Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 18, Issue 1

Issues

microRNAs: fine tuning of erythropoiesis

Marcin Listowski / Elżbieta Heger / Dżamila Bogusławska / Beata Machnicka / Kazimierz Kuliczkowski / Jacek Leluk / Aleksander Sikorski
Published Online: 2012-12-28 | DOI: https://doi.org/10.2478/s11658-012-0038-z

Abstract

Cell proliferation and differentiation is a complex process involving many cellular mechanisms. One of the best-studied phenomena in cell differentiation is erythrocyte development during hematopoiesis in vertebrates. In recent years, a new class of small, endogenous, non-coding RNAs called microRNAs (miRNAs) emerged as important regulators of gene expression at the post-transcriptional level. Thousands of miRNAs have been identified in various organisms, including protozoa, fungi, bacteria and viruses, proving that the regulatory miRNA pathway is conserved in evolution. There are many examples of miRNA-mediated regulation of gene expression in the processes of cell proliferation, differentiation and apoptosis, and in cancer genesis. Many of the collected data clearly show the dependence of the proteome of a cell on the qualitative and quantitative composition of endogenous miRNAs. Numerous specific miRNAs are present in the hematopoietic erythroid line. This review attempts to summarize the state of knowledge on the role of miRNAs in the regulation of different stages of erythropoiesis. Original experimental data and results obtained with bioinformatics tools were combined to elucidate the currently known regulatory network of miRNAs that guide the process of differentiation of red blood cells.

Keywords: Hematopoiesis; Erythrocyte; Erythroid differentiation; Erythropoiesis; microRNA (miRNA); microRNA expression

  • [1] http://www.mirbase.org PubMedGoogle Scholar

  • [2] Azzouzi, I., Moest, H., Winkler, J., Fauchere, J.C., Gerber, A.P., Wollscheid, B., Stoffel, M., Schmugge, M. and Speer, O. MicroRNA-96 directly inhibits gamma-globin expression in human erythropoiesis. PLoS One 6 (2011) e22838. http://dx.doi.org/10.1371/journal.pone.0022838CrossrefGoogle Scholar

  • [3] Lytle, J.R., Yario, T.A. and Steitz, J.A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc. Natl. Acad. Sci. USA 104 (2007) 9667–9672. http://dx.doi.org/10.1073/pnas.0703820104CrossrefGoogle Scholar

  • [4] Kloosterman, W.P., Wienholds, E., Ketting, R.F. and Plasterk, R.H. Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res. 32 (2004) 6284–6291. http://dx.doi.org/10.1093/nar/gkh968CrossrefGoogle Scholar

  • [5] Tsai, N.P., Lin, Y.L. and Wei, L.N. MicroRNA mir-346 targets the 5′-untranslated region of receptor-interacting protein 140 (RIP140) mRNA and up-regulates its protein expression. Biochem. J. 424 (2009) 411–418. http://dx.doi.org/10.1042/BJ20090915CrossrefGoogle Scholar

  • [6] Wang, X.J., Reyes, J.L., Chua, N.H. and Gaasterland, T. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol. 5 (2004) R65. http://dx.doi.org/10.1186/gb-2004-5-9-r65CrossrefGoogle Scholar

  • [7] Lee, R.C., Feinbaum, R.L. and Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75 (1993) 843–854. http://dx.doi.org/10.1016/0092-8674(93)90529-YCrossrefGoogle Scholar

  • [8] Guglielmelli, P., Tozzi, L., Bogani, C., Iacobucci, I., Ponziani, V., Martinelli, G., Bosi, A. and Vannucchi, A.M. Overexpression of microRNA-16-2 contributes to the abnormal erythropoiesis in polycythemia vera. Blood 117 (2011) 6923–6927. http://dx.doi.org/10.1182/blood-2010-09-306506CrossrefGoogle Scholar

  • [9] Chendrimada, T.P., Gregory, R.I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K. and Shiekhattar, R. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436 (2005) 740–744. http://dx.doi.org/10.1038/nature03868CrossrefGoogle Scholar

