Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Editor-in-Chief: /


IMPACT FACTOR 2016: 1.260
5-year IMPACT FACTOR: 1.506

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.615
Source Normalized Impact per Paper (SNIP) 2016: 0.470

Online
ISSN
1689-1392
See all formats and pricing
More options …
Volume 18, Issue 4 (Dec 2013)

Adipose tissue-derived stem cells show considerable promise for regenerative medicine applications

Izabela Harasymiak-Krzyżanowska / Alicja Niedojadło / Jolanta Karwat / Lidia Kotuła / Paulina Gil-Kulik / Magdalena Sawiuk / Janusz Kocki
Published Online: 2013-12-29 | DOI: https://doi.org/10.2478/s11658-013-0101-4

Abstract

The stromal-vascular cell fraction (SVF) of adipose tissue can be an abundant source of both multipotent and pluripotent stem cells, known as adipose-derived stem cells or adipose tissue-derived stromal cells (ADSCs). The SVF also contains vascular cells, targeted progenitor cells, and preadipocytes. Stromal cells isolated from adipose tissue express common surface antigens, show the ability to adhere to plastic, and produce forms that resemble fibroblasts. They are characterized by a high proliferation potential and the ability to differentiate into cells of meso-, ecto- and endodermal origin. Although stem cells obtained from an adult organism have smaller capabilities for differentiation in comparison to embryonic and induced pluripotent stem cells (iPSs), the cost of obtaining them is significantly lower. The 40 years of research that mainly focused on the potential of bone marrow stem cells (BMSCs) revealed a number of negative factors: the painful sampling procedure, frequent complications, and small cell yield. The number of stem cells in adipose tissue is relatively large, and obtaining them is less invasive. Sampling through simple procedures such as liposuction performed under local anesthesia is less painful, ensuring patient comfort. The isolated cells are easily grown in culture, and they retain their properties over many passages. That is why adipose tissue has recently been treated as an attractive alternative source of stem cells. Essential aspects of ADSC biology and their use in regenerative medicine will be analyzed in this article.

Keywords: Adipocyte; Mesenchymal stem cells; Regenerative medicine; Adipose tissue; Stem cell therapy; Adipose-derived stem cells; Stromal cells; Flow cytometry

  • [1] Bajek, A., Olkowska, J. and Drewa, T. Mesenchymal stem cells as a therapeutic tool in tissue and organ regeneration. Postepy Hig. Med. Dosw. 65 (2011) 124–132. http://dx.doi.org/10.5604/17322693.933878CrossrefGoogle Scholar

  • [2] Banaś, A. Stem cells — perspectives and dangers. Prz. Med. Uniw. Rzesz. 8 (2010) 117–127. Google Scholar

  • [3] Skalska, U. and Kontny, E. Regenerative and immunomodulatory properties of adipose-derived mesenchymal stem cells. Post. Biol. Kom. 38 (2011) 363–378. Google Scholar

  • [4] Lindroos, B., Suuronen, R. and Miettinen, S. The Potential of adipose stem cells in regenerative medicine. Stem Cell Rev. 7 (2011) 269–291. http://dx.doi.org/10.1007/s12015-010-9193-7CrossrefWeb of ScienceGoogle Scholar

  • [5] Jezierska-Woźniak, K., Nosarzewska, D., Tutas, A., Mikołajczyk, A., Okliński, M. and Jurkowski, M.K. Use of adipose tissue as a source of mesenchymal stem cells. Postepy Hig. Med. Dosw. 64 (2010) 326–332. Google Scholar

  • [6] Zuk, P.A. The Adipose-derived stem cell: looking back and looking ahead. Mol. Biol. Cell 21 (2010) 1783–1787. http://dx.doi.org/10.1091/mbc.E09-07-0589CrossrefGoogle Scholar

  • [7] Sun, L., Akiyama, K., Zhang, H., Yamaza, T., Hou, Y., Zhao, S., Xu, T., Le, A. and Shi, S. Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells 27 (2009) 1421–1432. http://dx.doi.org/10.1002/stem.68CrossrefWeb of ScienceGoogle Scholar

  • [8] Cawthorn, W.P., Scheller, E.L. and MacDougald, O.A. Adipose tissue stem cells: the great WAT hope. Trends Endocrinol. Metab. 23 (2012) 270–277. http://dx.doi.org/10.1016/j.tem.2012.01.003CrossrefGoogle Scholar

  • [9] Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P. and Hedrick, M.H. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7 (2001) 211–228. http://dx.doi.org/10.1089/107632701300062859CrossrefGoogle Scholar

