Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 18, Issue 3

Issues

Role of inflammasomes and their regulators in prostate cancer initiation, progression and metastasis

Sudhakar Veeranki
Published Online: 2013-07-27 | DOI: https://doi.org/10.2478/s11658-013-0095-y

Abstract

Prostate cancer is one of the main cancers that affect men, especially older men. Though there has been considerable progress in understanding the progression of prostate cancer, the drivers of its development need to be studied more comprehensively. The emergence of resistant forms has also increased the clinical challenges involved in the treatment of prostate cancer. Recent evidence has suggested that inflammation might play an important role at various stages of cancer development. This review focuses on inflammasome research that is relevant to prostate cancer and indicates future avenues of study into its effective prevention and treatment through inflammasome regulation. With regard to prostate cancer, such research is still in its early stages. Further study is certainly necessary to gain a broader understanding of prostate cancer development and to create successful therapy solutions.

Keywords: Inflammation; Adaptor protein ASC; Caspase-1; Prostate cancer; IFI16; caspase-1; IL-1β; IL-18; NLR

  • [1] Siegel, R., DeSantis, C., Virgo, K., Stein, K., Mariotto, A., Smith, T., Cooper, D., Gansler, T., Lerro, C., Fedewa, S., Lin, C., Leach, C., Cannady, R.S., Cho, H., Scoppa, S., Hachey, M., Kirch, R., Jemal, A. and Ward, E. Cancer treatment and survivorship statistics, 2012. CA. Cancer J. Clin. 62 (2012) 220–241. http://dx.doi.org/10.3322/caac.21149Google Scholar

  • [2] Tewari, A.K. and George, D.J. Novel chemotherapies in development for management of castration-resistant prostate cancer. Curr. Opin. Urol. (2013). DOI: 10.1097/MOU.0b013e32835f7da2. CrossrefGoogle Scholar

  • [3] De Marzo, A.M., Platz, E.A., Sutcliffe, S., Xu, J., Gronberg, H., Drake, C.G., Nakai, Y., Isaacs, W.B. and Nelson, W.G. Inflammation in prostate carcinogenesis. Nat. Rev. Cancer 7 (2007) 256–269. http://dx.doi.org/10.1038/nrc2090CrossrefGoogle Scholar

  • [4] Haverkamp, J., Charbonneau, B. and Ratliff, T.L. Prostate inflammation and its potential impact on prostate cancer: a current review. J. Cell Biochem. 103 (2008) 1344–1353. http://dx.doi.org/10.1002/jcb.21536CrossrefGoogle Scholar

  • [5] Kazma, R., Mefford, J.A., Cheng, I., Plummer, S.J., Levin, A.M., Rybicki, B.A., Casey, G. and Witte, J.S. Association of the innate immunity and inflammation pathway with advanced prostate cancer risk. PLoS One 7 (2012) e51680. http://dx.doi.org/10.1371/journal.pone.0051680CrossrefGoogle Scholar

  • [6] Kwon, E.M., Salinas, C.A., Kolb, S., Fu, R., Feng, Z., Stanford, J.L. and Ostrander, E.A. Genetic polymorphisms in inflammation pathway genes and prostate cancer risk. Cancer Epidemiol. Biomarkers Prev. 20 (2011) 923–933. http://dx.doi.org/10.1158/1055-9965.EPI-10-0994CrossrefGoogle Scholar

  • [7] Sfanos, K.S. and De Marzo, A.M. Prostate cancer and inflammation: the evidence. Histopathology 60 (2012) 199–215. http://dx.doi.org/10.1111/j.1365-2559.2011.04033.xCrossrefGoogle Scholar

  • [8] Stock, D., Groome, P.A. and Siemens, D.R. Inflammation and prostate cancer: a future target for prevention and therapy? Urol. Clin. North Am. 35 (2008) 117–130, vii. http://dx.doi.org/10.1016/j.ucl.2007.09.006CrossrefGoogle Scholar

  • [9] MacLennan, G.T., Eisenberg, R., Fleshman, R.L., Taylor, J.M., Fu, P., Resnick, M.I. and Gupta, S. The influence of chronic inflammation in prostatic carcinogenesis: a 5-year followup study. J. Urol. 176 (2006) 1012–1016. http://dx.doi.org/10.1016/j.juro.2006.04.033CrossrefGoogle Scholar

  • [10] Billis, A., Freitas, L.L., Magna, L.A. and Ferreira, U. Inflammatory atrophy on prostate needle biopsies: is there topographic relationship to cancer? Int. Braz. J. Urol. 33 (2007) 355–360; discussion 361–353. http://dx.doi.org/10.1590/S1677-55382007000300008CrossrefGoogle Scholar

