Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Editor-in-Chief: /


IMPACT FACTOR 2016: 1.260
5-year IMPACT FACTOR: 1.506

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.615
Source Normalized Impact per Paper (SNIP) 2016: 0.470

Online
ISSN
1689-1392
See all formats and pricing
More options …
Volume 18, Issue 4 (Dec 2013)

The clinicopathological significance of lamin A/C, lamin B1 and lamin B receptor mRNA expression in human breast cancer

Umar Wazir / Mai Ahmed / Joanna Bridger / Amanda Harvey / Wen Jiang / Anup Sharma / Kefah Mokbel
Published Online: 2013-12-29 | DOI: https://doi.org/10.2478/s11658-013-0109-9

Abstract

Lamin A/C (LMNA), lamin B1 (LMNB1) and lamin B receptor (LBR) have key roles in nuclear structural integrity and chromosomal stability. In this study, we have studied the relationships between the mRNA expressions of A-type lamins, LMNB1 and LBR and the clinicopathological parameters in human breast cancer. Samples of breast cancer tissues (n = 115) and associated non-cancerous tissue (ANCT; n = 30) were assessed using reverse transcription and quantitative PCR. Transcript levels were correlated with clinicopathological data. Higher levels of A-type lamins and LMNB1 mRNA expression were seen in ANCT. Higher lamin A/C expression was associated with the early clinical stage (TNM1 vs. TNM3 — 13 vs. 0.21; p = 0.0515), with better clinical outcomes (disease-free survival vs. mortality — 11 vs. 1; p = 0.0326), and with better overall (p = 0.004) and disease-free survival (p = 0.062). The expression of LMNB1 declined with worsening clinical outcome (disease-free vs. mortalities — 0.0011 vs. 0.000; p = 0.0177). LBR mRNA expression was directly associated with tumor grade (grade 1 vs. grade 3 — 0.00 vs. 0.00; p = 0.0479) and Nottingham Prognostic Index (NPI1 vs. NPI3 — 0.00 vs. 0.00; p = 0.0551). To the best of our knowledge, this is the first study to suggest such a role for A-type lamins, lamin B1 and LBR in human breast cancer, identifying an important area for further research.

Keywords: Lamin A/C; Lamin B; Lamin B receptor; Breast cancer; qPCR; Chromosomal instability; Cell senescence; Cell cycle; DNA repair; Ageing

  • [1] Bridger, J.M., Foeger, N., Kill, I.R. and Herrmann, H. The nuclear lamina. Both a structural framework and a platform for genome organization. FEBS J.274 (2007) 1354–1361. http://dx.doi.org/10.1111/j.1742-4658.2007.05694.xWeb of ScienceGoogle Scholar

  • [2] Guelen, L., Pagie, L., Brasset, E., Meuleman, W., Faza, M.B., Talhout, W., Eussen, B.H., de Klein, A., Wessels, L., de Laat, W. and van Steensel, B. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453 (2008) 948–951. DOI: 10.1038/nature06947. http://dx.doi.org/10.1038/nature06947Web of ScienceCrossrefGoogle Scholar

  • [3] Malhas, A., Lee, C.F., Sanders, R., Saunders, N.J. and Vaux, D.J. Defects in lamin B1 expression or processing affect interphase chromosome position and gene expression. J. Cell Biol. 176 (2007) 593–603. DOI: 10.1083/jcb.200607054. http://dx.doi.org/10.1083/jcb.200607054Web of ScienceCrossrefGoogle Scholar

  • [4] Bridger, J.M., Kill, I.R., O’Farrell, M. and Hutchison, C.J. Internal lamin structures within G1 nuclei of human dermal fibroblasts. J. Cell Sci. 104 (1993) 297–306. Google Scholar

  • [5] Goldman, A.E., Moir, R.D., Montag-Lowy, M., Stewart, M. and Goldman, R.D. Pathway of incorporation of microinjected lamin A into the nuclear envelope. J. Cell Biol. 119 (1992) 725–735. http://dx.doi.org/10.1083/jcb.119.4.725Google Scholar

