcl-2 family. It is a key mediator of p53-dependent and p53-independent apoptosis and was identified 10 years ago. The PUMA gene is mapped to the long arm of chromosome 19, a region that is frequently deleted in a large number of human cancers. PUMA mediates apoptosis thanks to its ability to directly bind known anti-apoptotic members of the Bcl-2 family. It mainly localizes to the mitochondria. The binding of PUMA to the inhibitory members of the Bcl-2 family (Bcl-2-like proteins) via its BH3 domain seems to be a critical regulatory step in the induction of apoptosis. It results in the displacement of the proteins Bax and/or Bak. This is followed by their activation and the formation of pore-like structures on the mitochondrial membrane, which permeabilizes the outer mitochondrial membrane, leading to mitochondrial dysfunction and caspase activation. PUMA is involved in a large number of physiological and pathological processes, including the immune response, cancer, neurodegenerative diseases and bacterial and viral infections.

Keywords: Apoptosis; BH3-only proteins; Carcinogenesis; Inhibitory members of the Bcl-2 family; Intrinsic apoptosis pathway; p53; Pro-apoptotic members of Bcl-2 family; PUMA; Post-translational regulation; Transcription factors

  • [1] Green, D.R. and Reed, J.C. Mitochondria and apoptosis. Science 281 (1998) 1309–1312. http://dx.doi.org/10.1126/science.281.5381.1309CrossrefGoogle Scholar

  • [2] Zhivotovsky, B. and Orrenius, S. Cell cycle and cell death in disease: past, present and future. J. Intern. Med. 268 (2010) 395–409. http://dx.doi.org/10.1111/j.1365-2796.2010.02282.xCrossrefGoogle Scholar

  • [3] Caroppi, P., Sinibaldi, F., Fiorucci, L. and Santucci, R. Apoptosis and human diseases: mitochondrion damage and lethal role of released cytochrome c as proapoptotic protein. Curr. Med. Chem. 16 (2009) 4058–4065. http://dx.doi.org/10.2174/092986709789378206CrossrefGoogle Scholar

  • [4] Plati, J. and Khosravi-Far, R. Apoptotic cell signaling in cancer progression and therapy. Integr. Biol. 3 (2011) 279–296. http://dx.doi.org/10.1039/c0ib00144aCrossrefGoogle Scholar

  • [5] Evan, G. and Vousden, K.M. Proliferation, cell cycle and apoptosis in cancer. Nature 111 (2001) 342–348. http://dx.doi.org/10.1038/35077213CrossrefGoogle Scholar

  • [6] Green, D.R. Apoptotic pathway: paper wraps stone blunts scissors. Cell 102 (2000) 1–4. http://dx.doi.org/10.1016/S0092-8674(00)00003-9CrossrefGoogle Scholar

  • [7] Hengartner, M.O. The biochemistry of apoptosis. Nature 407 (2000) 770–776. http://dx.doi.org/10.1038/35037710CrossrefGoogle Scholar

  • [8] Green, D.R. and Evan, G.J. A matter of life and death. Cancer Cell 1 (2002) 19–30. http://dx.doi.org/10.1016/S1535-6108(02)00024-7CrossrefGoogle Scholar

  • [9] Mohamed, N., Gutierrez, A., Nunez, M., Cocca, C., Marit, G., Cricco, G., Medina, V., Rivera, E. and Bergoc, R. Mitochondrial apoptotic pathways. Biocell 29 (2005) 149–161. Google Scholar

  • [10] van Gurp, M., Festjens, N., van Loo, G., Saelens, X. and Vandenabeele, P. Mitochondrial intermembrane proteins in cell death. Biochem. Biophys. Res. Commun. 304 (2003) 487–497. http://dx.doi.org/10.1016/S0006-291X(03)00621-1CrossrefGoogle Scholar

  • [11] Cain, K., Bratton, S.B., Langlais, C., Walker, G., Brown, D.G., Sun, X.M. and Cohen, G.M. Apaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1.4 MDa apoptosome complex. J. Biol. Chem. 275 (2000) 6067–6070. http://dx.doi.org/10.1074/jbc.275.9.6067Google Scholar

  • [12] Hill, M.M., Adrian, C. and Martin, S.J. Portrait of a killer: the mitochondrial apoptosome emerges from the shadows. Mol. Interv. 3 (2003) 19–26. http://dx.doi.org/10.1124/mi.3.1.19CrossrefGoogle Scholar

  • [13] Riedl, S.J. and Salvesen, G.S. The apoptosome: signaling platform of cell death. Nat. Rev. Mol. Cell. Biol. 8 (2007) 405–413. http://dx.doi.org/10.1038/nrm2153CrossrefGoogle Scholar

  • [14] Borner, C. The Bcl-2 protein family: sensors and checkpoints for life-ordeath decisions. Mol. Immunol. 39 (2003) 615–647. http://dx.doi.org/10.1016/S0161-5890(02)00252-3CrossrefGoogle Scholar

  • [15] Adams, J.M. and Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26 (2007) 1324–1337. http://dx.doi.org/10.1038/sj.onc.1210220CrossrefGoogle Scholar

  • [16] Lanave, C., Santamaria, M. and Saccone, C. Comparative genomics: the evolutionary history of the Bcl-2 family. Gene 333 (2004) 71–79. http://dx.doi.org/10.1016/j.gene.2004.02.017CrossrefGoogle Scholar

  • [17] Willis, S.N. and Adams, J.M. Life in the balance: how BH3-only proteins induce apoptosis. Curr. Opin. Cell Biol. 17 (2005) 617–625. http://dx.doi.org/10.1016/j.ceb.2005.10.001CrossrefGoogle Scholar

  • [18] Lomonosova, E. and Chinnadurai, G. BH3-only proteins in apoptosis and beyond: an overview. Oncogene 27 (2008) 2–19. http://dx.doi.org/10.1038/onc.2009.39CrossrefGoogle Scholar

  • [19] Letai, A., Bassik, M.C., Walensky, L.D., Sorcinelli, M.D., Weiler, S. and Korsmeyer, S.J. Distinct BH3 domains either sensitize or acrivate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2 (2002) 183–192. http://dx.doi.org/10.1016/S1535-6108(02)00127-7CrossrefGoogle Scholar

