Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 18, Issue 3


Viologen-phosphorus dendrimers exhibit minor toxicity against a murine neuroblastoma cell line

Joanna Lazniewska / Katarzyna Milowska / Nadia Katir / Abdelkim Kadib / Maria Bryszewska / Jean-Pierre Majoral / Teresa Gabryelak
Published Online: 2013-07-27 | DOI: https://doi.org/10.2478/s11658-013-0100-5


Dendrimers containing viologen (derivatives of 4,4′-bipyridyl) units in their structure have been demonstrated to exhibit antiviral activity against human immunodeficiency virus (HIV-1). It has also recently been revealed that novel dendrimers with both viologen units and phosphorus groups in their structure show different antimicrobial, cytotoxic and hemotoxic properties, and have the ability to influence the activity of cholinesterases and to inhibit α-synuclein fibrillation. Since the influence of viologen-phosphorus structures on basic cellular processes had not been investigated, we examined the impact of such macromolecules on the murine neuroblastoma cell line (N2a). We selected three water-soluble viologen-phosphorus (VPD) dendrimers, which differ in their core structure, number of viologen units and number and type of surface groups, and analyzed several aspects of the cellular response. These included cell viability, generation of reactive oxygen species (ROS), alterations in mitochondrial activity, morphological modifications, and the induction of apoptosis and necrosis. The MTT assay results suggest that all of the tested dendrimers are only slightly cytotoxic. Although some changes in ROS formation and mitochondrial function were detected, the three compounds did not induce apoptosis or necrosis. In light of these results, we can assume that the tested VPD are relatively safe for mouse neuroblastoma cells. Although more research on their safety is needed, VPD seem to be promising nanoparticles for further biomedical investigation.

Keywords: Apoptosis; Cytotoxicity; N2a cell line; ROS; Viologen-phosphorus dendrimers

  • [1] Klajnert, B. and Bryszewska, M. Dendrimers: properties and applications. Acta Biochim. Pol. 48 (2001) 199–208. Google Scholar

  • [2] Svenson, S. and Tomalia, D.A. Dendrimers in biomedical applicationsreflections on the field. Adv. Drug Deliv. Rev. 57 (2005) 2106–2129. http://dx.doi.org/10.1016/j.addr.2005.09.018CrossrefGoogle Scholar

  • [3] Menjoge, A.R., Kannan, R.M. and Tomalia, D.A. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug. Discov. Today 15 (2010) 171–185. http://dx.doi.org/10.1016/j.drudis.2010.01.009CrossrefGoogle Scholar

  • [4] Wang, B., Navath, R.S., Menjoge, A.R., Balakrishnan, B., Bellair, R., Dai, H., Romero, R., Kannan, S. and Kannan, R.M. Inhibition of bacterial growth and intramniotic infection in a guinea pig model of chorioamnionitis using PAMAM dendrimers. Int. J. Pharm. 395 (2010) 298–308. http://dx.doi.org/10.1016/j.ijpharm.2010.05.030CrossrefGoogle Scholar

  • [5] Luganini, A., Nicoletto, S.F., Pizzuto, L., Pirri, G., Giuliani, A., Landolfo, S. and Gribaudo, G. Inhibition of herpes simplex virus type 1 and type 2 infections by peptide-derivatized dendrimers. Antimicrob. Agents Chemother. 55 (2011) 3231–3239. http://dx.doi.org/10.1128/AAC.00149-11CrossrefGoogle Scholar

  • [6] Janiszewska, J., Sowińska, M., Rajnisz, A., Solecka, J., Łacka, I., Milewski, S. and Urbańczyk-Lipkowska, Z. Novel dendrimeric lipopeptides with antifungal activity. Bioorgan. Med. Chem. Lett. 22 (2012) 1388–1393. http://dx.doi.org/10.1016/j.bmcl.2011.12.051CrossrefGoogle Scholar

  • [7] Ottaviani, M.F., Mazzeo, R., Cangiotti, M., Fiorani, L., Majoral, J.-P., Caminade, A.-M., Pedziwiatr, E., Bryszewska, M. and Klajnert, B. Time evolution of the aggregation process of peptides involved in neurodegenerative diseases and preventing aggregation effect of phosphorus dendrimers studied by EPR. Biomacromolecules 11 (2010) 3014–3021. http://dx.doi.org/10.1021/bm100824zCrossrefGoogle Scholar