  • [6] Solovei, I., Wang, A.S., Thanisch, K., Schmidt, C.S., Krebs, S., Zwerger, M., Cohen, T.V., Devys, D., Foisner, R., Peichl, L., Herrmann, H., Blum, H., Engelkamp, D., Stewart, C.L., Leonhardt, H. and Joffe, B. LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152 (2013) 584–598. DOI: 10.1016/j.cell.2013.01.009. http://dx.doi.org/10.1016/j.cell.2013.01.009Web of ScienceCrossrefGoogle Scholar

  • [7] Zhang, H., Kieckhaefer, J.E. and Cao, K. Mouse models of laminopathies. Aging Cell 12 (2013) 2–10. DOI: 10.1111/acel.12021. http://dx.doi.org/10.1111/acel.12021CrossrefWeb of ScienceGoogle Scholar

  • [8] Worman, H.J., Ostlund, C. and Wang, Y. Diseases of the nuclear envelope. Cold Spring Harb. Perspect. Biol. 2 (2010) a000760. DOI: 10.1101/cshperspect.a000760. http://dx.doi.org/10.1101/cshperspect.a000760Web of ScienceCrossrefGoogle Scholar

  • [9] Chi, Y.H., Chen, Z.J. and Jeang, K.T. The nuclear envelopathies and human diseases. J. Biomed. Sci. 16 (2009) 96. DOI: 10.1186/1423-0127-16-96. http://dx.doi.org/10.1186/1423-0127-16-96CrossrefWeb of ScienceGoogle Scholar

  • [10] Kong, L., Schafer, G., Bu, H., Zhang, Y. and Klocker, H. Lamin A/C protein is overexpressed in tissue-invading prostate cancer and promotes prostate cancer cell growth, migration and invasion through the PI3K/AKT/PTEN pathway. Carcinogenesis 33 (2012) 751–759. DOI: 10.1093/carcin/bgs022. http://dx.doi.org/10.1093/carcin/bgs022Web of ScienceCrossrefGoogle Scholar

  • [11] Helfand, B.T., Wang, Y., Pfleghaar, K., Shimi, T., Taimen, P. and Shumaker, D.K. Chromosomal regions associated with prostate cancer risk localize to lamin B-deficient microdomains and exhibit reduced gene transcription. J. Pathol. 226 (2012) 735–745. DOI: 10.1002/path.3033. http://dx.doi.org/10.1002/path.3033CrossrefWeb of ScienceGoogle Scholar

  • [12] Luk, J.M. and Liu, A.M. Proteomics of hepatocellular carcinoma in Chinese patients. OMICS 15 (2011) 261–266. DOI: 10.1089/omi.2010.0099. http://dx.doi.org/10.1089/omi.2010.0099CrossrefGoogle Scholar

  • [13] Al Sarakbi, W., Sasi, W., Jiang, W.G., Roberts, T., Newbold, R.F. and Mokbel, K. The mRNA expression of SETD2 in human breast cancer: correlation with clinico-pathological parameters. BMC Cancer 9 (2009) 290. DOI: 10.1186/1471-2407-9-290. http://dx.doi.org/10.1186/1471-2407-9-290CrossrefWeb of ScienceGoogle Scholar

  • [14] Elkak, A., Mokbel, R., Wilson, C., Jiang, W.G., Newbold, R.F. and Mokbel, K. hTERT mRNA expression is associated with a poor clinical outcome in human breast cancer. Anticancer Res. 26 (2006) 4901–4904. Google Scholar

  • [15] Wazir, U., Jiang, W.G., Sharma, A.K. and Mokbel, K. The mRNA expression of DAP3 in human breast cancer: correlation with clinicopathological parameters. Anticancer Res. 32 (2012) 671–674. Google Scholar

  • [16] Jiang, W.G., Watkins, G., Lane, J., Cunnick, G.H., Douglas-Jones, A., Mokbel, K. and Mansel, R.E. Prognostic value of rho GTPases and rho guanine nucleotide dissociation inhibitors in human breast cancers. Clin. Cancer Res. 9 (2003) 6432–6440. Google Scholar