  • [20] Chipuk, J.E., Moldoveanu, T., Llambi, F., Parsons, M.J. and Green, D.R. The BCL-2 family reunion. Mol. Cell 37 (2010) 299–310. http://dx.doi.org/10.1016/j.molcel.2010.01.025CrossrefGoogle Scholar

  • [21] Elkholi, R., Floros, K.V. and Chipuk, J.E. The role of BH3-only proteins in tumor cell development, signaling and treatment. Genes Cancer 2 (2011) 523–537. http://dx.doi.org/10.1177/1947601911417177CrossrefGoogle Scholar

  • [22] Fricker, M., O’Prey, J., Tolkovsy, A.M and Ryan, K.M. Phosphorylation of Puma modulates its apoptotic function by regulating protein stability. Cell Death Dis. 1 (2010) DOI: e59; doc: 10.1038/cddis.2010.38. CrossrefGoogle Scholar

  • [23] Jeffers, J.R., Parganas, E., Lee, Y., Yang, C., Wang, J., Brennan, J., MacLean, K.H., Han, J., Chittenden, T., Ihle, J.N., McKinnon, P.J., Cleveland, J.L. and Zambetti, G.P. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4 (2003) 321–328. http://dx.doi.org/10.1016/S1535-6108(03)00244-7CrossrefGoogle Scholar

  • [24] Yu, J. and Zhang, L. PUMA, a potent killer with or without p53. Oncogene 27 (2008) S71–S83. http://dx.doi.org/10.1038/onc.2009.45CrossrefGoogle Scholar

  • [25] Yu, J., Zhang, L., Hwang, P.M., Kinzler, K.W. and Vogelstein, B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell. 7 (2001) 673–682. http://dx.doi.org/10.1016/S1097-2765(01)00213-1CrossrefGoogle Scholar

  • [26] Nakano, K. and Vousden, K.H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell. 7 (2001) 683–694. http://dx.doi.org/10.1016/S1097-2765(01)00214-3CrossrefGoogle Scholar

  • [27] Han, J., Flemington, C., Houghton, A.B., Gu, Z., Zambetti, G.P., Lutz, R.J., Zhu, L. and Chittenden, T. Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc. Natl. Acad. Sci. USA 98 (2001) 11318–11323. http://dx.doi.org/10.1073/pnas.201208798CrossrefGoogle Scholar

  • [28] Yu, J., Wang, Z., Kinzler, K.W., Vogelstein, B. and Zhang, L. PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc. Natl. Acad. Sci. USA 100 (2003) 1931–1936. http://dx.doi.org/10.1073/pnas.2627984100CrossrefGoogle Scholar

  • [29] Yee, K.S. and Vousden, K.H. Contribution of membrane localization to the apoptotic activity of PUMA. Apoptosis 13 (2008) 87–95. http://dx.doi.org/10.1007/s10495-007-0140-2CrossrefGoogle Scholar

  • [30] Day, C.L., Smits, C., Fan, C.F., Lee, E.F., Fairlie, W.D. and Hinds, M.G. Structure of the BH3 domains from the p53-inducible BH3-only proteins Noxa and Puma in complex with Mcl-1. J. Mol. Biol. 380 (2008) 958–971. http://dx.doi.org/10.1016/j.jmb.2008.05.071CrossrefGoogle Scholar

  • [31] Cregan, S.P., Arbour, N.A., Maclaurin, J.G., Callaghan, S.M., Fortin, A., Cheung, E.C., Guberman, D.S., Park, D.S. and Slack, R.S. p53 activation domain 1 is essential for PUMA upregulation and p53-mediated neuronal cell death. J. Neurosci. 24 (2004) 10003–10012. http://dx.doi.org/10.1523/JNEUROSCI.2114-04.2004CrossrefGoogle Scholar

  • [32] Wang, X., Wang, J., Lin, S., Geng, J., Wang, J. and Jiang., B. Sp1 is involved in H2O2-induced PUMA gene expression and apoptosis in colorectal cancer cells. J. Exp. Clin. Cancer Res. 24 (2008) 27–44. Google Scholar

  • [33] Ming, L., Wang, P., Bank, A., Yu, J. and Zhang, L. PUMA dissociated Bax and Bcl-XL to induce apoptosis in colon cancer cells. J. Bioch. Chem. 28 (2006) 16034–16042. http://dx.doi.org/10.1074/jbc.M513587200CrossrefGoogle Scholar

  • [34] Chipuk, J.E, Bouchier-Hayes, L., Kuwana, T., Newmayer, D.D. and Green, D.R. PUMA couples the nucler and cytoplasmic proapoptotic function of p53. Science 309 (2005) 1732–1735. http://dx.doi.org/10.1126/science.1114297CrossrefGoogle Scholar

  • [35] Zhang, C., Junxia, Z., Zhang, A., Wang, Y., Han, L., You, Y., Pu, P. and Kang, C. PUMA is a novel target of miR-221/222 in human epithelial cancers. Int. J. Oncol. 37 (2010) 1621–1626. http://dx.doi.org/10.3892/ijo_00000662CrossrefGoogle Scholar

  • [36] Zhang, C., Zhang, J., Zhang, A., Shi, Z., Han, L., Jia, Z., Yang, W., Wang, G., Jiang, T., You, Y., Pu, P., Cheng, J. and Kang, C. MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol. Cancer 9 (2010) 1–9. Google Scholar

  • [37] Jabbour, A.M., Daunt, C.P., Green, B.D., Vogel, S., Gordon, L., Lee, R.S., Silke, N., Pearson, R.B., Vandenberg, C.J., Kelly, P.N., Nutt, S.L., Strasser, A., Borner, C. and Ekert, P.G. Myeloid progenitor cells lacking p53 exhibit delayed up-regulation of Puma and prolonged survival after cytokine deprivation. Blood 115 (2010) 344–352. http://dx.doi.org/10.1182/blood-2009-07-230730CrossrefGoogle Scholar

  • [38] Ming, L., Sakaida, T., Yue, W., Jha, A., Zhang L. and Yu J. Sp1 and p73 activate PUMA following serum starvation. Carcinogenesis 29 (2008) 1878–1884. http://dx.doi.org/10.1093/carcin/bgn150CrossrefGoogle Scholar