  • [8] Milowska, K., Gabryelak, T., Bryszewska, M., Caminade, A.-M. and Majoral, J.-P. Phosphorus-containing dendrimers against α-synuclein fibril formation. Int. J. Biol. Macromol. 50 (2012) 1138–1143. http://dx.doi.org/10.1016/j.ijbiomac.2012.02.003CrossrefGoogle Scholar

  • [9] Wasiak, T., Ionov, M., Nieznanski, K., Nieznanska, H., Klementieva, O., Granell, M., Cladera, J., Majoral, J.-P., Caminade, A.-M. and Klajnert, B. Phosphorus dendrimers affect Alzheimer’s (Aβ1-28) peptide and MAP-Tau protein aggregation. Mol. Pharm. 9 (2012) 458–469. http://dx.doi.org/10.1021/mp2005627CrossrefGoogle Scholar

  • [10] Albertazzi, L., Gherardini, L., Brondi, M., Sulis Sato, S., Bifone, A., Pizzorusso, T., Ratto, G.M. and Bardi, G. In vivo distribution and toxicity of PAMAM dendrimers in the central nervous system depend on their surface chemistry. Mol. Pharm. 10 (2013) 249–260. http://dx.doi.org/10.1021/mp300391vCrossrefGoogle Scholar

  • [11] Dai, H., Navath, R.S., Balakrishnan, B., Guru, B.R., Mishra, M.K., Romero, R., Kannan, R.M. and Kannan, S. Intrinsic targeting of inflammatory cells in the brain by polyamidoamine dendrimers upon subarachnoid administration. Nanomedicine 5 (2010) 317–1329. http://dx.doi.org/10.2217/nnm.10.89CrossrefGoogle Scholar

  • [12] Kannan, S., Dai, H., Navath, R.S., Balakrishnan, B., Jyoti, A., Janisse, J., Romero, R. and Kannan, R.M. Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Sci.Transl. Med. 4 (2012) 130ra46. http://dx.doi.org/10.1126/scitranslmed.3003162CrossrefGoogle Scholar

  • [13] Iezzi, R., Guru, B.R., Glybina, I.V., Mishra, M.K., Kennedy, A. and Kannan, R.M. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. Biomaterials 33 (2012) 979–988. http://dx.doi.org/10.1016/j.biomaterials.2011.10.010CrossrefGoogle Scholar

  • [14] Launay, N., Caminade, A. and Lahana, R. A general synthetic strategy for neutral phosphorus-containing dendrimers. Angew. Chem. Int. Ed. Engl. 33 (1994) 1589–1592. http://dx.doi.org/10.1002/anie.199415891CrossrefGoogle Scholar

  • [15] Galliot, C. Regioselective stepwise growth of dendrimer units in the internal voids of a main dendrimer. Science 277 (1997) 1981–1984. http://dx.doi.org/10.1126/science.277.5334.1981CrossrefGoogle Scholar

  • [16] Merino, S., Brauge, L., Caminade, A.M., Majoral, J.P., Taton, D. and Gnanou, Y. Synthesis and characterization of linear, hyperbranched, and dendrimer-like polymers constituted of the same repeating unit. Chemistry 7 (2001) 3095–3105. http://dx.doi.org/10.1002/1521-3765(20010716)7:14<3095::AID-CHEM3095>3.0.CO;2-SCrossrefGoogle Scholar

  • [17] Caminade, A.-M., Turrin, C.-O. and Majoral, J.-P. Biological properties of phosphorus dendrimers. New J. Chem. 34 (2010) 1512–1524. http://dx.doi.org/10.1039/c0nj00116cCrossrefGoogle Scholar

  • [18] Babbs, C.F., Pham, J.A. and Coolbaugh, R.C. Lethal hydroxyl radical production in paraquat-treated plants. Plant Physiol. 90 (1989) 1267–1270. http://dx.doi.org/10.1104/pp.90.4.1267CrossrefGoogle Scholar

  • [19] Huang, C., Zhang, X., Jiang, Y., Li, G., Wang, H., Tang, X. and Wang, Q. Paraquat-induced convulsion and death: a report of five cases. Toxicol. Ind. Health (2012) DOI: 10.1177/0748233712442712. CrossrefGoogle Scholar

  • [20] Spivey, A. Rotenone and paraquat linked to Parkinson’s disease: human exposure study supports years of animal studies. Environ. Health Perspect. 119 (2011) A259. http://dx.doi.org/10.1289/ehp.119-a259aCrossrefGoogle Scholar

  • [21] Freire, C. and Koifman, S. Pesticide exposure and Parkinson’s disease: Epidemiological evidence of association. Neurotoxicology 33 (2012) 947–971. http://dx.doi.org/10.1016/j.neuro.2012.05.011CrossrefGoogle Scholar