  • [17] Lin, F. and Worman, H.J. Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J. Biol. Chem. 268 (1993) 16321–16326. Google Scholar

  • [18] Bonne, G., Di Barletta, M.R., Varnous, S., Becane, H.M., Hammouda, E.H., Merlini, L., Muntoni, F., Greenberg, C.R., Gary, F., Urtizberea, J.A., Duboc, D., Fardeau, M., Toniolo, D. and Schwartz, K. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat. Genet. 21 (1999) 285–288. DOI: 10.1038/6799. http://dx.doi.org/10.1038/6799CrossrefGoogle Scholar

  • [19] Maraldi, N.M., Capanni, C., Cenni, V., Fini, M. and Lattanzi, G. Laminopathies and lamin-associated signaling pathways. J. Cell Biochem.112 (2011) 979–992. DOI: 10.1002/jcb.22992. http://dx.doi.org/10.1002/jcb.22992CrossrefGoogle Scholar

  • [20] Cenni, V., Capanni, C., Columbaro, M., Ortolani, M., D’Apice, M.R., Novelli, G., Fini, M., Marmiroli, S., Scarano, E., Maraldi, N.M., Squarzoni, S., Prencipe, S. and Lattanzi, G. Autophagic degradation of farnesylated prelamin A as a therapeutic approach to lamin-linked progeria. Eur. J. Histochem. 55 (2011) e36. DOI: 10.4081/ejh.2011.e36. http://dx.doi.org/10.4081/ejh.2011.e36Web of ScienceCrossrefGoogle Scholar

  • [21] Cao, K., Graziotto, J.J., Blair, C.D., Mazzulli, J.R., Erdos, M.R., Krainc, D. and Collins, F.S. Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci. Transl. Med. 3 (2011) 89ra58. DOI: 10.1126/scitranslmed.3002346. Web of ScienceCrossrefGoogle Scholar

  • [22] Ramos, F.J., Chen, S.C., Garelick, M.G., Dai, D.F., Liao, C.Y., Schreiber, K.H., MacKay, V.L., An, E.H., Strong, R., Ladiges, W.C., Rabinovitch, P.S., Kaeberlein, M. and Kennedy, B.K. Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci. Transl. Med. 4 (2012) 144ra103. DOI: 10.1126/scitranslmed.3003802. http://dx.doi.org/10.1126/scitranslmed.3003802Google Scholar

  • [23] Wydner, K.L., McNeil, J.A., Lin, F., Worman, H.J. and Lawrence, J.B. Chromosomal assignment of human nuclear envelope protein genes LMNA, LMNB1, and LBR by fluorescence in situ hybridization. Genomics 32 (1996) 474–478. DOI: 10.1006/geno.1996.0146. http://dx.doi.org/10.1006/geno.1996.0146CrossrefGoogle Scholar

  • [24] Tsai, M.Y., Wang, S., Heidinger, J.M., Shumaker, D.K., Adam, S.A., Goldman, R.D. and Zheng, Y. A mitotic lamin B matrix induced by RanGTP required for spindle assembly. Science 311 (2006) 1887–1893. DOI: 10.1126/science.1122771. http://dx.doi.org/10.1126/science.1122771CrossrefGoogle Scholar

  • [25] Worman, H.J. and Bonne, G. “laminopathies”: a wide spectrum of human diseases. Exp. Cell Res. 313 (2007) 2121–2133. DOI: 10.1016/j.yexcr.2007.03.028. http://dx.doi.org/10.1016/j.yexcr.2007.03.028CrossrefGoogle Scholar

  • [26] Young, S.G., Jung, H.J., Coffinier, C. and Fong, L.G. Understanding the roles of nuclear A- and B-type lamins in brain development. J. Biol. Chem.287 (2012) 16103–16110. DOI: 10.1074/jbc.R112.354407. http://dx.doi.org/10.1074/jbc.R112.354407CrossrefWeb of ScienceGoogle Scholar