  • [39] Ray, R.M., Bhattacharya, S. and Johnson, L.R. Mdm2 inhibition induces apoptosis in p53 deficient human colon cancer cells by activating p73- and E2F1-mediated expression of PUMA and Siva-1. Apoptosis 16 (2011) 35–44. http://dx.doi.org/10.1007/s10495-010-0538-0CrossrefGoogle Scholar

  • [40] You, H., Pellegrini, M., Tsuchihara, K., Yamamoto, K., Häcker, G., Erlacher, M., Villunger, A. and Mak T.W. FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal. J. Exp. Med. 203 (2006) 1657–1663. http://dx.doi.org/10.1084/jem.20060353CrossrefGoogle Scholar

  • [41] Dudgeon, C., Wang, P., Sun, X., Peng, R., Sun, Q., Yu, J. and Zhang, L. PUMA induction by FoxO3a mediates the anticancer activities of the broadrange kinase inhibitor UCN-01. Mol. Cancer Ther. 9 (2010) 2893–2902. http://dx.doi.org/10.1158/1535-7163.MCT-10-0635Google Scholar

  • [42] Hershko, T. and Ginsberg, D. Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J. Biol. Chem. 279 (2004) 8627–8634. http://dx.doi.org/10.1074/jbc.M312866200CrossrefGoogle Scholar

  • [43] Wu, B., Qiu, W., Wang, P., Yu, H., Cheng, T., Zambetti, G.P., Zhang, L. and Yu J. p53 independent induction of PUMA mediates intestinal apoptosis in response to ischaemia-reperfusion. Gut 56 (2007) 645–654. http://dx.doi.org/10.1136/gut.2006.101683CrossrefGoogle Scholar

  • [44] Li, J., Lee, B. and Lee A.S. Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J. Biol. Chem. 281 (2006) 7260–7270. http://dx.doi.org/10.1074/jbc.M509868200CrossrefGoogle Scholar

  • [45] Nickson, P., Toth, A. and Erhardt, P. PUMA is critical for neonatal cardiomyocyte apoptosis induced by endoplasmic reticulum stress. Cardiovasc. Res. 73 (2007) 48–56. http://dx.doi.org/10.1016/j.cardiores.2006.10.001CrossrefGoogle Scholar

  • [46] Webster, K.A. Puma joins the battery of BH3-only proteins that promote death and infarction during myocardial ischemia. Am. J. of Physiol. Heart Circ. Physiol. 291 (2006) 20–22. http://dx.doi.org/10.1152/ajpheart.00111.2006CrossrefGoogle Scholar

  • [47] Toth, A., Jeffers, J.R., Nickson, P., Min, J-Y., Morgan, J.P., Zambetti, G.P. and Erhardt, P. Targeted deletion of Puma attenuates cardiomyocyte death and improves cardiac function during ischemia-reperfusion. Am. J. Physiol. Heart Circ. Physiol. 291 (2006) 52–60. http://dx.doi.org/10.1152/ajpheart.01046.2005CrossrefGoogle Scholar

  • [48] Cazanave, S.C., Elmi, N.A., Akazawa, Y., Bronk, S.F., Mott, J.L. and Gores, G.J. CHOP and AP-1 cooperatively mediate PUMA expression during lipoapoptosis. Am. J. Physiol. Gastrointest. Liver Physiol. 299 (2010) 236–243. http://dx.doi.org/10.1152/ajpgi.00091.2010CrossrefGoogle Scholar

  • [49] Fernandez, P.C., Frank, S.R., Wang, L., Schroeder, M., Liu, S, Greene, J., Cocito, A. and Amati B. Genomic targets of the human c-Myc protein. Genes Dev. 17 (2003) 1115–1129. http://dx.doi.org/10.1101/gad.1067003CrossrefGoogle Scholar

  • [50] Garrison, S.P., Jeffers, J.R., Yang, C., Nilsson, J.A., Hall, M.A., Rehg, J.E., Yue, W., Yu, J., Zhang, L., Onciu, M., Sample, J.T., Cleveland, J.L. and Zambetti, G.P. Selection against PUMA gene expression in Myc-driven Bcell lymphomagenesis. Mol. Cell. Biol. 28 (2008) 5391–5402. http://dx.doi.org/10.1128/MCB.00907-07CrossrefGoogle Scholar

  • [51] Happo, L., Strasser, A. and Scott, C.L. BH3-only Proteins. in: Cell Death (Melino, G. and Vaux, D., Ed.), 1th edition, John Wiley&Sons — Ltd, 2010, 75–90. Google Scholar

  • [52] Erlacher, M., Michalak, E.M., Strasser, A. and Villunger, A. The BH3-only proteins Puma and Noxa: Two Brothers in Arms. in: Apoptosis and Cancer Therapy: From Cutting-edge Science to Novel Therapeutic Concepts, (Debatin, K.M. and Fulda, S., Ed.), Wiley-VCH Verlag GmbH, Weinheim, Germany. DOI: 10.1002/9783527619665.ch13, 2008, 379–402. CrossrefGoogle Scholar

  • [53] Lozano, G. and Zambetti, G.P. What have animals models taught us about the p53 pathway? J. Pathol. 205 (2005) 206–220. http://dx.doi.org/10.1002/path.1704CrossrefGoogle Scholar

  • [54] Zapaśnik, M. and Cymerys, J.M. p53 protein — guardian of the genome in the viral infection. Post. Biol. Kom. 36 (2009) 565–582. Google Scholar

  • [55] Michalak, E.M., Villunger, A., Adams, J.M. and Strasser, A. In several cell types tumour suppressor p53 induces apoptosis largely via Puma but Noxa can contribute. Cell Death Differ. 15 (2008) 1019–1029. http://dx.doi.org/10.1038/cdd.2008.16CrossrefGoogle Scholar

  • [56] Qiu, W., Carson-Walter, E.B., Liu, H., Epperly, M., Greenberger, J.S., Zambetti, G.P., Zhang, L., Yu, J. PUMA regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome. Cell Stem Cell 2 (2008) 576–583. http://dx.doi.org/10.1016/j.stem.2008.03.009CrossrefGoogle Scholar

  • [57] Wang, P., Yu, J. and Zhang, L. The nuclear function of p53 is required for PUMA-mediated apoptosis induced by DNA damage. Proc. Natl. Acad. Sci. USA 104 (2007) 4054–4059. http://dx.doi.org/10.1073/pnas.0700020104CrossrefGoogle Scholar