  • [10] Fraser, J.K., Zhu, M., Wulur, I. and Alfonso, Z. Adipose-derived stem cells. Methods Mol. Biol. 449 (2008) 59–67. Google Scholar

  • [11] Banaś, A., Teratani, T., Yamamoto, Y., Tokuhara, M., Takeshita, F., Quinn, G., Okochi, H. and Ochiya, T. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 46 (2007) 219–228. http://dx.doi.org/10.1002/hep.21704CrossrefGoogle Scholar

  • [12] Baer, P.C. and Geiger, H. Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells Int. Article ID 812693, (2012). DOI: 10.1155/2012/812693. Web of ScienceGoogle Scholar

  • [13] Im, G.-I., Shin, Y.-W. and Lee, K.-B. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthr. Cartil. 13 (2005) 845–853. http://dx.doi.org/10.1016/j.joca.2005.05.005CrossrefGoogle Scholar

  • [14] Schaffler, A. and Buchler C. Concise review: adipose tissue-derived stromal cells-basic and clinical implications for novel cell-based therapies. Stem Cells 25 (2007) 818–827. http://dx.doi.org/10.1634/stemcells.2006-0589CrossrefWeb of ScienceGoogle Scholar

  • [15] Witkowska-Zimny, M. and Walenko, K. Stem cells from adipose tissue. Cell. Mol. Biol. Lett. 16 (2011) 236–257. http://dx.doi.org/10.2478/s11658-011-0005-0CrossrefGoogle Scholar

  • [16] Olkowska-Truchanowicz, J. Isolation and characterization of adipose tissuederived stem cells. Post. Biol. Kom. 35 (2008) 517–526. Google Scholar

  • [17] Romanov, Y.A., Darevskaya, A.N., Merzlikina, N.V. and Buravkova, L.B. Mesenchymal stem cells from human bone marrow and adipose tissue: isolation, characterization and differentiation potentialities. Bull. Exp. Biol. Med. 3 (2005) 138–143. http://dx.doi.org/10.1007/s10517-005-0430-zCrossrefGoogle Scholar

  • [18] Wu, C.-H., Lee, F.-K., Kumar, S.S., Ling, Q.-D., Chang, Y., Chang, Y., Wang, H.-Ch., Chen, H., Chen, D.-Ch., Hsu, S.-T. and Higuchi, A. The isolation and differentiation of human adipose-derived stem cells using membrane filtration. Biomaterials 33 (2012) 8228–8239. http://dx.doi.org/10.1016/j.biomaterials.2012.08.027CrossrefWeb of ScienceGoogle Scholar

  • [19] Yang, X., Gong, P., Lin, Y., Zhang, L., Li, X., Yuan, Q., Tan, Z., Wang, Y., Man, Y. and Tang, H. Cyclic tensile stretch modulates osteogenic differentiation of adipose-derived stem cells via the BMP-2 pathway. Arch. Med. Sci. 6 (2010) 152–159. http://dx.doi.org/10.5114/aoms.2010.13886CrossrefGoogle Scholar

  • [20] Olkowska-Truchanowicz, J. Differentiation of adipose tissue-derived stem cells- novel possibilities for tissue engineering and cell-based therapy. Post. Biol. Kom. 36 (2009) 217–231. Google Scholar

  • [21] Palpant, N.J. and Metzger, J.M. Aesthetic cardiology: adipose-derived stem cells for myocardial repair. Curr. Stem Cell Res. Ther. 5 (2010) 145–152. http://dx.doi.org/10.2174/157488810791268654CrossrefGoogle Scholar

  • [22] Mazo, M., Gavira, J.J., Pelacho, B. and Prosper, F. Adipose-derived stem cells for myocardial infarction. J. Cardiovasc. Transl. Res. 4 (2011) 145–153. http://dx.doi.org/10.1007/s12265-010-9246-yCrossrefGoogle Scholar

  • [23] Yamada, Y., Wang, X.-D., Yokayama, S., Fukuda, N. and Takakura, N. Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium. Biochem. Biophys. Res. Commun. 342 (2006) 662–670. http://dx.doi.org/10.1016/j.bbrc.2006.01.181CrossrefGoogle Scholar

  • [24] Villiers, J.A., Houreld, N. and Abrahamse, H. Adipose derived stem cells and smooth muscle cells: implications for regenerative medicine. Stem Cell Rev. 5 (2009) 256–265. http://dx.doi.org/10.1007/s12015-009-9084-yCrossrefGoogle Scholar