  • [27] Coffeen, C.M., McKenna, C.E., Koeppen, A.H., Plaster, N.M., Maragakis, N., Mihalopoulos, J., Schwankhaus, J.D., Flanigan, K.M., Gregg, R.G., Ptacek, L.J. and Fu, Y.H. Genetic localization of an autosomal dominant leukodystrophy mimicking chronic progressive multiple sclerosis to chromosome 5q31. Hum. Mol. Genet. 9 (2000) 787–793. http://dx.doi.org/10.1093/hmg/9.5.787Google Scholar

  • [28] Hegele, R.A., Cao, H., Liu, D.M., Costain, G.A., Charlton-Menys, V., Rodger, N.W. and Durrington, P.N. Sequencing of the reannotated LMNB2 gene reveals novel mutations in patients with acquired partial lipodystrophy. Am. J. Hum. Genet. 79 (2006) 383–389. DOI: 10.1086/505885. http://dx.doi.org/10.1086/505885CrossrefGoogle Scholar

  • [29] Olins, A.L., Rhodes, G., Welch, D.B., Zwerger, M. and Olins, D.E. Lamin B receptor: multi-tasking at the nuclear envelope. Nucleus 1 (2010) 53–70. DOI: 10.4161/nucl.1.1.10515. Web of ScienceCrossrefGoogle Scholar

  • [30] Hoffmann, K., Sperling, K., Olins, A.L. and Olins, D.E. The granulocyte nucleus and lamin B receptor: avoiding the ovoid. Chromosoma 116 (2007) 227–235. DOI: 10.1007/s00412-007-0094-8. http://dx.doi.org/10.1007/s00412-007-0094-8Web of ScienceCrossrefGoogle Scholar

  • [31] Waterham, H.R., Koster, J., Mooyer, P., Noort Gv, G., Kelley, R.I. and Wilcox, W.R. Autosomal recessive hem/greenberg skeletal dysplasia is caused by 3betahydroxysterol delta 14-reductase deficiency due to mutations in the lamin b receptor gene. Am. J. Hum. Genet. 72 (2003) 1013–1017. http://dx.doi.org/10.1086/373938Google Scholar

  • [32] Butin-Israeli, V., Adam, S.A., Goldman, A.E. and Goldman, R.D. Nuclear lamin functions and disease. Trends Genet. 28 (2012) 464–471. DOI: 10.1016/j.tig.2012.06.001. http://dx.doi.org/10.1016/j.tig.2012.06.001Web of ScienceCrossrefGoogle Scholar

  • [33] Fischer, A.H., Taysavang, P., Weber, C.J. and Wilson, K.L. Nuclear envelope organization in papillary thyroid carcinoma. Histol. Histopathol.16 (2001) 1–14. Google Scholar

  • [34] Foster, C.R., Robson, J.L., Simon, W.J., Twigg, J., Cruikshank, D., Wilson, R.G. and Hutchison, C.J. The role of lamin A in cytoskeleton organization in colorectal cancer cells: a proteomic investigation. Nucleus 2 (2011) 434–443. DOI: 10.4161/nucl.2.5.17775. http://dx.doi.org/10.4161/nucl.2.5.17775CrossrefWeb of ScienceGoogle Scholar

  • [35] Willis, N.D., Cox, T.R., Rahman-Casans, S.F., Smits, K., Przyborski, S.A., van den Brandt, P., van Engeland, M., Weijenberg, M., Wilson, R.G., de Bruine, A. and Hutchison, C.J. Lamin A/C is a risk biomarker in colorectal cancer. PLoS ONE 3 (2008) e2988. DOI: 10.1371/journal.pone.0002988. http://dx.doi.org/10.1371/journal.pone.0002988CrossrefGoogle Scholar

  • [36] Hudson, M.E., Pozdnyakova, I., Haines, K., Mor, G. and Snyder, M. Identification of differentially expressed proteins in ovarian cancer using high-density protein microarrays. Proc. Natl. Acad. Sci. U S A 104 (2007) 17494–17499. DOI: 10.1073/pnas.0708572104. http://dx.doi.org/10.1073/pnas.0708572104CrossrefWeb of ScienceGoogle Scholar