  • [58] Charvet, C., Wissler, M., Brauns-Schubert, P., Wang, S-J., Tang, Y., Sigloch, F.C., Mellert, H., Brandenburg, M., Lindner, S.E., Breit, B., Green, D.R., McMahon, S.B., Borner, C., Gu, W. and Maurer U. Phosphporylation of Tip60 by GSK-3 determines the induction of PUMA and apoptosis by p53. Mol. Cell. 42 (2011) 584–596. http://dx.doi.org/10.1016/j.molcel.2011.03.033CrossrefGoogle Scholar

  • [59] Tang, Y., Luo, J., Zhang, W. and Gu, W. Tip60-dependent acetylation of p53modulates the decision between cell-cycle arrest and apoptosis. Mol. Cell 24 (2006) 827–839. http://dx.doi.org/10.1016/j.molcel.2006.11.021CrossrefGoogle Scholar

  • [60] Sykes, S.M., Mellert, H.S., Holbert, M.A., Li, K., Marmorstein, R., Lane, W.S. and McMahon, S.B. Acetylation of the p53 DNA binding domain regulates apoptosis induction. Mol. Cell 24 (2006) 841–851. http://dx.doi.org/10.1016/j.molcel.2006.11.026CrossrefGoogle Scholar

  • [61] Ibrahim, S.H., Akazawa, Y., Cazanave, S.C., Bronk, S.F., Elmi, N.A., Werneburg, N.W., Billadeau, D.D. and Gores, G.J. Glycogen synthase kinase-3 (GSK-3) inhibition attenuates hepatocyte lipoapoptosis. J. Hepatol. 54 (2011) 765–772. http://dx.doi.org/10.1016/j.jhep.2010.09.039CrossrefGoogle Scholar

  • [62] Hetz, C. and Glimcher, L. The daily job of night killers: alternative roles of the BCL-2 family in organelle physiology. Trends Cell Biol. 18 (2007) 38–44. http://dx.doi.org/10.1016/j.tcb.2007.10.003CrossrefGoogle Scholar

  • [63] Luo, X., He, Q., Huang, Y. and Sheikh, M.S. Transcriptional upregulation of PUMA modulates endoplasmic reticulum calcium pool depletioninduced apoptosis via Bax activation. Cell Death Differ. 12 (2005) 1310–1318. http://dx.doi.org/10.1038/sj.cdd.4401659CrossrefGoogle Scholar

  • [64] Jiang, C.C., Lucas, K., Avery-Kiejda, K.A., Wade, M., deBock, C.E., Thorne, R.F., Allen, J., Hersey, P. and Zhang, X.D. Up-regulation of Mcl-1 is critical for survival of human melanoma cells upon endoplasmic reticulum stress. Cancer Res. 68 (2008) 6708–6717. http://dx.doi.org/10.1158/0008-5472.CAN-08-0349CrossrefGoogle Scholar

  • [65] Wei, J., O’Brien, D., Vilgelm, A., Piazuelo, M.B., Correa, P., Washinghton, M.K., El-Rifai, W., Peek, R.M. and Zaika A. Interaction of Helicobacter pylori with gastric epithelial cells is mediated by the p53 protein family. Gastroenterology 134 (2008) 1412–1423. http://dx.doi.org/10.1053/j.gastro.2008.01.072CrossrefGoogle Scholar

  • [66] Perfettini, J-L., Roumier, T., Casted, M., Larochette, N., Boya, P., Raynal, B., Lazar, V., Ciccosanti, F., Nardacci, R., Penninger, J., Piacentini, M. and Kroemer, G. NF-κB and p53 qre the dominant apoptosis-inducing transcription factors elicited by the HIV-1 envelope. J. Exp. Med. 199 (2004) 629–640. http://dx.doi.org/10.1084/jem.20031216Google Scholar

  • [67] Rodrigues, R., Paranhos-Baccala, G., Vernet, G. and Peyrefitte, C.N. Crimean-congo hemorrhagic fever virus-infected hepatocytes induced ERstress and apoptosis crosstalk. PLoS 7 (2012) 1–11. Google Scholar

  • [68] Bauer, A., Villunger, A., Labi, V., Fischer, S.F., Strasser, A., Wagner, H., Schmid, R.M. and Häcker, G. The NF-κB regulator Bcl-3 and the BH3-only proteins Bim and Puma control the death of activated T cells. Proc. Natl. Acad. Sci. USA 103 (2006) 10979–10984. http://dx.doi.org/10.1073/pnas.0603625103CrossrefGoogle Scholar

  • [69] Fisher, S.F., Belz, G.T. and Strasser, A. BH3-only protein Puma contributes to death of antigen-specific T cells during shutdown of an immune response to acute viral infection. Proc. Natl. Acad. Sci. USA 105 (2008) 3035–3040. http://dx.doi.org/10.1073/pnas.0706913105CrossrefGoogle Scholar

  • [70] Häcker, G., Bauer, A. and Villunger, A. Apoptosis in activated T cells: what are the triggers, and what the signal transducers? Cell Cycle 5 (2006) 2421–2424. http://dx.doi.org/10.4161/cc.5.21.3397CrossrefGoogle Scholar

  • [71] Hildeman, D., Jorgensen, T., Kappler, J. and Marrack P. Apoptosis and the homeostatic control of immune responses. Curr. Opin. Immunol. 19 (2007) 516–521. http://dx.doi.org/10.1016/j.coi.2007.05.005CrossrefGoogle Scholar

  • [72] Steckley, D., Karajgikar, M., Dale, L.B., Fuerth, B., Swan, P., Drummond-Main, C., Poulter, M.O., Ferguson, S.S., Strasser, A. and Cregan, S.P. Puma is a dominant regulator of oxidative stress induced Bax activation and neuronal apoptosis. J. Neurosci. 27 (2007) 12989–12999. http://dx.doi.org/10.1523/JNEUROSCI.3400-07.2007CrossrefGoogle Scholar

  • [73] Sandow, J.J. Regulation of the BH3-only protein PUMA by growth factor signalling. Ph.D. Thesis of the University of Adelaide, School of Medicine, 2011, 1–144. Google Scholar

  • [74] Dewson, G. and Kluck, R.M. Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. J. Cell Sci. 122 (2009) 2801–2808. http://dx.doi.org/10.1242/jcs.038166CrossrefGoogle Scholar