  • [10] Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, A.O., Landthaler, M., Lin, C., Socci, N.D., Hermida, L., Fulci, V., Chiaretti, S., Foa, R., Schliwka, J., Fuchs, U., Novosel, A., Muller, R.U., Schermer, B., Bissels, U., Inman, J., Phan, Q., Chien, M., Weir, D.B., Choksi, R., De Vita, G., Frezzetti, D., Trompeter, H.I., Hornung, V., Teng, G., Hartmann, G., Palkovits, M., Di Lauro, R., Wernet, P., Macino, G., Rogler, C.E., Nagle, J.W., Ju, J., Papavasiliou, F.N., Benzing, T., Lichter, P., Tam, W., Brownstein, M.J., Bosio, A., Borkhardt, A., Russo, J.J., Sander, C., Zavolan, M. and Tuschl, T. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129 (2007) 1401–1414. http://dx.doi.org/10.1016/j.cell.2007.04.040CrossrefGoogle Scholar

  • [11] Okamura, K., Hagen, J.W., Duan, H., Tyler, D.M. and Lai, E.C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130 (2007) 89–100. http://dx.doi.org/10.1016/j.cell.2007.06.028CrossrefGoogle Scholar

  • [12] Ruby, J.G., Jan, C.H. and Bartel, D.P. Intronic microRNA precursors that bypass Drosha processing. Nature 448 (2007) 83–86. http://dx.doi.org/10.1038/nature05983CrossrefGoogle Scholar

  • [13] Han, J., Lee, Y., Yeom, K.H., Nam, J.W., Heo, I., Rhee, J.K., Sohn, S.Y., Cho, Y., Zhang, B.T. and Kim, V.N. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125 (2006) 887–901. http://dx.doi.org/10.1016/j.cell.2006.03.043CrossrefGoogle Scholar

  • [14] Cifuentes, D., Xue, H., Taylor, D.W., Patnode, H., Mishima, Y., Cheloufi, S., Ma, E., Mane, S., Hannon, G.J., Lawson, N.D., Wolfe, S.A. and Giraldez, A.J. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328 (2010) 1694–1698. http://dx.doi.org/10.1126/science.1190809CrossrefGoogle Scholar

  • [15] http://www.ncbi.nlm.nih.gov/nuccore/NR_027350 Google Scholar

  • [16] Tanzer, A. and Stadler, P.F. Molecular evolution of a microRNA cluster. J. Mol. Biol. 339 (2004) 327–335. http://dx.doi.org/10.1016/j.jmb.2004.03.065CrossrefGoogle Scholar

  • [17] Ventura, A., Young, A.G., Winslow, M.M., Lintault, L., Meissner, A., Erkeland, S.J., Newman, J., Bronson, R.T., Crowley, D., Stone, J.R., Jaenisch, R., Sharp, P.A. and Jacks, T. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132 (2008) 875–886. http://dx.doi.org/10.1016/j.cell.2008.02.019CrossrefGoogle Scholar

  • [18] http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000687 Google Scholar

  • [19] Ota, A., Tagawa, H., Karnan, S., Tsuzuki, S., Karpas, A., Kira, S., Yoshida, Y. and Seto, M. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 64 (2004) 3087–3095. http://dx.doi.org/10.1158/0008-5472.CAN-03-3773CrossrefGoogle Scholar

  • [20] Bruchova, H., Yoon, D., Agarwal, A.M., Mendell, J. and Prchal, J.T. Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exp. Hematol. 35 (2007) 1657–1667. http://dx.doi.org/10.1016/j.exphem.2007.08.021CrossrefGoogle Scholar

  • [21] Zhang, L., Flygare, J., Wong, P., Lim, B. and Lodish, H.F. miR-191 regulates mouse erythroblast enucleation by down-regulating Riok3 and Mxi1. Genes Dev. 25 (2011) 119–124. http://dx.doi.org/10.1101/gad.1998711CrossrefGoogle Scholar

  • [22] Wang, Q., Huang, Z., Xue, H., Jin, C., Ju, X.L., Han, J.D. and Chen, Y.G. MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood 111 (2008) 588–595. http://dx.doi.org/10.1182/blood-2007-05-092718CrossrefGoogle Scholar