  • [37] Kaufmann, S.H., Mabry, M., Jasti, R. and Shaper, J.H. Differential expression of nuclear envelope lamins A and C in human lung cancer cell lines. Cancer Res. 51 (1991) 581–586. Google Scholar

  • [38] Broers, J.L., Raymond, Y., Rot, M.K., Kuijpers, H., Wagenaar, S.S. and Ramaekers, F.C. Nuclear A-type lamins are differentially expressed in human lung cancer subtypes. Am. J. Pathol. 143 (1993) 211–220. Google Scholar

  • [39] Moss, S.F., Krivosheyev, V., de Souza, A., Chin, K., Gaetz, H.P., Chaudhary, N., Worman, H.J. and Holt, P.R. Decreased and aberrant nuclear lamin expression in gastrointestinal tract neoplasms. Gut 45 (1999) 723–729. http://dx.doi.org/10.1136/gut.45.5.723Google Scholar

  • [40] Venables, R.S., McLean, S., Luny, D., Moteleb, E., Morley, S., Quinlan, R.A., Lane, E.B. and Hutchison, C.J. Expression of individual lamins in basal cell carcinomas of the skin. Br. J. Cancer 84 (2001) 512–519. DOI: 10.1054/bjoc.2000.1632. http://dx.doi.org/10.1054/bjoc.2000.1632CrossrefGoogle Scholar

  • [41] Capo-chichi, C.D., Cai, K.Q., Simpkins, F., Ganjei-Azar, P., Godwin, A.K. and Xu, X.X. Nuclear envelope structural defects cause chromosomal numerical instability and aneuploidy in ovarian cancer. BMC Med. 9 (2011) 28. DOI: 10.1186/1741-7015-9-28. http://dx.doi.org/10.1186/1741-7015-9-28Web of ScienceCrossrefGoogle Scholar

  • [42] Wu, Z., Wu, L., Weng, D., Xu, D., Geng, J. and Zhao, F. Reduced expression of lamin A/C correlates with poor histological differentiation and prognosis in primary gastric carcinoma. J. Exp. Clin. Cancer Res. 28 (2009) 8. DOI: 10.1186/1756-9966-28-8. http://dx.doi.org/10.1186/1756-9966-28-8CrossrefGoogle Scholar

  • [43] Agrelo, R., Setien, F., Espada, J., Artiga, M.J., Rodriguez, M., Perez-Rosado, A., Sanchez-Aguilera, A., Fraga, M.F., Piris, M.A. and Esteller, M. Inactivation of the lamin A/C gene by CpG island promoter hypermethylation in hematologic malignancies, and its association with poor survival in nodal diffuse large B-cell lymphoma. J. Clin. Oncol. 23 (2005) 3940–3947. DOI: 10.1200/JCO.2005.11.650. http://dx.doi.org/10.1200/JCO.2005.11.650CrossrefGoogle Scholar

  • [44] Wong, K.F. and Luk, J.M. Discovery of lamin B1 and vimentin as circulating biomarkers for early hepatocellular carcinoma. Methods Mol. Biol. 909 (2012) 295–310. DOI: 10.1007/978-1-61779-959-4_19. CrossrefGoogle Scholar

  • [45] Sun, S., Xu, M.Z., Poon, R.T., Day, P.J. and Luk, J.M. Circulating lamin B1 (LMNB1) biomarker detects early stages of liver cancer in patients. J. Proteome Res. 9 (2010) 70–78. DOI: 10.1021/pr9002118. http://dx.doi.org/10.1021/pr9002118Web of ScienceCrossrefGoogle Scholar

  • [46] Coradeghini, R., Barboro, P., Rubagotti, A., Boccardo, F., Parodi, S., Carmignani, G., D’Arrigo, C., Patrone, E. and Balbi, C. Differential expression of nuclear lamins in normal and cancerous prostate tissues. Oncol. Rep. 15 (2006) 609–613. Google Scholar

  • [47] Wazir, U., Newbold, R.F., Jiang, W.G., Sharma, A.K. and Mokbel, K. Prognostic and therapeutic implications of mTORC1 and Rictor expression in human breast cancer. Oncol. Rep. 29 (2013) 1969–1974. DOI: 10.3892/or.2013.2346. CrossrefGoogle Scholar