  • [75] Häcker, G. and Weber A. BH3-only proteins trigger cytochrome c release, but how? Arch. Biochem. Biophys. 462 (2007) 150–155. http://dx.doi.org/10.1016/j.abb.2006.12.022CrossrefGoogle Scholar

  • [76] Kim, H., Tu, H.C., Ren, D., Takeuchi, O., Jeffers, J.R., Zambetti, G.P., Hsieh, J.J. and Cheng, E.H. Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol. Cell 36 (2009) 487–499. http://dx.doi.org/10.1016/j.molcel.2009.09.030CrossrefGoogle Scholar

  • [77] Gallenne, T., Gautier, F., Oliver, L., Hervouet, E., Noël, B., Hickman, J.A., Geneste, O., Cartron, P.F., Vallette, F.M., Manon, S. and Juin, P. Bax activation by the BH3-only protein Puma promotes cell dependence on antiapoptotic Bcl-2 family members. J. Cell Biol. 185 (2009) 279–290. http://dx.doi.org/10.1083/jcb.200809153CrossrefGoogle Scholar

  • [78] Kuwana, T., Bouchier-Hayes, L., Chipuk, J.E., Bonzon, C., Sullivan, B.A., Green, D.R., and Newmeyer, D.D. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol. Cell 17 (2005) 525–535. http://dx.doi.org/10.1016/j.molcel.2005.02.003CrossrefGoogle Scholar

  • [79] Westphalm D., Dewson, G., Czabotar, P.E. and Kluck, R.M. Molecular biology of Bax and Bak activation and action. Biochim. Biophys. Acta 1813 (2011) 521–531. http://dx.doi.org/10.1016/j.bbamcr.2010.12.019CrossrefGoogle Scholar

  • [80] Lindsay, J., Esposti, M.D. and Gilmore, A.P. Bcl-2 proteins and mitochondria-specificity in membrane targeting for death. Biochim. Biophys. Acta 1813 (2011) 532–539. http://dx.doi.org/10.1016/j.bbamcr.2010.10.017CrossrefGoogle Scholar

  • [81] Ghiotto, F., Fais, F. and Bruno, S. BH3-Only Proteins: The death puppeteer’s wires. Cytometry A 77 (2010) 11–21. Google Scholar

  • [82] Giam, M., Huang, D.S.C. and Bouillet, P. BH3-only proteins and their roles in programmed cell death. Oncogene 27 (2009) 128–136. http://dx.doi.org/10.1038/onc.2009.50CrossrefGoogle Scholar

  • [83] Shamas-Din, A., Brahmbhatt, H., Leber, B. and Andrews, D.W. BH3-only proteins: orchestrators of apoptosis. Biochim. Biophys. Acta 1813 (2010) 508–520. http://dx.doi.org/10.1016/j.bbamcr.2010.11.024CrossrefGoogle Scholar

  • [84] Leber, B., Lin, J. and Andrews, D. W. Embedded Together: the life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis 12 (2007) 897–911. http://dx.doi.org/10.1007/s10495-007-0746-4CrossrefGoogle Scholar

  • [85] Chipuk, J.E. and Green, D.R. How do BCL-2 proteins induce mitochondria outer membrane permeabilization? Trends Cell Biol. 18 (2008) 157–164. http://dx.doi.org/10.1016/j.tcb.2008.01.007CrossrefGoogle Scholar

  • [86] Shore, G.C. Apoptosis: it’s BAK to VDAC. EMBO Rep. 10 (2009) 1311–1313. http://dx.doi.org/10.1038/embor.2009.249CrossrefGoogle Scholar

  • [87] Gavathiotis, E., Suzuki, M., Davis, M.L., Pitter, K., Bird, G.H., Katz, S.G., Tu, H.C., Kim, H., Cheng, E.H., Tjandra, N. and Walensky, L.D. BAX activation is initiated at a novel interaction site. Nature 455 (2008) 1076–81. http://dx.doi.org/10.1038/nature07396CrossrefGoogle Scholar

  • [88] Willis, S.N., Fletcher, J.I., Kaumann, T., van Delft, M.F., Chen, L., Czabotar, P.E., Lerino, H., Lee, E.F., Fairlie, W.D., Bouillet, P., Strasser, A., Kluck, R.M., Adams, J.M. and Huang, D.C.S. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315 (2007) 856–859. http://dx.doi.org/10.1126/science.1133289CrossrefGoogle Scholar

  • [89] Jabbour, A.M., Heraud, J.E., Daunt, C.P., Kaufmann, T., Sandow, J., O’Reilly, L.A., Callus, B.A., Lopez, A., Strasser, A., Vaux, D.L. and Ekert, P.G. Puma indirectly activates Bax to cause apoptosis in the absence of Bid or Bim. Cell Death Differ. 16 (2009) 555–563. http://dx.doi.org/10.1038/cdd.2008.179CrossrefGoogle Scholar

  • [90] Chipuk, J.E., Fisher, J.C., Dillon, C.P., Kriwacki, R.W., Kuwana, T. and Green, D.R. Mechanism of apoptosis induction by inhibition of the antiapoptotic BCL-2 proteins. Proc. Natl. Acad. Sci. USA. 105 (2008) 20327–20332. http://dx.doi.org/10.1073/pnas.0808036105CrossrefGoogle Scholar

  • [91] Chen, L., Willis, S.N., Wei, A., Smith, B.J., Fletcher, J.I., Hinds, M.G., Colman, P.M., Day, C.L., Adams, J.M. and Huang, D.C. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell 17 (2005) 393–403. http://dx.doi.org/10.1016/j.molcel.2004.12.030CrossrefGoogle Scholar

  • [92] Vaseva, A.V. and Moll, U.M. The mitochondrial p53 pathway. Biochim. Biophys. Acta 1787 (2009) 414–420. http://dx.doi.org/10.1016/j.bbabio.2008.10.005CrossrefGoogle Scholar

  • [93] Vousden, K.H. Apoptosis - p53 and PUMA: a deadly duo. Science 309 (2005) 1685–1686. http://dx.doi.org/10.1126/science.1118232CrossrefGoogle Scholar