  • [11] Billis, A. and Magna, L.A. Inflammatory atrophy of the prostate. Prevalence and significance. Arch. Pathol. Lab. Med. 127 (2003) 840–844. Google Scholar

  • [12] Montironi, R., Vela Navarrete, R., Lopez-Beltran, A., Mazzucchelli, R., Mikuz, G. and Bono, A.V. Histopathology reporting of prostate needle biopsies. 2005 update. Virchows Arch. 449 (2006) 1–13. http://dx.doi.org/10.1007/s00428-006-0190-9CrossrefGoogle Scholar

  • [13] Billis, A. Re: Inflammatory atrophy on prostate needle biopsies: is there topographic relationship to cancer? Int. Braz. J. Urol. 33 (2007) 566–568. http://dx.doi.org/10.1590/S1677-55382007000400021CrossrefGoogle Scholar

  • [14] Schroder, K. and Tschopp, J. The inflammasomes. Cell 140 (2010) 821–832. http://dx.doi.org/10.1016/j.cell.2010.01.040CrossrefGoogle Scholar

  • [15] Zitvogel, L., Kepp, O., Galluzzi, L. and Kroemer, G. Inflammasomes in carcinogenesis and anticancer immune responses. Nat. Immunol. 13 (2012) 343–351. http://dx.doi.org/10.1038/ni.2224CrossrefGoogle Scholar

  • [16] Dunn, J.H., Ellis, L.Z. and Fujita, M. Inflammasomes as molecular mediators of inflammation and cancer: potential role in melanoma. Cancer Lett. 314 (2012) 24–33. http://dx.doi.org/10.1016/j.canlet.2011.10.001CrossrefGoogle Scholar

  • [17] Guo, Y. and Kyprianou, N. Restoration of transforming growth factor beta signaling pathway in human prostate cancer cells suppresses tumorigenicity via induction of caspase-1-mediated apoptosis. Cancer Res. 59 (1999) 1366–1371. Google Scholar

  • [18] Winter, R.N., Kramer, A., Borkowski, A. and Kyprianou, N. Loss of caspase-1 and caspase-3 protein expression in human prostate cancer. Cancer Res. 61 (2001) 1227–1232. Google Scholar

  • [19] Bruckheimer, E.M. and Kyprianou, N. Bcl-2 antagonizes the combined apoptotic effect of transforming growth factor-beta and dihydrotestosterone in prostate cancer cells. Prostate 53 (2002) 133–142. http://dx.doi.org/10.1002/pros.10143CrossrefGoogle Scholar

  • [20] Sasaki, Y., Ahmed, H., Takeuchi, T., Moriyama, N. and Kawabe, K. Immunohistochemical study of Fas, Fas ligand and interleukin-1 beta converting enzyme expression in human prostatic cancer. Br. J. Urol. 81 (1998) 852–855. http://dx.doi.org/10.1046/j.1464-410x.1998.00665.xCrossrefGoogle Scholar

  • [21] Nikitina, E.Y., Desai, S.A., Zhao, X., Song, W., Luo, A.Z., Gangula, R.D., Slawin, K.M. and Spencer, D.M. Versatile prostate cancer treatment with inducible caspase and interleukin-12. Cancer Res. 65 (2005) 4309–4319. http://dx.doi.org/10.1158/0008-5472.CAN-04-3119CrossrefGoogle Scholar

  • [22] Winter, R.N., Rhee, J.G. and Kyprianou, N. Caspase-1 enhances the apoptotic response of prostate cancer cells to ionizing radiation. Anticancer Res. 24 (2004) 1377–1386. Google Scholar

  • [23] Hasegawa, M., Kawase, K., Inohara, N., Imamura, R., Yeh, W.C., Kinoshita, T. and Suda, T. Mechanism of ASC-mediated apoptosis: biddependent apoptosis in type II cells. Oncogene 26 (2007) 1748–1756. http://dx.doi.org/10.1038/sj.onc.1209965CrossrefGoogle Scholar

  • [24] Collard, R.L., Harya, N.S., Monzon, F.A., Maier, C.E. and O’Keefe, D.S. Methylation of the ASC gene promoter is associated with aggressive prostate cancer. Prostate 66 (2006) 687–695. http://dx.doi.org/10.1002/pros.20371CrossrefGoogle Scholar