  • [48] Wander, S.A., Zhao, D., Besser, A.H., Hong, F., Wei, J., Ince, T.A., Milikowski, C., Bishopric, N.H., Minn, A.J., Creighton, C.J. and Slingerland, J.M. PI3K/mTOR inhibition can impair tumor invasion and metastasis in vivo despite a lack of antiproliferative action in vitro: implications for targeted therapy. Breast Cancer Res. Treat. (2013) 369–381. DOI: 10.1007/s10549-012-2389-6. Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2013-12-29

Published in Print: 2013-12-01


Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-013-0109-9.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Elise Kaspi, Diane Frankel, Julien Guinde, Sophie Perrin, Sophie Laroumagne, Andrée Robaglia-Schlupp, Kevin Ostacolo, Karim Harhouri, Rachid Tazi-Mezalek, Joelle Micallef, Hervé Dutau, Pascale Tomasini, Annachiara De Sandre-Giovannoli, Nicolas Lévy, Pierre Cau, Philippe Astoul, Patrice Roll, and Olorunseun Ogunwobi
PLOS ONE, 2017, Volume 12, Number 8, Page e0183136
[3]
Jerome Irianto, Charlotte R. Pfeifer, Irena L. Ivanovska, Joe Swift, and Dennis E. Discher
Cellular and Molecular Bioengineering, 2016, Volume 9, Number 2, Page 258
[4]
Ayaka Matsumoto, Chiyomi Sakamoto, Haruka Matsumori, Jun Katahira, Yoko Yasuda, Katsuhide Yoshidome, Masahiko Tsujimoto, Ilya G Goldberg, Nariaki Matsuura, Mitsuyoshi Nakao, Noriko Saitoh, and Miki Hieda
Nucleus, 2016, Volume 7, Number 1, Page 68
[5]
Alexandra Lynn McGregor, Chieh-Ren Hsia, and Jan Lammerding
Current Opinion in Cell Biology, 2016, Volume 40, Page 32
[6]
VINCENT BLANCKAERT, VINCENT KERVIEL, ALEXANDRA LÉPINAY, VANESSA JOUBERT-DURIGNEUX, HUBERT HONDERMARCK, and BENOÎT CHÉNAIS
International Journal of Oncology, 2015, Volume 46, Number 6, Page 2649
[7]
Ahmad Aljada, Joseph Doria, Ayman M. Saleh, Shahad H. Al-Matar, Sarah AlGabbani, Heba Bani Shamsa, Ahmad Al-Bawab, and Altayeb Abdalla Ahmed
Cellular Oncology, 2016, Volume 39, Number 2, Page 161
[8]
Shrestha Ghosh, Baohua Liu, Yi Wang, Quan Hao, and Zhongjun Zhou
Cell Reports, 2015, Volume 13, Number 7, Page 1396
[9]
Ayaka Matsumoto, Miki Hieda, Yuhki Yokoyama, Yu Nishioka, Katsuhide Yoshidome, Masahiko Tsujimoto, and Nariaki Matsuura
Cancer Medicine, 2015, Volume 4, Number 10, Page 1547
[10]
E. V. Sheval and Y. R. Musinova
Biopolymers and Cell, 2014, Volume 30, Number 5, Page 335
[11]
Fan Zhang, Cui Li, Hailing Liu, Yuexiang Wang, Yile Chen, and Xiaoying Wu
Tumor Biology, 2014, Volume 35, Number 12, Page 12379
[12]
Patricia M. Davidson, Celine Denais, Maya C. Bakshi, and Jan Lammerding
Cellular and Molecular Bioengineering, 2014, Volume 7, Number 3, Page 293
[13]
Mátyás Gorjánácz
Nucleus, 2014, Volume 5, Number 1, Page 47
[14]
C.J. Hutchison
Seminars in Cell & Developmental Biology, 2014, Volume 29, Page 158

Comments (0)

Please log in or register to comment.
Log in