  • [94] Chipuk, J.E., Bouchier-Haues, L., Kuwana, T., Newmeyer, D.D. and Green D.R. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309 (2005) 1732–1735. http://dx.doi.org/10.1126/science.1114297CrossrefGoogle Scholar

  • [95] Wolff, S., Erster, S., Palacios, G. and Moll, U.M. p53’s mitochondrial translocation and MOMP action is independent of Puma and Bax and severaly disrupts mitochondrial membrane integrity. Cell Res. 18 (2008) 733–744. http://dx.doi.org/10.1038/cr.2008.62CrossrefGoogle Scholar

  • [96] Yoo, N.J., Lee, J.W., Jeong, E.G. and Lee, S.H. Immunohistochemical analysis of pro-apoptotic PUMA protein and mutational analysis of PUMA gene in gastric carcinomas. Dig. Liver Dis. 39 (2007) 222–227. http://dx.doi.org/10.1016/j.dld.2006.11.006CrossrefGoogle Scholar

  • [97] Kuroda J. and Taniwaki, M. Involvement of BH3-only proteins in hematologic malignancies. Crit. Rev. Oncol. Hematol. 71 (2009) 89–101. http://dx.doi.org/10.1016/j.critrevonc.2008.10.004CrossrefGoogle Scholar

  • [98] Pietsch, E.C., Sykes, S.M., McMahon, S.B. and Murphy, M.E. The p53 family and programmed cell death. Oncogene 27 (2008) 6507–6521. http://dx.doi.org/10.1038/onc.2008.315CrossrefGoogle Scholar

  • [99] Hoque, M.O., Begum, S., Sommer, M., Lee, T., Trink, B., Ratovitski, E. and Sidransky, D. PUMA in head and neck cancer. Cancer Lett. 199 (2003) 75–81. http://dx.doi.org/10.1016/S0304-3835(03)00344-6CrossrefGoogle Scholar

  • [100] Ahn, C.H., Jeong, E.G., Kim, S.S., Lee, J.W., Lee, S.H., Kim, S.H., Kim, M.S., Yoo, N.J. and Lee, S.H. Expressional and mutational analysis of proapoptotic Bcl-2 member PUMA in hepatocellular carcinomas. Dig. Dis. Sci. 53 (2008) 1395–1399. http://dx.doi.org/10.1007/s10620-007-9987-xCrossrefGoogle Scholar

  • [101] Kim, M.R, Jeong, E.G., Chae, B., Lee, J.W., Soung, Y.H., Nam, S.W., Lee, J.Y., Yoo, N.J. and Sug H Lee. Pro-apoptotic PUMA and antiapoptotic phospho-BAD are highly expressed in colorectal carcinomas. Dig. Dis. Sci. 52 (2007) 2751–2756. http://dx.doi.org/10.1007/s10620-007-9799-zCrossrefGoogle Scholar

  • [102] Michalak, E.M., Jansen, E.S., Happo, L., Cragg, M.S., Tai, L., Smyth, G.K., Strasser, A., Adams, J.M. and Scott, C.L. Puma and to a lesser extent Noxa are suppressors of Myc-induced lymphomagenesis. Cell Death Differ. 16 (2009). Google Scholar

  • [103] Sharma, A.D., Narain, N., Händel, E-M., Iken, M., Singhal, N., Cathomen, T., Manns, M.P., Schöler, H.R., Ott, M. and Cantz, T. MicroRNA-221 regulates FAS-induced fulminant liver failure. Hepatology 53 (2011) 1651–1661. http://dx.doi.org/10.1002/hep.24243CrossrefGoogle Scholar

  • [104] Shao, L., Sun, Y., Zhang, Z., Feng, W., Gao, Y., Cai, Z., Wang, Z.Z., Look, A.T. and Wu, W.S. Deletion of proapototic Puma selectively protects hematopoietic stem and progenitor cells against high dose radiation. Blood 115 (2010) 4707–4714. http://dx.doi.org/10.1182/blood-2009-10-248872CrossrefGoogle Scholar

  • [105] Yu, H., Shen, H., Yuan, Y., Xu-Feng, R., Hu, X., Garrison, S.P., Zhang, L., Yu, J., Zambetti, G.P. and Cheng, T. Deletion of Puma protects hematopoietic stem cells and confers long term survival in response to high-dose radiation. Blood 115 (2010) 3472–3480. http://dx.doi.org/10.1182/blood-2009-10-248278CrossrefGoogle Scholar

  • [106] Labi, V., Erlacher, M., Krumschnabel, G., Manzl, C., Tzankov, A., Pinon, J., Egle, A. and Villunger, A. Apoptosis of leukocytes triggered by acute DNA damage promotes lymphoma formation. Genes Dev. 25 (2010) 1602–1607. http://dx.doi.org/10.1101/gad.1940210CrossrefGoogle Scholar

  • [107] Michalak, E.M., Vandenberg, C.J., Delbridge, A.R.D., Wu, L., Scott, C.L., Adams, J.M. and Strasser, A. Apoptosis-promoted tumorgenesis: γ-irradiation-induced thymic lymphpomagenesis requires Puma-driven leukocyte death. Genes Dev. 24 (2010) 1608–1613. http://dx.doi.org/10.1101/gad.1940110CrossrefGoogle Scholar

  • [108] Qiu, W., Wang, X., Leibowitz, B., Yang, W., Zhang, L. and Yu, J. PUMAmediated apoptosis drives chemical hepatocarcinogenesis in mice. Hepatology 54 (2011) 1249–1258. http://dx.doi.org/10.1002/hep.24516CrossrefGoogle Scholar

  • [109] Llambi, F. and Green, D.R. Apoptosis and oncogenesis: give and take in the BLC-2 family. Curr. Opin. Genet. Dev. 21 (2011) 12–20. http://dx.doi.org/10.1016/j.gde.2010.12.001CrossrefGoogle Scholar

  • [110] Li, F., Huang, Q., Chen, J., Peng, Y., Roop, D., Bedford, J.S. and Li, C-Y. Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci. Signal. 3 (2010) 10.1126/scisignal.2000634. Google Scholar

  • [111] Baumgartner, F., Villunger, A. Apoptosis: a barrier against cancer no more? Hepatology 54 (2011) 1121–1124. http://dx.doi.org/10.1002/hep.24637CrossrefGoogle Scholar