  • [25] Das, P.M., Ramachandran, K., Vanwert, J., Ferdinand, L., Gopisetty, G., Reis, I.M. and Singal, R. Methylation mediated silencing of TMS1/ASC gene in prostate cancer. Mol. Cancer 5 (2006) 28. http://dx.doi.org/10.1186/1476-4598-5-28CrossrefGoogle Scholar

  • [26] Gurjar, M.V., DeLeon, J., Sharma, R.V. and Bhalla, R.C. Mechanism of inhibition of matrix metalloproteinase-9 induction by NO in vascular smooth muscle cells. J. Appl. Physiol. 91 (2001) 1380–1386. Google Scholar

  • [27] Petrella, B.L., Armstrong, D.A. and Vincenti, M.P. Interleukin-1 beta and transforming growth factor-beta 3 cooperate to activate matrix metalloproteinase expression and invasiveness in A549 lung adenocarcinoma cells. Cancer Lett. 325 (2012) 220–226. http://dx.doi.org/10.1016/j.canlet.2012.07.009Google Scholar

  • [28] Nakao, S., Kuwano, T., Tsutsumi-Miyahara, C., Ueda, S., Kimura, Y.N., Hamano, S., Sonoda, K.H., Saijo, Y., Nukiwa, T., Strieter, R.M., Ishibashi, T., Kuwano, M. and Ono, M. Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1 beta-induced neovascularization and tumor growth. J. Clin. Invest. 115 (2005) 2979–2991. http://dx.doi.org/10.1172/JCI23298CrossrefGoogle Scholar

  • [29] Tsuzaki, M., Guyton, G., Garrett, W., Archambault, J.M., Herzog, W., Almekinders, L., Bynum, D., Yang, X. and Banes, A.J. IL-1 beta induces COX2, MMP-1, -3 and -13, ADAMTS-4, IL-1 beta and IL-6 in human tendon cells. J. Orthop. Res. 21 (2003) 256–264. http://dx.doi.org/10.1016/S0736-0266(02)00141-9CrossrefGoogle Scholar

  • [30] Maggio, M., Basaria, S., Ceda, G.P., Ble, A., Ling, S.M., Bandinelli, S., Valenti, G. and Ferrucci, L. The relationship between testosterone and molecular markers of inflammation in older men. J. Endocrinol. Invest. 28 (2005) 116–119. Google Scholar

  • [31] Saylor, P.J., Kozak, K.R., Smith, M.R., Ancukiewicz, M.A., Efstathiou, J.A., Zietman, A.L., Jain, R.K. and Duda, D.G. Changes in biomarkers of inflammation and angiogenesis during androgen deprivation therapy for prostate cancer. Oncologist 17 (2012) 212–219. http://dx.doi.org/10.1634/theoncologist.2011-0321CrossrefGoogle Scholar

  • [32] Vykhovanets, E.V., Shukla, S., MacLennan, G.T., Vykhovanets, O.V., Bodner, D.R. and Gupta, S. Il-1 beta-induced post-transition effect of NFkappaB provides time-dependent wave of signals for initial phase of intrapostatic inflammation. Prostate 69 (2009) 633–643. http://dx.doi.org/10.1002/pros.20916CrossrefGoogle Scholar

  • [33] Klein, R.D., Borchers, A.H., Sundareshan, P., Bougelet, C., Berkman, M.R., Nagle, R.B. and Bowden, G.T. Interleukin-1beta secreted from monocytic cells induces the expression of matrilysin in the prostatic cell line LNCaP. J. Biol. Chem. 272 (1997) 14188–14192. http://dx.doi.org/10.1074/jbc.272.22.14188CrossrefGoogle Scholar

  • [34] Lebel-Binay, S., Thiounn, N., De Pinieux, G., Vieillefond, A., Debre, B., Bonnefoy, J.Y. and Fridman, W.H., Pages, F. IL-18 is produced by prostate cancer cells and secreted in response to interferons. Int. J. Cancer 106 (2003) 827–835. http://dx.doi.org/10.1002/ijc.11285CrossrefGoogle Scholar

  • [35] Veeranki, S., Duan, X., Panchanathan, R., Liu, H. and Choubey, D. IFI16 protein mediates the anti-inflammatory actions of the type-I interferons through suppression of activation of caspase-1 by inflammasomes. PLoS One 6 (2011) e27040. http://dx.doi.org/10.1371/journal.pone.0027040CrossrefGoogle Scholar

  • [36] Fujita, K., Ewing, C.M., Isaacs, W.B. and Pavlovich, C.P. Immunomodulatory IL-18 binding protein is produced by prostate cancer cells and its levels in urine and serum correlate with tumor status. Int. J. Cancer 129 (2011) 424–432. http://dx.doi.org/10.1002/ijc.25705CrossrefGoogle Scholar