  • [25] Wang, B., Han, J., Gao, Y., Xiao, Z., Chen, B. and Wang, X. The differentiation of rat adipose-derived stem cells into OEC-like cells on collagen scaffolds by co-culturing with OECs. Neurosci. Lett. 421 (2007) 191–196. http://dx.doi.org/10.1016/j.neulet.2007.04.081CrossrefWeb of ScienceGoogle Scholar

  • [26] Bae, J., Carter, J.E. and Jin, H.K. Adipose tissue-derived stem cells rescue Purkinje neurons and alleviate inflammatory responses in Niemann-Pick disease type C mice. Cell Tissue Res. 340 (2010) 357–369. http://dx.doi.org/10.1007/s00441-010-0942-3CrossrefWeb of ScienceGoogle Scholar

  • [27] Vieira, N.M., Brandalise, V., Zucconi, E., Jazedje, T., Secco, M., Nunes, V.A., Strauss, B.E., Vainzof, M. and Zatz, M. Human multipotent adiposederived stem cells restore dystrophin expression of Duchenne skeletalmuscle cells in vitro. Biol. Cell 100 (2008) 231–241. http://dx.doi.org/10.1042/BC20070102CrossrefWeb of ScienceGoogle Scholar

  • [28] Gimble, J.M., Katz, A.J. and Bunnell, B.A. Adipose-derived stem cells for regenerative medicine. Circ. Res. 100 (2007) 1249–1260. http://dx.doi.org/10.1161/01.RES.0000265074.83288.09CrossrefGoogle Scholar

  • [29] Okura, H., Komoda, H., Fumimoto, Y., Lee, C.M., Nishida, T., Sawa, Y. and Matsuyama, A. Transdifferentiation of human adipose tissue-derived stromal cells into insulin-producing clusters. J. Artif. Organs. 12 (2009) 123–130. http://dx.doi.org/10.1007/s10047-009-0455-6Web of ScienceCrossrefGoogle Scholar

  • [30] Silva, A.C., Percegona, L.S., Franca, A.L., dos Santos, T.M., Perini, C.C., Gonzalez, P., Rebelatto, C.L.K., Camara, N.O.S. and Aita, C.A.M. Expression of pancreatic endocrine markers by mesenchymal stem cells from human adipose tissue. Transplant. Proc. 44 (2012) 2495–2496. http://dx.doi.org/10.1016/j.transproceed.2012.07.036CrossrefGoogle Scholar

  • [31] Marappagounder, D., Somasundaram, I., Dorairaj, S. and Sankaran R.J. Differentiation of mesenchymal stem cells derived from human bone marrow and subcutaneous adipose tissue into pancreatic islet-like clusters in vitro. Cell. Mol. Biol. Lett. 18 (2013) 75–88. http://dx.doi.org/10.2478/s11658-012-0040-5CrossrefWeb of ScienceGoogle Scholar

  • [32] Sterodimas, A., de Faria, J., Nicaretta, B. and Pitanguy, I. Tissue engineering with adipose-derived stem cells (ADSCs): Current and future applications. J. Plast. Reconstr. Aesthet. Surg. 63 (2010) 1886–1892. http://dx.doi.org/10.1016/j.bjps.2009.10.028CrossrefGoogle Scholar

  • [33] Muehlberg, F.L., Song, Y.-H., Krohn, A., Pinilla, S.P., Droll, L.H., Leng, X., Seidensticker, M., Ricke, J., Altman, A.M., Devarajan, E., Liu, W., Arlinghaus, R.B. and Alt, E.U. Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis 30 (2009) 589–597. http://dx.doi.org/10.1093/carcin/bgp036Web of ScienceCrossrefGoogle Scholar

  • [34] Cousin, B., Ravet, E., Poglio, S., de Toni, F., Bertuzzi, M., Lulka, H., Touil, I., André, M., Grolleau, J.L., Péron, J.M., Chavoin, J.P., Bourin, P., Pénicaud, L., Casteilla, L., Buscail, L., and Cordelier, P. Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. Plos One 7 (2009) e6278. DOI:10.1371/journal.pone.0006278. http://dx.doi.org/10.1371/journal.pone.0006278CrossrefGoogle Scholar

  • [35] Kucerova, L., Altanerova, V., Matuskova, M., Tyciakova, S., and Altaner, C. Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res. 67 (2007) 6304–6313. http://dx.doi.org/10.1158/0008-5472.CAN-06-4024CrossrefGoogle Scholar