  • [112] Labi, V. and Villunger, A. PUMA-mediated tumor suppression. Cell cycle 9 (2010) 4269–4275. http://dx.doi.org/10.4161/cc.9.21.13666CrossrefGoogle Scholar

About the article

Published Online: 2012-09-23

Published in Print: 2012-12-01

Citation Information: Cellular and Molecular Biology Letters, Volume 17, Issue 4, Pages 646–669, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-012-0032-5.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Qian Song, Quanlin An, Bing Niu, Xiaoling Lu, Ning Zhang, and Xin Cao
Journal of Oncology, 2019, Volume 2019, Page 1
Olga Lyudovyk, Yufeng Shen, Nicholas P. Tatonetti, Susan J. Hsiao, Mahesh M. Mansukhani, and Chunhua Weng
Journal of Biomedical Informatics, 2019, Volume 98, Page 103286
Xin Shi and Mingfu Fan
Journal of Cellular and Molecular Medicine, 2019, Volume 23, Number 9, Page 6154
Viviana Soto-Mercado, Miguel Mendivil-Perez, Claudia Urueña-Pinzon, Susana Fiorentino, Carlos Velez-Pardo, and Marlene Jimenez-Del-Rio
Anti-Cancer Agents in Medicinal Chemistry, 2019, Volume 18, Number 11, Page 1617
Douglas R. Green
Cancer Cell, 2019, Volume 35, Number 2, Page 163
Jinchul Kim, Lili Yu, Wancheng Chen, Yanxia Xu, Meng Wu, Dilyana Todorova, Qingshuang Tang, Bingbing Feng, Lei Jiang, Jingjin He, Guihua Chen, Xuemei Fu, and Yang Xu
Cancer Cell, 2019, Volume 35, Number 2, Page 191
Sebastián Ramírez-Rivera and Giuliano Bernal
Journal of Gastrointestinal Cancer, 2019, Volume 50, Number 1, Page 175
Tao Yang, Wenjun Zhang, Li Wang, Chunyan Xiao, Bingling Guo, Yi Gong, Xiping Liang, Dehong Huang, Qiying Li, Yingyu Nan, Ying Xiang, and Jianghe Shao
Journal of International Medical Research, 2018, Page 030006051881659
Zhicheng Yao, Shida Yang, Hongyou Zhao, Huike Yang, and Xin Jiang
Cancer Gene Therapy, 2018
Lu O. Sun, Sara B. Mulinyawe, Hannah Y. Collins, Adiljan Ibrahim, Qingyun Li, David J. Simon, Marc Tessier-Lavigne, and Ben A. Barres
Cell, 2018
Jui-Ling Hsu, Wohn-Jenn Leu, Lih-Ching Hsu, Shih-Ping Liu, Nan-Shan Zhong, and Jih-Hwa Guh
Frontiers in Pharmacology, 2018, Volume 9
Jingfei Chen, Juchang Zhong, Yeying Liu, Yuan Huang, Fei Luo, Yingjun Zhou, Xi Pan, Shousong Cao, Lingling Zhang, Yingjie Zhang, and Jiangang Wang
Cancer Medicine, 2018
Maria J. Kowzun, William J Rifkin, Zachary M. Borab, Trevor Ellison, Marc A. Soares, Stelios C. Wilson, Philip Lotfi, Amey Bandekar, Stavroula Sofou, Pierre B. Saadeh, and Daniel J. Ceradini
Wound Repair and Regeneration, 2018
J. Y. J. Wang
Molecular and Cellular Biology, 2014, Volume 34, Number 7, Page 1188
Le Qian, Feng Cui, Yang Yang, Yuan Liu, Suzhen Qi, and Chengju Wang
Science of The Total Environment, 2018, Volume 634, Page 478
Emanuel Wyler, Jennifer Menegatti, Vedran Franke, Christine Kocks, Anastasiya Boltengagen, Thomas Hennig, Kathrin Theil, Andrzej Rutkowski, Carmelo Ferrai, Laura Baer, Lisa Kermas, Caroline Friedel, Nikolaus Rajewsky, Altuna Akalin, Lars Dölken, Friedrich Grässer, and Markus Landthaler
Genome Biology, 2017, Volume 18, Number 1
Xue Zhu, Ke Wang, Yong Yao, Kai Zhang, Fanfan Zhou, and Ling Zhu
Journal of Biochemical and Molecular Toxicology, 2017, Page e22001
Alessia Garufi, Giuseppa Pistritto, Silvia Baldari, Gabriele Toietta, Mara Cirone, and Gabriella D’Orazi
Journal of Experimental & Clinical Cancer Research, 2017, Volume 36, Number 1
Ze-Qun Liu, Ming Shen, Wang-Jun Wu, Bo-Jiang Li, Qian-Nan Weng, Mei Li, and Hong-Lin Liu
Reproductive Sciences, 2015, Volume 22, Number 6, Page 696
Amin Afrazi, Maria F. Branca, Chhinder P. Sodhi, Misty Good, Yukihiro Yamaguchi, Charlotte E. Egan, Peng Lu, Hongpeng Jia, Shahab Shaffiey, Joyce Lin, Congrong Ma, Garrett Vincent, Thomas Prindle, Samantha Weyandt, Matthew D. Neal, John A. Ozolek, John Wiersch, Markus Tschurtschenthaler, Chiyo Shiota, George K. Gittes, Timothy R. Billiar, Kevin Mollen, Arthur Kaser, Richard Blumberg, and David J. Hackam
Journal of Biological Chemistry, 2014, Volume 289, Number 14, Page 9584
Lucía Pronsato, Lorena Milanesi, Andrea Vasconsuelo, and Anabela La Colla
Steroids, 2017, Volume 124, Page 35
Yuhan Sun, Qiang Su, Lang Li, Xiantao Wang, Yuanxi Lu, and Jiabao Liang
BMC Cardiovascular Disorders, 2017, Volume 17, Number 1
Lin Wang, Xiao-Cong Pang, Zi-Ru Yu, Sheng-Qian Yang, Ai-Lin Liu, Jin-Hua Wang, and Guan-Hua Du
Journal of Asian Natural Products Research, 2017, Volume 19, Number 6, Page 630