  • [22] Gollamudi, S., Johri, A., Calingasan, N.Y., Yang, L., Elemento, O. and Beal, M.F. Concordant signaling pathways produced by pesticide exposure in mice correspond to pathways identified in human Parkinson’s disease. PLoS ONE 7 (2012) e36191. http://dx.doi.org/10.1371/journal.pone.0036191CrossrefGoogle Scholar

  • [23] Fukushima, T., Tanaka, K., Lim, H. and Moriyama, M. Mechanism of cytotoxicity of paraquat.Environ. Health Prev. Med. 7 (2002) 89–94. http://dx.doi.org/10.1265/ehpm.2002.89CrossrefGoogle Scholar

  • [24] Bielefeld, E.C., Hu, B.H., Harris, K.C. and Henderson, D. Damage and threshold shift resulting from cochlear exposure to paraquat-generated superoxide. Hear Res. 207 (2005) 35–42. http://dx.doi.org/10.1016/j.heares.2005.03.025CrossrefGoogle Scholar

  • [25] Asaftei, S. and De Clercq, E. “Viologen” dendrimers as antiviral agents: the effect of charge number and distance. J. Med. Chem. 53 (2010) 3480–3488. http://dx.doi.org/10.1021/jm100093pCrossrefGoogle Scholar

  • [26] Ciepluch, K., Katir, N., Kadib, El, A., Felczak, A., Zawadzka, K., Weber, M., Klajnert, B., Lisowska, K., Caminade, A.-M., Bousmina, M., Bryszewska, M. and Majoral, J.P. Biological properties of new viologen-phosphorus dendrimers. Mol. Pharm. 9 (2012) 448–457. http://dx.doi.org/10.1021/mp200549cCrossrefGoogle Scholar

  • [27] Ciepluch, K., Weber, M., Katir, N., Caminade, A.-M., Kadib, El, A., Klajnert, B., Majoral, J.-P. and Bryszewska, M. Effect of viologenphosphorus dendrimers on acetylcholinesterase and butyrylcholinesterase activities. Int. J. Biol. Macromol. 54 (2013) 119–124. http://dx.doi.org/10.1016/j.ijbiomac.2012.12.002CrossrefGoogle Scholar

  • [28] Milowska, K., Grochowina, J., Katir, N., Kadib, El, A., Majoral, J.-P., Bryszewska, M. and Gabryelak, T. Viologen-phosphorus dendrimers inhibit α-synuclein fibrillation. Mol. Pharm. 10 (2013) 1131–1137. http://dx.doi.org/10.1021/mp300636hCrossrefGoogle Scholar

  • [29] Milowska, K., Grochowina, J., Katir, N., Kadib, El, A., Majoral, J.-P., Bryszewska, M. and Gabryelak, T. Interaction between viologen-phosphorus dendrimers and α-synuclein. J. Lumin. 134 (2013) 132–137. http://dx.doi.org/10.1016/j.jlumin.2012.08.060CrossrefGoogle Scholar

  • [30] Baker, J.R. Dendrimer-based nanoparticles for cancer therapy. Hematology Am. Soc. Hematol. Educ. Program (2009) 708–719. CrossrefGoogle Scholar

  • [31] Guo, R. and Shi, X. Dendrimers in cancer therapeutics and diagnosis. Curr. Drug Metab. 13 (2012) 1097–1109. http://dx.doi.org/10.2174/138920012802850010CrossrefGoogle Scholar

  • [32] Bernas, T. and Dobrucki, J. Mitochondrial and nonmitochondrial reduction of MTT: interaction of MTT with TMRE, JC-1, and NAO mitochondrial fluorescent probes. Cytometry 47 (2002) 236–242. http://dx.doi.org/10.1002/cyto.10080CrossrefGoogle Scholar

  • [33] Janaszewska, A., Ciolkowski, M., Wróbel, D., Petersen, J.F., Ficker, M., Christensen, J.B., Bryszewska, M. and Klajnert, B. Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups reveals negligible toxicity against three rodent cell-lines. Nanomedicine (2013) DOI: 10.1016/j.nano.2013.01.010. CrossrefGoogle Scholar

  • [34] Bartosz, G. Use of spectroscopic probes for detection of reactive oxygen species. Clin. Chim. Acta 368 (2006) 53–76. http://dx.doi.org/10.1016/j.cca.2005.12.039CrossrefGoogle Scholar