  • [23] Yu, D., dos Santos, C.O., Zhao, G., Jiang, J., Amigo, J.D., Khandros, E., Dore, L.C., Yao, Y., D’souza, J., Zhang, Z., Ghaffari, S., Choi, J., Friend, S., Tong, W., Orange, J.S., Paw, B.H. and Weiss, M.J. miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta. Genes Dev. 24 (2010) 1620–1633. http://dx.doi.org/10.1101/gad.1942110CrossrefGoogle Scholar

  • [24] Lu, J., Guo, S., Ebert, B.L., Zhang, H., Peng, X., Bosco, J., Pretz, J., Schlanger, R., Wang, J.Y., Mak, R.H., Dombkowski, D.M., Preffer, F.I., Scadden, D.T. and Golub, T.R. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev. Cell 14 (2008) 843–853. http://dx.doi.org/10.1016/j.devcel.2008.03.012CrossrefGoogle Scholar

  • [25] Dore, L.C., Amigo, J.D., Dos Santos, C.O., Zhang, Z., Gai, X., Tobias, J. W., Yu, D., Klein, A. M., Dorman, C., Wu, W., Hardison, R.C., Paw, B.H. and Weiss, M.J. A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc. Natl. Acad. Sci. USA 105 (2008) 3333–3338. http://dx.doi.org/10.1073/pnas.0712312105CrossrefGoogle Scholar

  • [26] Pase, L., Layton, J.E., Kloosterman, W.P., Carradice, D., Waterhouse, P.M. and Lieschke, G.J. miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2. Blood 113 (2009) 1794–1804. http://dx.doi.org/10.1182/blood-2008-05-155812CrossrefGoogle Scholar

  • [27] Anguita, E., Hughes, J., Heyworth, C., Blobel, G.A., Wood, W.G. and Higgs, D.R. Globin gene activation during haemopoiesis is driven by protein complexes nucleated by GATA-1 and GATA-2. EMBO J. 23 (2004) 2841–2852. http://dx.doi.org/10.1038/sj.emboj.7600274CrossrefGoogle Scholar

  • [28] Rasmussen, K.D., Simmini, S., Abreu-Goodger, C., Bartonicek, N., Di Giacomo, M., Bilbao-Cortes, D., Horos, R., Von Lindern, M., Enright, A.J. and O’Carroll, D. The miR-144/451 locus is required for erythroid homeostasis. J. Exp. Med. 207 (2010) 1351–1358. http://dx.doi.org/10.1084/jem.20100458Google Scholar

  • [29] Patrick, D.M., Zhang, C.C., Tao, Y., Yao, H., Qi, X., Schwartz, R.J., Jun-Shen Huang, L. and Olson, E.N. Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3zeta. Genes Dev. 24 (2010) 1614–1619. http://dx.doi.org/10.1101/gad.1942810CrossrefGoogle Scholar

  • [30] Aitken, A. 14-3-3 proteins: a historic overview. Semin. Cancer Biol. 16 (2006) 162–172. http://dx.doi.org/10.1016/j.semcancer.2006.03.005CrossrefGoogle Scholar

  • [31] Sangokoya, C., Telen, M.J. and Chi, J.T. microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood 116 (2010) 4338–4348. http://dx.doi.org/10.1182/blood-2009-04-214817CrossrefGoogle Scholar

  • [32] Fu, Y.F., Du, T.T., Dong, M., Zhu, K.Y., Jing, C.B., Zhang, Y., Wang, L., Fan, H.B., Chen, Y., Jin, Y., Yue, G.P., Chen, S.J., Chen, Z., Huang, Q.H., Jing, Q., Deng, M. and Liu, T.X. Mir-144 selectively regulates embryonic alpha-hemoglobin synthesis during primitive erythropoiesis. Blood 113 (2009) 1340–1349. http://dx.doi.org/10.1182/blood-2008-08-174854CrossrefGoogle Scholar

  • [33] Felli, N., Fontana, L., Pelosi, E., Botta, R., Bonci, D., Facchiano, F., Liuzzi, F., Lulli, V., Morsilli, O., Santoro, S., Valtieri, M., Calin, G.A., Liu, C.G., Sorrentino, A., Croce, C.M. and Peschle, C. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc. Natl. Acad. Sci. USA 102 (2005) 18081–18086. http://dx.doi.org/10.1073/pnas.0506216102CrossrefGoogle Scholar