Yanhong Zhang, Yuan Zhang, Ying Bai, Jie Chao, Gang Hu, Xufeng Chen, and Honghong Yao
Experimental Cell Research, 2017
Charles Malemud
International Journal of Molecular Sciences, 2017, Volume 18, Number 3, Page 484
Hong-mei Chen, Hao Luo, Wen-bi Zeng, Bin Liu, Jia-cheng Huang, Min Liu, Yan-jin Zeng, Qiang Zheng, Ji-qiang Li, Xue-gang Sun, and Ying-chun Zhou
Chinese Journal of Integrative Medicine, 2017
Youhong Wang, Zhen Guo, Yan Shu, Honghao Zhou, Hui Wang, and Wei Zhang
European Journal of Cancer Prevention, 2017, Volume 26, Number 2, Page 144
Emanuela Papaianni, Souhayla El Maadidi, Andrea Schejtman, Simon Neumann, Ulrich Maurer, Francesca Marino-Merlo, Antonio Mastino, Christoph Borner, and Dhyan Chandra
PLOS ONE, 2015, Volume 10, Number 6, Page e0126645
Yeung Ho, Xiting Li, Stephanie Jamison, Heather P. Harding, Peter J. McKinnon, David Ron, and Wensheng Lin
The American Journal of Pathology, 2016, Volume 186, Number 7, Page 1939
Katsutoshi Oda, Yuji Ikeda, Tomoko Kashiyama, Aki Miyasaka, Kanako Inaba, Yuichiro Miyamoto, Osamu Wada-Hiraike, Kei Kawana, Yutaka Osuga, and Tomoyuki Fujii
Personalized Medicine Universe, 2016, Volume 5, Page 3
Yağmur Kiraz, Aysun Adan, Melis Kartal Yandim, and Yusuf Baran
Tumor Biology, 2016, Volume 37, Number 7, Page 8471
Yoon-Jin Lee, Soo-Sung Lim, Byoung Joon Baek, Je-Min An, Hae-Seon Nam, Kee-Min Woo, Moon-Kyun Cho, Sung-Ho Kim, and Sang-Han Lee
Environmental Toxicology and Pharmacology, 2016, Volume 42, Page 76
Zodwa Dlamini, Shonisani Tshidino, and Rodney Hull
International Journal of Molecular Sciences, 2015, Volume 16, Number 11, Page 27171
Baoman Wang, Fei Yuan, Xiangyin Kong, Lan-Dian Hu, and Yu-Dong Cai
Computational and Mathematical Methods in Medicine, 2015, Volume 2015, Page 1
Rajkumar S. Kalra, Caroline T. Cheung, Anupama Chaudhary, Jay Prakash, Sunil C. Kaul, and Renu Wadhwa
Molecular Oncology, 2015, Volume 9, Number 9, Page 1877
Kannan Badri Narayanan, Manaf Ali, Barry J. Barclay, Qiang (Shawn) Cheng, Leandro D’Abronzo, Rita Dornetshuber-Fleiss, Paramita M. Ghosh, Michael J. Gonzalez Guzman, Tae-Jin Lee, Po Sing Leung, Lin Li, Suidjit Luanpitpong, Edward Ratovitski, Yon Rojanasakul, Maria Fiammetta Romano, Simona Romano, Ranjeet K. Sinha, Clement Yedjou, Fahd Al-Mulla, Rabeah Al-Temaimi, Amedeo Amedei, Dustin G. Brown, Elizabeth P. Ryan, Anna Maria Colacci, Roslida A. Hamid, Chiara Mondello, Jayadev Raju, Hosni K. Salem, Jordan Woodrick, A.Ivana Scovassi, Neetu Singh, Monica Vaccari, Rabindra Roy, Stefano Forte, Lorenzo Memeo, Seo Yun Kim, William H. Bisson, Leroy Lowe, and Hyun Ho Park
Carcinogenesis, 2015, Volume 36, Number Suppl 1, Page S89
Hiroyuki Kato, Koreyuki Kurosawa, Yui Inoue, Nobuhiro Tanuma, Yuki Momoi, Katsuhisa Hayashi, Honami Ogoh, Miyuki Nomura, Masato Sakayori, Yoichiro Kakugawa, Yoji Yamashita, Koh Miura, Makoto Maemondo, Ryuichi Katakura, Shigemi Ito, Masami Sato, Ikuro Sato, Natsuko Chiba, Toshio Watanabe, and Hiroshi Shima
Cancer Letters, 2015, Volume 365, Number 2, Page 223
S. A. Schnell, A. Ambesi-Impiombato, M. Sanchez-Martin, L. Belver, L. Xu, Y. Qin, R. Kageyama, and A. A. Ferrando
Blood, 2015, Volume 125, Number 18, Page 2806
Umar Wazir, Mona MAW Orakzai, Zubair S Khanzada, Wen G Jiang, Anup K Sharma, Abdul Kasem, and Kefah Mokbel
Cancer Cell International, 2015, Volume 15, Number 1
A. J. Terry and A. Morozov
Mathematical Modelling of Natural Phenomena, 2014, Volume 9, Number 3, Page 107
Minakshi Nihal, Nihal Ahmad, and Gary S Wood
Cell Cycle, 2014, Volume 13, Number 4, Page 632
Bregje Oorschot, Arlene Oei, Anna Nuijens, Hans Rodermond, Ron Hoeben, Jan Stap, Lukas Stalpers, and Nicolaas Franken
Cellular and Molecular Biology Letters, 2014, Volume 19, Number 1
Rehana K. Leak, Peiying Li, Feng Zhang, Hassan H. Sulaiman, Zhongfang Weng, Guohua Wang, R. Anne Stetler, Yejie Shi, Guodong Cao, Yanqin Gao, and Jun Chen
Antioxidants & Redox Signaling, 2015, Volume 22, Number 2, Page 135
Anja Pickhard, Guido Piontek, Christof Seidl, Samuel Kopping, Birgit Blechert, Martin Mißlbeck, Gero Brockhoff, Frank Bruchertseifer, Alfred Morgenstern, and Markus Essler
Nuclear Medicine and Biology, 2014, Volume 41, Number 1, Page 68
Yi-Bing Ouyang, Lijun Xu, Yu Lu, Xiaoyun Sun, Sibiao Yue, Xiao-Xing Xiong, and Rona G. Giffard
Glia, 2013, Volume 61, Number 11, Page 1784

Comments (0)

Please log in or register to comment.
Log in