  • [37] Veeranki, S. and Choubey, D. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization. Mol. Immunol. 49 (2012) 567–571. http://dx.doi.org/10.1016/j.molimm.2011.11.004CrossrefGoogle Scholar

  • [38] Xin, H., Curry, J., Johnstone, R.W., Nickoloff, B.J. and Choubey, D. Role of IFI 16, a member of the interferon-inducible p200-protein family, in prostate epithelial cellular senescence. Oncogene 22 (2003) 4831–4840. http://dx.doi.org/10.1038/sj.onc.1206754CrossrefGoogle Scholar

  • [39] Cahu, J., Bustany, S. and Sola, B. Senescence-associated secretory phenotype favors the emergence of cancer stem-like cells. Cell Death Dis. 3 (2012) e446. http://dx.doi.org/10.1038/cddis.2012.183CrossrefGoogle Scholar

  • [40] Choubey, D. DNA-responsive inflammasomes and their regulators in autoimmunity. Clin. Immunol. 142 (2012) 223–231. http://dx.doi.org/10.1016/j.clim.2011.12.007CrossrefGoogle Scholar

  • [41] Lamkanfi, M. and Dixit, V.M. Inflammasomes and their roles in health and disease. Annu. Rev. Cell Dev. Biol. 28 (2012) 137–161. http://dx.doi.org/10.1146/annurev-cellbio-101011-155745CrossrefGoogle Scholar

  • [42] Olsson, J., Drott, J.B., Laurantzon, L., Laurantzon, O., Bergh, A. and Elgh, F. Chronic prostatic infection and inflammation by Propionibacterium acnes in a rat prostate infection model. PLoS One 7 (2012) e51434. http://dx.doi.org/10.1371/journal.pone.0051434CrossrefGoogle Scholar

  • [43] Shinohara, D.B., Vaghasia, A.M., Yu, S.H., Mak, T.N., Bruggemann, H., Nelson, W.G., De Marzo, A.M., Yegnasubramanian, S. and Sfanos, K.S. A mouse model of chronic prostatic inflammation using a human prostate cancer-derived isolate of Propionibacterium acnes. Prostate (2013) doi: 10.1002/pros.22648. CrossrefGoogle Scholar

  • [44] Sahdo, B., Sarndahl, E., Elgh, F. and Soderquist, B. Propionibacterium acnes activates caspase-1 in human neutrophils. APMIS (2012) doi: 10.1111/apm.12035. CrossrefGoogle Scholar

  • [45] Nakahira, K., Haspel, J.A., Rathinam, V.A., Lee, S.J., Dolinay, T., Lam, H.C., Englert, J.A., Rabinovitch, M., Cernadas, M., Kim, H.P., Fitzgerald, K.A., Ryter, S.W. and Choi, A.M. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12 (2011) 222–230. http://dx.doi.org/10.1038/ni.1980CrossrefGoogle Scholar

  • [46] Harris, J., Hartman, M., Roche, C., Zeng, S.G., O’Shea, A., Sharp, F.A., Lambe, E.M., Creagh, E.M., Golenbock, D.T., Tschopp, J., Kornfeld, H., Fitzgerald, K.A. and Lavelle, E.C. Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J. Biol. Chem. 286 (2011) 9587–9597. http://dx.doi.org/10.1074/jbc.M110.202911CrossrefGoogle Scholar

  • [47] Menu, P., Mayor, A., Zhou, R., Tardivel, A., Ichijo, H., Mori, K. and Tschopp, J. ER stress activates the NLRP3 inflammasome via an UPRindependent pathway. Cell Death Dis. 3 (2012) e261. http://dx.doi.org/10.1038/cddis.2011.132CrossrefGoogle Scholar

  • [48] Duncan, J.A., Gao, X., Huang, M.T., O’Connor, B.P., Thomas, C.E., Willingham, S.B., Bergstralh, D.T., Jarvis, G.A., Sparling, P.F. and Ting, J.P. Neisseria gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC-containing inflammasome. J. Immunol. 182 (2009) 6460–6469. http://dx.doi.org/10.4049/jimmunol.0802696CrossrefGoogle Scholar

  • [49] Abdul-Sater, A.A., Said-Sadier, N., Padilla, E.V. and Ojcius, D.M. Chlamydial infection of monocytes stimulates IL-1beta secretion through activation of the NLRP3 inflammasome. Microbes Infect. 12 (2010) 652–661. http://dx.doi.org/10.1016/j.micinf.2010.04.008CrossrefGoogle Scholar