  • [34] Zhao, H., Kalota, A., Jin, S. and Gewirtz, A.M. The c-myb proto-oncogene and microRNA-15a comprise an active autoregulatory feedback loop in human hematopoietic cells. Blood 113 (2009) 505–516. http://dx.doi.org/10.1182/blood-2008-01-136218CrossrefGoogle Scholar

  • [35] Andolfo, I., De Falco, L., Asci, R., Russo, R., Colucci, S., Gorrese, M., Zollo, M. and Iolascon, A. Regulation of divalent metal transporter 1 (DMT1) non-IRE isoform by the microRNA Let-7d in erythroid cells. Haematologica 95 (2010) 1244–1252. http://dx.doi.org/10.3324/haematol.2009.020685CrossrefGoogle Scholar

  • [36] Felli, N., Pedini, F., Romania, P., Biffoni, M., Morsilli, O., Castelli, G., Santoro, S., Chicarella, S., Sorrentino, A., Peschle, C. and Marziali, G. MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis. Haematologica 94 (2009) 479–486. http://dx.doi.org/10.3324/haematol.2008.002345CrossrefGoogle Scholar

  • [37] Bank, A. Regulation of human fetal hemoglobin: new players, new complexities. Blood 107 (2006) 435–443. http://dx.doi.org/10.1182/blood-2005-05-2113CrossrefGoogle Scholar

  • [38] Schechter, A.N. Hemoglobin research and the origins of molecular medicine. Blood 112 (2008) 3927–3938. http://dx.doi.org/10.1182/blood-2008-04-078188CrossrefGoogle Scholar

  • [39] Hamilton, A.J. and Baulcombe, D.C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286 (1999) 950–952. http://dx.doi.org/10.1126/science.286.5441.950CrossrefGoogle Scholar

  • [40] Lippman, Z., Gendrel, A.V., Black, M., Vaughn, M.W., Dedhia, N., McCombie, W.R., Lavine, K., Mittal, V., May, B., Kasschau, K.D., Carrington, J.C., Doerge, R.W., Colot, V. and Martienssen, R. Role of transposable elements in heterochromatin and epigenetic control. Nature 430 (2004) 471–476. http://dx.doi.org/10.1038/nature02651CrossrefGoogle Scholar

  • [41] Reinhart, B.J. and Bartel, D.P. Small RNAs correspond to centromere heterochromatic repeats. Science 297 (2002) 1831. http://dx.doi.org/10.1126/science.1077183CrossrefGoogle Scholar

  • [42] Allen, E., Xie, Z., Gustafson, A.M. and Carrington, J.C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121 (2005) 207–221. http://dx.doi.org/10.1016/j.cell.2005.04.004CrossrefGoogle Scholar

  • [43] Borsani, O., Zhu, J., Verslues, P.E., Sunkar, R. and Zhu, J.K. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123 (2005) 1279–1291. http://dx.doi.org/10.1016/j.cell.2005.11.035CrossrefGoogle Scholar

  • [44] Mochizuki, K. and Gorovsky, M.A. A Dicer-like protein in Tetrahymena has distinct functions in genome rearrangement, chromosome segregation, and meiotic prophase. Genes Dev. 19 (2005) 77–89. http://dx.doi.org/10.1101/gad.1265105CrossrefGoogle Scholar

  • [45] Seto, A.G., Kingston, R.E. and Lau, N.C. The coming of age for Piwi proteins. Mol. Cell 26 (2007) 603–609. http://dx.doi.org/10.1016/j.molcel.2007.05.021CrossrefGoogle Scholar

  • [46] Choong, M. L., Yang, H.H. and McNiece, I. MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. Exp. Hematol. 35 (2007) 551–564. http://dx.doi.org/10.1016/j.exphem.2006.12.002CrossrefGoogle Scholar

  • [47] Wang, F., Yu, J., Yang, G.H., Wang, X.S. and Zhang, J.W. Regulation of erythroid differentiation by miR-376a and its targets. Cell Res. 21 (2011) 1196–1209. http://dx.doi.org/10.1038/cr.2011.79CrossrefGoogle Scholar