  • [35] Agnello, M., Morici, G., and Rinaldi, A.M. A method for measuring mitochondrial mass and activity. Cytotechnology 56 (2008) 145–149. http://dx.doi.org/10.1007/s10616-008-9143-2CrossrefGoogle Scholar

  • [36] Salvioli, S., Ardizzoni, A., Franceschi, C. and Cossarizza, A. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 411 (1997) 77–82. http://dx.doi.org/10.1016/S0014-5793(97)00669-8CrossrefGoogle Scholar

  • [37] Ribble, D., Goldstein, N.B., Norris, D.A. and Shellman, Y.G. A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol. 5 (2005) DOI:10.1186/1472-6750-5-12. CrossrefGoogle Scholar

  • [38] Michałowicz, J. and Sicińska, P. Chlorophenols and chlorocatechols induce apoptosis in human lymphocytes (in vitro). Toxicol. Lett. 191 (2009) 246–252. http://dx.doi.org/10.1016/j.toxlet.2009.09.010CrossrefGoogle Scholar

  • [39] Patel, D., Henry, J. and Good, T. Attenuation of β-amyloid induced toxicity by sialic acid-conjugated dendrimeric polymers. Biochim. Biophys. Acta 1760 (2006) 1802–1809. http://dx.doi.org/10.1016/j.bbagen.2006.08.008CrossrefGoogle Scholar

  • [40] Kuo, J.-H.S., Jan, M.-S. and Lin, Y.-L. Interactions between U-937 human macrophages and poly(propyleneimine) dendrimers. J. Control Release 120 (2007) 51–59. http://dx.doi.org/10.1016/j.jconrel.2007.03.019CrossrefGoogle Scholar

  • [41] Naha, P.C., Davoren, M., Lyng, F.M. and Byrne, H.J. Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A.1 cells. Toxicol. Appl. Pharmacol. 246 (2010) 91–99. http://dx.doi.org/10.1016/j.taap.2010.04.014CrossrefGoogle Scholar

  • [42] Wang, W., Xiong, W., Wan, J., Sun, X., Xu, H. and Yang, X. The decrease of PAMAM dendrimer-induced cytotoxicity by PEGylation via attenuation of oxidative stress. Nanotechnology 20 (2009) 105103. http://dx.doi.org/10.1088/0957-4484/20/10/105103CrossrefGoogle Scholar

  • [43] Mukherjee, S.P., Lyng, F.M., Garcia, A., Davoren, M. and Byrne, H.J. Mechanistic studies of in vitro cytotoxicity of poly(amidoamine) dendrimers in mammalian cells. Toxicol. Appl. Pharmacol. 248 (2010) 259–268. http://dx.doi.org/10.1016/j.taap.2010.08.016CrossrefGoogle Scholar

  • [44] Mukherjee, S.P. and Byrne, H.J. Polyamidoamine dendrimer nanoparticle cytotoxicity, oxidative stress, caspase activation and inflammatory response: experimental observation and numerical simulation. Nanomedicine 9 (2012) 202–211. Google Scholar

  • [45] Lee, J.-H., Cha, K.E., Kim, M.S., Hong, H.W., Chung, D.J., Ryu, G. and Myung, H. Nanosized polyamidoamine (PAMAM) dendrimer-induced apoptosis mediated by mitochondrial dysfunction. Toxicol. Lett. 190 (2009) 202–207. http://dx.doi.org/10.1016/j.toxlet.2009.07.018CrossrefGoogle Scholar

  • [46] Hong, S., Leroueil, P.R., Janus, E.K., Peters, J.L., Kober, M.-M., Islam, M.T., Orr, B.G., Baker, J.R. and Banaszak Holl, M.M. Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membranepermeability. Bioconjugate Chem. 17 (2006) 728–734. http://dx.doi.org/10.1021/bc060077yCrossrefGoogle Scholar

  • [47] Leroueil, P.R., Hong, S., Mecke, A., Baker, J.R., Orr, B.G. and Banaszak Holl, M.M. Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? Acc. Chem. Res. 40 (2007) 335–342. http://dx.doi.org/10.1021/ar600012yCrossrefGoogle Scholar

  • [48] Leroueil, P.R., Berry, S.A., Duthie, K., Han, G., Rotello, V.M., McNerny, D.Q., Baker, J.R., Orr, B.G. and Holl, M.M.B. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano. Lett. 8 (2008) 420–424. http://dx.doi.org/10.1021/nl0722929CrossrefGoogle Scholar