  • [50] Babolin, C., Amedei, A., Ozolins, D., Zilevica, A., D’Elios, M.M. and de Bernard, M. TpF1 from Treponema pallidum activates inflammasome and promotes the development of regulatory T cells. J. Immunol. 187 (2011) 1377–1384. http://dx.doi.org/10.4049/jimmunol.1100615CrossrefGoogle Scholar

  • [51] Johnson, K.E., Chikoti, L. and Chandran, B. HSV-1 infection induces activation and subsequent inhibition of the IFI16 and NLRP3 inflammasomes. J. Virol. (2013) doi: 10.1128/JVI.00082-13. Google Scholar

  • [52] Rathinam, V.A., Jiang, Z., Waggoner, S.N., Sharma, S., Cole, L.E., Waggoner, L., Vanaja, S.K., Monks, B.G., Ganesan, S., Latz, E., Hornung, V., Vogel, S.N., Szomolanyi-Tsuda, E. and Fitzgerald, K.A. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11 (2010) 395–402. http://dx.doi.org/10.1038/ni.1864CrossrefGoogle Scholar

  • [53] Persson, B.E. and Ronquist, G. Evidence for a mechanistic association between nonbacterial prostatitis and levels of urate and creatinine in expressed prostatic secretion. J. Urol. 155 (1996) 958–960. http://dx.doi.org/10.1016/S0022-5347(01)66357-2CrossrefGoogle Scholar

  • [54] Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. and Tschopp, J. Goutassociated uric acid crystals activate the NALP3 inflammasome. Nature 440 (2006) 237–241. http://dx.doi.org/10.1038/nature04516CrossrefGoogle Scholar

  • [55] Couillin, I., Vasseur, V., Charron, S., Gasse, P., Tavernier, M., Guillet, J., Lagente, V., Fick, L., Jacobs, M., Coelho, F.R., Moser, R. and Ryffel, B. IL-1R1/MyD88 signaling is critical for elastase-induced lung inflammation and emphysema. J. Immunol. 183 (2009) 8195–8202. http://dx.doi.org/10.4049/jimmunol.0803154CrossrefGoogle Scholar

  • [56] Cohen, T.S. and Prince, A.S. Activation of inflammasome signaling mediates pathology of acute P. aeruginosa pneumonia. J. Clin. Invest. (2013) doi: 10.1172/JCI66142. CrossrefGoogle Scholar

  • [57] Hrbacek, J., Urban, M., Hamsikova, E., Tachezy, R. and Heracek, J. Thirty years of research on infection and prostate cancer: No conclusive evidence for a link. A systematic review. Urol. Oncol. (2012) doi:10.1016/j.urolonc.2012.01.013. CrossrefGoogle Scholar

About the article

Published Online: 2013-07-27

Published in Print: 2013-09-01


Citation Information: Cellular and Molecular Biology Letters, Volume 18, Issue 3, Pages 355–367, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-013-0095-y.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ahmad Jayedi, Alireza Emadi, and Sakineh Shab-Bidar
Advances in Nutrition, 2018, Volume 9, Number 4, Page 388
[2]
Yu Zhao
Infection International, 2017, Volume 0, Number 0
[3]
Chu Lin and Jun Zhang
Frontiers in Immunology, 2017, Volume 8
[4]
Alessandro Sciarra, Alessandro Gentilucci, Stefano Salciccia, Federico Pierella, Flavio Del Bianco, Vincenzo Gentile, Ida Silvestri, and Susanna Cattarino
Journal of Inflammation, 2016, Volume 13, Number 1
[5]
Na-Yeong Gu, Jung-Hyun Kim, Ik-Hwan Han, Su-Jeong Im, Min-Young Seo, Yong-Hoon Chung, and Jae-Sook Ryu
The Prostate, 2016, Volume 76, Number 10, Page 885
[6]
Gianluigi Taverna, Elisa Pedretti, Giuseppe Di Caro, Elena Monica Borroni, Federica Marchesi, and Fabio Grizzi
Inflammation Research, 2015, Volume 64, Number 5, Page 275
[7]
Kuei-Fang Lee, Julia Tzu-Ya Weng, Paul Wei-Che Hsu, Yu-Hsiang Chi, Ching-Kai Chen, Ingrid Y. Liu, Yi-Cheng Chen, and Lawrence Shih-Hsin Wu
BioMed Research International, 2014, Volume 2014, Page 1

Comments (0)

Please log in or register to comment.
Log in