  • [48] Starczynowski, D.T., Kuchenbauer, F., Argiropoulos, B., Sung, S., Morin, R., Muranyi, A., Hirst, M., Hogge, D., Marra, M., Wells, R.A., Buckstein, R., Lam, W., Humphries, R.K. and Karsan, A. Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype. Nat. Med. 16 (2010) 49–58. http://dx.doi.org/10.1038/nm.2054Google Scholar

  • [49] Labbaye, C., Spinello, I., Quaranta, M.T., Pelosi, E., Pasquini, L., Petrucci, E., Biffoni, M., Nuzzolo, E.R., Billi, M., Foa, R., Brunetti, E., Grignani, F., Testa, U. and Peschle, C. A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nat. Cell Biol. 10 (2008) 788–801. http://dx.doi.org/10.1038/ncb1741CrossrefGoogle Scholar

  • [50] Grabher, C., Payne, E.M., Johnston, A.B., Bolli, N., Lechman, E., Dick, J.E., Kanki, J.P. and Look, A.T. Zebrafish microRNA-126 determines hematopoietic cell fate through c-Myb. Leukemia 25 (2011) 506–514. http://dx.doi.org/10.1038/leu.2010.280CrossrefGoogle Scholar

  • [51] Romania, P., Lulli, V., Pelosi, E., Biffoni, M., Peschle, C. and Marziali, G. MicroRNA 155 modulates megakaryopoiesis at progenitor and precursor level by targeting Ets-1 and Meis1 transcription factors. Br. J. Haematol. 143 (2008) 570–580. Google Scholar

  • [52] Fazi, F., Rosa, A., Fatica, A., Gelmetti, V., De Marchis, M.L., Nervi, C. and Bozzoni, I. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123 (2005) 819–831. http://dx.doi.org/10.1016/j.cell.2005.09.023CrossrefGoogle Scholar

  • [53] Sankaran, V.G., Menne, T.F., Scepanovic, D., Vergilio, J.A., Ji, P., Kim, J., Thiru, P., Orkin, S.H., Lander, E.S. and Lodish, H.F. MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13. Proc. Natl. Acad. Sci. USA 108 (2011) 1519–1524. http://dx.doi.org/10.1073/pnas.1018384108CrossrefGoogle Scholar

  • [54] Madanecki, P., Kapoor, N., Bebok, Z., Ochocka, R., Collawn, J.F. and Bartoszewski, R. Regulation of angiogenesis by hypoxia: the role of microRNA. Cell. Mol. Biol. Lett. DOI: 10.2478/s11658-012-0037-0, in press. CrossrefGoogle Scholar