About the article

Published Online: 2013-12-29

Published in Print: 2013-12-01


Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-013-0101-4.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Xiumei Fu, Zhaoxue Tong, Qi Li, Qingfei Niu, Zhe Zhang, Xiaojie Tong, Lei Tong, and Xu Zhang
Molecular Medicine Reports, 2016, Volume 14, Number 2, Page 1187
[2]
Yaghoub Deldar, Faraz Zarghami, Younes Pilehvar-Soltanahmadi, Mehdi Dadashpour, and Nosratollah Zarghami
Cell and Tissue Banking, 2017
[3]
Jiamin Zhang, Shiyuan Zhou, Yi Zhou, Feier Feng, Qianming Wang, Xiaolu Zhu, Jingzhong Zhao, Haixia Fu, Meng Lv, Huisheng Ai, Xiaojun Huang, and Xiaohui Zhang
Cell Transplantation, 2016, Volume 25, Number 2, Page 261
[4]
Alexandre Lamaro Cardoso, Maria Márcia Bachion, Júlia de Miranda Morais, Marcelo Silva Fantinati, Vera Lúcia Lima de Almeida, and Ruy Souza Lino Júnior
Acta Cirurgica Brasileira, 2016, Volume 31, Number 9, Page 578
[5]
Songtao Xie, Fan Lu, Juntao Han, Ke Tao, Hongtao Wang, Alfred Simental, Dahai Hu, and Hao Yang
Cell Cycle, 2017, Volume 16, Number 9, Page 841
[6]
Ayse Oner, Z. Burcin Gonen, Neslihan Sinim, Mustafa Cetin, and Yusuf Ozkul
Stem Cell Research & Therapy, 2016, Volume 7, Number 1
[7]
Priyanka Sharma, Sunishka M. Wimalawansa, Gregory C. Gould, R. Michael Johnson, and Katherine J.D.A. Excoffon
Human Gene Therapy Methods, 2016, Volume 27, Number 6, Page 219
[8]
Xiaoliang He, Yunlong Zhang, Ai Zhu, Kang Zeng, Xiuping Zhang, Li Gong, Yusheng Peng, Kuan Lai, and Shaogang Qu
Immunologic Research, 2016, Volume 64, Number 5-6, Page 1157
[9]
Debora Lo Furno, Giuliana Mannino, Venera Cardile, Rosalba Parenti, and Rosario Giuffrida
Stem Cells and Development, 2016, Volume 25, Number 21, Page 1615
[10]
Yanli Fu, Jie Deng, Qingyuan Jiang, Yuan Wang, Yujing Zhang, Yunqi Yao, Fuyi Cheng, Xiaolei Chen, Fen Xu, Meijuan Huang, Yang Yang, Shuang Zhang, Dechao Yu, Robert Chunhua Zhao, Yuquan Wei, and Hongxin Deng
Stem Cell Research & Therapy, 2016, Volume 7, Number 1
[11]
HAO ZHOU, JUNJIE YANG, TING XIN, TAO ZHANG, SHUNYIN HU, SHANSHAN ZHOU, GUANGHUI CHEN, and YUNDAI CHEN
Molecular Medicine Reports, 2015, Volume 11, Number 6, Page 4063
[12]
Pavel I. Makarevich, Maria A. Boldyreva, Evgeny V. Gluhanyuk, Anastasia Yu Efimenko, Konstantin V. Dergilev, Evgeny K. Shevchenko, Georgy V. Sharonov, Julia O. Gallinger, Polina A. Rodina, Stepan S. Sarkisyan, Yu-Chen Hu, and Yelena V. Parfyonova
Stem Cell Research & Therapy, 2015, Volume 6, Number 1
[13]
Camilla Siciliano, Isotta Chimenti, Antonella Bordin, Donatella Ponti, Paola Iudicone, Mariangela Peruzzi, Erino Angelo Rendina, Antonella Calogero, Luca Pierelli, Mohsen Ibrahim, and Elena De Falco
BioMed Research International, 2015, Volume 2015, Page 1
[14]
Sonja E. Lobo, Robert Glickman, Wagner N. da Silva, Treena L. Arinzeh, and Irina Kerkis
Cell and Tissue Research, 2015, Volume 361, Number 2, Page 477
[15]
Anahita Shaer, Negar Azarpira, Akbar Vahdati, Mohammad Karimi, and Mehrdad Shariati
Cellular and Molecular Biology Letters, 2014, Volume 19, Number 3
[16]
Silvana A Vielma, Richard L Klein, Corinne A Levingston, and M Rita I Young
Adipocyte, 2014, Volume 3, Number 2, Page 126

Comments (0)

Please log in or register to comment.
Log in