  • [49] Ionov, M., Wrobel, D., Gardikis, K., Hatziantoniou, S., Demetzos, C., Majoral, J-P., Klajnert, B. and Bryszewska, M. Effect of phosphorus dendrimers on DMPC lipid membranes. Chem. Phys. Lipids 165 (2012) 408–413. http://dx.doi.org/10.1016/j.chemphyslip.2011.11.014CrossrefGoogle Scholar

  • [50] Kitchens, K.M., Foraker, A.B., Kolhatkar, R.B., Swaan, P.W. and Ghandehari, H. Endocytosis and interaction of poly (amidoamine) dendrimers with Caco-2 cells. Pharm. Res. 24 (2007) 2138–2145. http://dx.doi.org/10.1007/s11095-007-9415-0CrossrefGoogle Scholar

  • [51] Kitchens, K.M., Kolhatkar, R.B., Swaan, P.W. and Ghandehari, H. Endocytosis inhibitors prevent poly(amidoamine) dendrimer internalization and permeability across Caco-2 cells. Mol. Pharm. 5 (2008) 364–369. http://dx.doi.org/10.1021/mp700089sCrossrefGoogle Scholar

  • [52] Albertazzi, L., Serresi, M., Albanese, A. and Beltram, F. Dendrimer internalization and intracellular trafficking in living cells. Mol. Pharm. 7 (2010) 680–688. http://dx.doi.org/10.1021/mp9002464CrossrefGoogle Scholar

  • [53] Albertazzi, L., Fernandez-Villamarin, M., Riguera, R. and Fernandez-Megia, E. Peripheral functionalization of dendrimers regulates internalization and intracellular trafficking in living cells. Bioconjugate Chem. 23 (2012) 1059–1068. http://dx.doi.org/10.1021/bc300079hCrossrefGoogle Scholar

  • [54] Perumal, O.P., Inapagolla, R., Kannan, S. and Kannan, R.M. The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials 29 (2008) 3469–3476. http://dx.doi.org/10.1016/j.biomaterials.2008.04.038CrossrefGoogle Scholar

  • [55] Healy, E., Dempsey, M., Lally, C. and Ryan, M.P. Apoptosis and necrosis: mechanisms of cell death induced by cyclosporine A in a renal proximal tubular cell line. Kidney Int. 54 (1998) 1955–1966. http://dx.doi.org/10.1046/j.1523-1755.1998.00202.xCrossrefGoogle Scholar

About the article

Published Online: 2013-07-27

Published in Print: 2013-09-01

Citation Information: Cellular and Molecular Biology Letters, Volume 18, Issue 3, Pages 459–478, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-013-0100-5.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jean Pierre Majoral, Maria Zablocka, Anne-Marie Caminade, Piotr Balczewski, Xiangyang Shi, and Serge Mignani
Coordination Chemistry Reviews, 2018, Volume 358, Page 80
Dirk Bongard, Tesfaye Hailu Degefa, Peter Schön, Maria Giese, Roland Brandt, and Lorenz Walder
European Journal of Organic Chemistry, 2016, Volume 2016, Number 10, Page 1897
Joanna Lazniewska, Anna Janaszewska, Katarzyna Miłowska, Anne-Marie Caminade, Serge Mignani, Nadia Katir, Abdelkrim Kadib, Maria Bryszewska, Jean-Pierre Majoral, Teresa Gabryelak, and Barbara Klajnert-Maculewicz
Molecules, 2013, Volume 18, Number 10, Page 12222
K. Ciepluch, B. Nyström, D. Appelhans, M. Zablocka, M. Bryszewska, and J. P. Majoral
Journal of Polymer Research, 2015, Volume 22, Number 9
Silvia Moreno, Aleksandra Szwed, Nabil El Brahmi, Katarzyna Milowska, Joanna Kurowska, Elena Fuentes-Paniagua, Elzbieta Pedziwiatr-Werbicka, Teresa Gabryelak, Nadia Katir, F. Javier de la Mata, Ma Angeles Muñoz-Fernández, Rafael Gomez-Ramirez, Anne-Marie Caminade, Jean-Pierre Majoral, and Maria Bryszewska
RSC Adv., 2015, Volume 5, Number 33, Page 25942
Kathiresan Murugavel
Polym. Chem., 2014, Volume 5, Number 20, Page 5873
Vladimir Potkin, Dzmitry Shcharbin, Andrey Denisov, Svetlana Paschkevich, Maria Bryszewska, Sergey Petkevich, Alexey Kletskov, Dmitri Lapotko, Vladimir Kazbanov, Tatiana Gurinovich, and Vladimir Kulchitsky
Cellular and Molecular Biology Letters, 2014, Volume 19, Number 2

Comments (0)

Please log in or register to comment.
Log in