About the article

Published Online: 2012-12-28

Published in Print: 2013-03-01


Citation Information: Cellular and Molecular Biology Letters, Volume 18, Issue 1, Pages 34–46, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-012-0038-z.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Xiaojie Chen, Xuhong Xie, Yanfen Xing, Xiuhua Yang, Zhaohu Yuan, and Yaming Wei
Transfusion Medicine and Hemotherapy, 2018, Volume 45, Number 6, Page 397
[2]
Biaoru Li, Xingguo Zhu, Christina M. Ward, Athena Starlard-Davenport, Mayuko Takezaki, Amber Berry, Alexander Ward, Caroline Wilder, Cindy Neunert, Abdullah Kutlar, and Betty S. Pace
Experimental Hematology, 2018
[3]
Rafal Bartoszewski and Aleksander F. Sikorski
Cellular & Molecular Biology Letters, 2018, Volume 23, Number 1
[4]
Elizabeth A. Traxler, Christopher S. Thom, Yu Yao, Vikram Paralkar, and Mitchell J. Weiss
Blood, 2018, Volume 131, Number 24, Page 2733
[5]
J Thongbut, U Kerdpin, T Sakuldamrongpanich, C Isarankura Na-Ayudhya, and P Nuchnoi
British Journal of Biomedical Science, 2017, Page 1
[6]
Weiyun Mu, Xifu Wang, Xiaolan Zhang, Sida Zhu, Dagong Sun, Weibo Ka, Lanping Amy Sung, Weijuan Yao, and Xin-Yuan Guan
PLOS ONE, 2015, Volume 10, Number 8, Page e0136607
[7]
Søren Nielsen, Thorbjörn Åkerström, Anders Rinnov, Christina Yfanti, Camilla Scheele, Bente K. Pedersen, Matthew J. Laye, and Juergen Eckel
PLoS ONE, 2014, Volume 9, Number 2, Page e87308
[8]
Yanming Li, Qian Zhang, Zhenglin Du, ZhiChao Lu, Shuge Liu, Lu Zhang, Nan Ding, Binghao Bao, Yadong Yang, Qian Xiong, Hai Wang, Zhaojun Zhang, Hongzhu Qu, Haibo Jia, and Xiangdong Fang
British Journal of Haematology, 2017, Volume 176, Number 1, Page 50
[9]
Jingjing Liu, Yang Zhou, Zhendong Shi, Yunhui Hu, Tingting Meng, Xiaobei Zhang, Sheng Zhang, and Jin Zhang
DNA and Cell Biology, 2016, Volume 35, Number 9, Page 521
[10]
Giuseppina Amodio, Emanuele Sasso, Chiara D’Ambrosio, Andrea Scaloni, Ornella Moltedo, Silvia Franceschelli, Nicola Zambrano, and Paolo Remondelli
Cell Biology and Toxicology, 2016, Volume 32, Number 4, Page 285
[11]
Zhenhai Ma, Yang Li, Jingchao Xu, Qiaozhen Ren, Jihong Yao, and Xiaofeng Tian
IUBMB Life, 2016, Volume 68, Number 5, Page 394
[12]
GE LOU, NING MA, YA XU, LEI JIANG, JING YANG, CHUXUAN WANG, YUFEI JIAO, and XU GAO
International Journal of Molecular Medicine, 2015, Volume 36, Number 5, Page 1400
[13]
Ming Gao, Yun Liu, Yue Chen, Chunyang Yin, Jane-Jane Chen, and Sijin Liu
Free Radical Biology and Medicine, 2016, Volume 92, Page 39
[14]
Jeffrey Barminko, Brad Reinholt, and Margaret H. Baron
Developmental & Comparative Immunology, 2016, Volume 58, Page 18
[15]
Javad Mohammdai-asl, Abolfazl Ramezani, Fatemeh Norozi, Amal Saki Malehi, Ali Amin Asnafi, Mohammad Ali Jalali Far, Seyed Hadi Mousavi, and Najmaldin Saki
Frontiers in Biology, 2015, Volume 10, Number 4, Page 321
[16]
Wang Zhao, Shui-Ping Zhao, and Yu-Hong Zhao
BioMed Research International, 2015, Volume 2015, Page 1
[17]
Shaghayegh Rouzbeh, Ladan Kobari, Marie Cambot, Christelle Mazurier, Nicolas Hebert, Anne-Marie Faussat, Charles Durand, Luc Douay, and Hélène Lapillonne
STEM CELLS, 2015, Volume 33, Number 8, Page 2431
[18]
Katarzyna Augoff, Anita Hryniewicz-Jankowska, and Renata Tabola
Cancer Letters, 2015, Volume 358, Number 1, Page 1
[19]
MinJung Kim, Yee Sun Tan, Wen-Chih Cheng, Tami J. Kingsbury, Shelly Heimfeld, and Curt I. Civin
British Journal of Haematology, 2015, Volume 168, Number 4, Page 583
[20]
McKale Davis and Stephen Clarke
Nutrients, 2013, Volume 5, Number 7, Page 2611
[21]
Shaohua Wang, Hanjun Li, Jingjie Wang, and Dan Wang
Diagnostic Pathology, 2013, Volume 8, Number 1, Page 172
[22]
Tohru Fujiwara, Yoko Okitsu, Yuna Katsuoka, Noriko Fukuhara, Yasushi Onishi, Kenichi Ishizawa, and Hideo Harigae
FEBS Open Bio, 2013, Volume 3, Number 1, Page 428
[24]
Piotr Madanecki, Niren Kapoor, Zsuzsa Bebok, Renata Ochocka, James Collawn, and Rafal Bartoszewski
Cellular and Molecular Biology Letters, 2013, Volume 18, Number 1

Comments (0)

Please log in or register to comment.
Log in